

Journal homepage: http://www.journalijar.com Journal DOI: 10.21474/IJAR01

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH

RESEARCH ARTICLE

Smg-interior and Smg-Closure.

A.R. Thilagavathi¹ and ^{*}K. indirani².

- 1. Sri G.V.G Visalakshi College for Women, Udumalpet, Tirupur District, Tamil Nadu, India.
- 2. Department Of Mathematics, Nirmala College for Women, Coimbatore, Tamil Nadu, India.
- _____

Manuscript Info

Abstract

1 5	
<i>Manuscript History:</i> Received: 15 May 2016 Final Accepted: 22 June 2016 Published Online: July 2016	The aim of this paper is to introduce the notion of Smg-interior, Smg- closure in topological spaces and new class of quasi Smg open and quasi closed function on spaces with minimal structures.

Key words:

Com Pickt HAD 2016 All vickts recommed	*Corresponding Author	
K. Indirani.	K. Indirani.	Copy Right, IJAR, 2016,. All rights reserved.

Introduction:-

In 1970 the notion of generalized closed (briefly g-closed) sets were introduced and investigated by LEVINE [2]. MAKI [1] introduced the notions of minimal structures and minimal spaces. Recently many modifications of g closed sets have defined and investigated.

Valeiru Popa [3] introduced the notions of m_x-closed sets on spaces with minimal structures. In [4], Noiri introduced and studied the concepts of mg-closed sets on spaces with minimal structures. In [5], Pushpalatha and Subha introduced and investigated the notions of strongly minimal g-closed sets (briefly, smg-closed sets).

In this paper, the notion of smg-interior is defined and some of its basic prop- erties are studied. Also we introduce the concept of smg-closure in topological spaces using the notions of smg-closed sets.

Preliminaries:-

Definition 2.1: [3] Let (X, τ) be a topological space. Then the families τ , SO(X) and α O(X) are all m-structures on X.

Remark 2.2: [3] Let (X, τ) be a topological space and A a subset of X. If $m_X = \tau$ (resp. SO(X), PO(X), α O(X)) then we have

- 1. m_x -cl(A) = cl(A) (resp. scl(A), pcl(A), α cl(A)).
- 2. $m_{\mathbf{X}}$ -int(A) = int(A) (resp. sint(A), pint(A), α int(A)).

Lemma 2.3: [3] Let X be a nonempty set with a minimal structure m_x and A a subset of

X. Then $x \in m_x$ -cl(A) if and only if $U \cap A$, φ for every $U \in m_x$ containing x.

Definition 2.4: [4] Let (X, m_X) be an m-space. A subset A of X is said to be mg-closed if m_X -cl $(A) \subseteq G$ whenever

A \subseteq G and G is m_x-open. The complement of a mg-closed set is said to be a mg-open set.

Definition 2.5:- A minimal structure m_X on a nonempty set X is said to have the property \mathcal{B} if the union of any family of subsets belonging to m_X belongs to m_X .

Definition 2.6:- [5] Let (X, m_X) be an m-space. A subset A of X is said to be strongly minimal generalized closed (briefly smg-closed) if m_X -cl(A) \subseteq G whenever A \subseteq G and G is mg-open. The complement of a smg-closed set is called a smg-open set in (X, m_X) .

We denote the set of all smg-closed (resp. smg-open) sets in X by SMGC(X)(resp. SMGO(X)).

Remark 2.7: [6] Let X be a non-empty set with a minimal structure m_X satisfying the property \mathcal{B} . Then every m_X -closed set is smg-closed but not conversely.

Lemma 2.8: [3] Let (X, m_X) be an m-space and m_X satisfy property \mathcal{B} . Then for subset A of X, the following properties hold:

1. $A \in m_X$ if and only if m_X -int(A) = A,

2. A is m_X -closed if and only if m_X -cl(A) = A,

3. m_X -int(A) $\in m_X$ and m_X -cl(A) is m_X -closed.

Remark 2.9: [5] Let X be a non-empty set with a minimal structure m_X satisfying the property \mathcal{B} . We have the following implications.

 $m_X\text{-}closed \ set \longrightarrow smg\text{-}closed \ set \longrightarrow mg\text{-}closed \ set.$

The reverse implications are not true.

Example 2.10: Consider $X = \{a, b, c\}$ with minimal structures satisfying the property \mathcal{B} . We have $m_X = \{\phi, X, \{b\}, \{a, b\}, \{a, c\}\}$. By the equation $A = \{b, c\}$ is single closed set but not m_X closed.

Example 2.11: Consider $X = \{a, b, c\}$ with minimal structures satisfying the property \mathcal{B} . We have $m_X = \{\phi, X, \{a\}, \{b, c\}\}$. Here $A = \{a, b\}$ is mg-closed set but not smg-closed.

Definition 2.12: [3] A function $f : (X, m_X) \rightarrow (Y, m_y)$, where (X, m_X) and (Y, m_y) are nonempty sets X and Y with minimal structures m_X and m_y , respectively, is said to be M-continuous if for each $x \in X$ and each $V \in m_y$ containing f(x), there exists $U \in m_x$ containing x such that $f(U) \subseteq V$.

Definition :2.13: Let X be a non-empty set with a minimal structure m_X satisfying the property \mathcal{B} . A function f: (X, m_X) \rightarrow (Y, my) is said to be strongly minimal g-continuous (briefly, smg-continuous) if $f^{-1}(V)$ is smg-closed in (X, m_X) for every m_Y -closed set V in (Y, m_Y).

Smg-interior and Smg-Closure:-

Definition 3.1: Let X be a topological space and let $x \in X$. A subset N of X is said to be smg-neighbourhood (briefly

smg-nbhd) of x if there exists a smg-open set G such that $x \in G \subseteq N$.

Definition 3.2: Let A be a subset of X. A point $x \in A$ is said to be smg-interior point of A if A is a smg-nbhd of x. The set of all smg-interior points of A is called the smg-interior of A and is denoted by smg-int(A).

Theorem 3.3: If A be a subset of X. Then smg-int(A) = $\cup \{G : G \text{ is smg-open, } G \subseteq A\}$.

Theorem 3.4: Let A and B be subsets of X. Then

1. smg-int(X) = X and smg-int(φ) = φ .

2. smg-int(A) \subseteq A.

- 3. If B is any smg-open set contained in A, then $B \subseteq \text{smg-int}(A)$.
- 4. If $A \subseteq B$, then smg-int(A) \subseteq smg-int(B)
- 5. smg-int(smg-int(A)) = smg-int(A).

Theorem 3.5: If a subset A of a space X is smg-open, then smg-int(A) = A.

Example .3.6: Let $X = \{a, b, c, d\}$ with minimal structure $m_X = \{\phi, X, \{c\}, \{a, d\}\}$. If $A = \{a, c\}$, then smg-int(A) = $\{a, c\} = A$ but it is not smg-open.

Theorem 3.7: If A and B are subsets of X, then smg-int(A) \cup smg-int(B) \subseteq smg-int(A \cup B).

Proof. We know that $A \subseteq A \cup B$ and $B \subseteq A \cup B$. We have, by Theorem 3.4(4), smg-int(A) \subseteq smg-int(A \cup B)

and smg-int(B) \subseteq smg-int(A \cup B). This implies that smg-int(A) \cup smg-int(B) \subseteq smg-int(A \cup B).

Containment relation in the above Theorem 3.7 may be proper as seen from the following example.

Example 3.8: Let $X = \{a, b, c, d\}$ with minimal structure $m_X = \{\phi, X, \{d\}, \{a, b, c\}, \{a, c, d\}\}$. If we take $A = \{a\}$ and

 $B = \{b, c\}$, then smg-int(A) \cup smg-int(B) = $\{a, c\} \subseteq \{a, b, c\} = \text{smg-int}(A \cup B) \text{ and smg-int}(A) \cup \text{smg-int}(B)$, smg-int(A $\cup B$).

Theorem 3.9: If A and B are subsets of X, then smg-int($A \cap B$) = smg-int(A) \cap smg-int(B).

Proof: We know that $A \cap B \subseteq A$ and $A \cap B \subseteq B$. We have, by Theorem 3.4(4), smg-int($A \cap B$) \subseteq smg-int(A)

and smg-int(A \cap B) \subseteq smg-int(B). This implies that smg-int(A \cap B) \subseteq smg-int(A) \cap smg-int(B) \rightarrow (1).

Again, let $x \in \text{smg-int}(A) \cap \text{smg-int}(B)$. Then $x \in \text{smg-int}(A)$ and $x \in \text{smg-int}(B)$. Hence x is a smg-interior point of each of sets A and B. It follows that A and B are smg-nbhds of x, so that their intersection $A \cap B$ is also a smg-nbhds of x. Hence $x \in \text{smg-int}(A \cap B)$. Thus $x \in \text{smg-int}(A) \cap \text{smg-int}(B)$

implies that $x \in \text{smg-int}(A \cap B)$. Therefore $\text{smg-int}(A) \cap \text{smg-int}(B) \subseteq \text{smg-int}(A \cap B)$

 \rightarrow (2). From (1) and (2), we get smg-int(A \cap B) = smg-int(A) \cap smg-int(B).

Theorem 3.10: If A is a subset of a space X, then m_X -int(A) \subseteq smg-int(A)

Remark 3.11: Containment relation in the above Theorem3.10 may be proper as seen from the following example. **Example 3.12:** In Example 3.6, if we take $A = \{b\}$, we have smg-int(A) = $\{b\}$ and m_X-int(A) = ϕ . It follows

that m_X -int(A) \subseteq smg-int(A) and m_X -int(A) , smg-int(A).

Analogous to closure in a space X, we define smg-closure in a space X as follows.

Definition 3.13: Let A be a subset of a space X. We define the smg-closure of A to be the intersection of all smg-closed sets containing A. In symbols, smg-cl(A) = $\cap \{F : A \subseteq F, F \text{ is smg-closed set}\}$.

Theorem 3.14: Let A and B be subsets of X. Then

1. $\operatorname{smg-cl}(X) = X$ and $\operatorname{smg-cl}(\phi) = \phi$.

- 2. $A \subseteq \text{smg-cl}(A)$.
- 3. If B is any smg-closed set containing A, then $\operatorname{smg-cl}(A) \subseteq B$.
- 4. If $A \subseteq B$, then smg-cl(A) \subseteq smg-cl(B).
- 5. $\operatorname{smg-cl}(A) = \operatorname{smg-cl}(\operatorname{smg-cl}(A))$.

Theorem 3.15: If $A \subseteq X$ is smg-closed, then smg-cl(A) = A.

Example 3.16: In Example 3.6, if we take, $A = \{a, b\}$, we have smg-cl(A) = $\{a, b\} = A$ but it is not smg-closed.

Theorem 3.17: If A and B are subsets of a space X, then smg-cl(A \cap B) \subseteq smg-cl(A) \cap

smgcl(B).

Example 3.18: In Example 3.6, if we take $A = \{b\}$ and $B = \{c\}$, we have smg-cl($A \cap B$)

= $\varphi \subseteq \{b\}$ = smg-cl(A) \cap smg-cl(B) and smg-cl(A \cap B) , smg-cl(A) \cap smg-cl(B).

Theorem 3.19: If A and B are subsets of a space X, then $smg-cl(A \cup B) \subseteq smg-cl(A) \cup smg-cl(B)$.

Lemma 3.20: Let X be a nonempty set with a minimal structure m_X and A a subset of X. Then $x \in \text{smg-cl}(A)$ if and only if $U \cap A$, φ for every smg-open set U containing x.

Theorem 3.21: If A is a subset of a space X, then smg-cl(A) \subseteq m_X-cl(A).

proof. Let A be a subset of a space X. By the definition of m_X -closure, m_X -cl(A)= \cap {F: A \subseteq F, X – F \in m_X}. If A \subseteq F is m_X -closed, then A \subseteq F \in SMGC(X), because every m_X -closed set is smg-closed. That is smg-cl(A) \subseteq F. Therefore smg-cl(A) $\subseteq \cap$ {F: A \subseteq F, X – F \in m_X}= m_X -cl(A). Hence smg-cl(A) $\subseteq m_X$ -cl(A).

Remark 3.22: Containment relation in the above Theorem 3.21 may be proper as seen from the following example. **Example 3.23:** In Example 3.6, if we take $A = \{a\}$, we have smg-cl(A) = $\{a, b\}$ and m_x cl(A) =

X. It follows that smg-cl(A) \subseteq m_x-cl(A) and smg-cl(A) , m_x-cl(A).

Theorem 3.24:- Let A be any subset of X. Then

1. $(\operatorname{smg-int}(A))^{c} = \operatorname{smg-cl}(A^{c}).$

2. smg-int(A) = $(smg-cl(A^{c}))^{c}$.

3. $\operatorname{smg-cl}(A) = (\operatorname{smg-int}(A^{c}))^{c}$.

Proof: (1) Let $x \in (\operatorname{smg-int}(A))^{C}$. Then $x \notin \operatorname{smg-int}(A)$. That is every smg-open set U containing x is such that $U \nsubseteq A$. That is every smg-open set U containing x is such that $U \cap A^{C} \not= \varphi$. By Lemma 3.20, $x \in \operatorname{smg-cl}(A^{C})$ and therefore $(\operatorname{smg-int}(A))^{C \subseteq} \operatorname{smg-cl}(A^{C})$. Conversely, let $x \in \operatorname{smg-cl}(A^{C})$. Then by Lemma 3.20, every smg-open set U containing x is such that $U \cap A^{c} \not= \varphi$. That is every smg-open set U containing x is such that $U \cap A^{c} \not= \varphi$. That is every smg-open set U containing x is such that $U \cap A^{c} \not= \varphi$. That is every smg-open set U containing x is such that $U \cap A^{c} \not= \varphi$. That is every smg-open set U containing x is such that $U \subseteq A$. This implies by definition of smg-interior of A, $x \notin$ smg-int(A). That is $x \in (\operatorname{smg-int}(A))^{C}$ and smg-cl(A^{C}) $\subseteq (\operatorname{smg-int}(A))^{C}$. Thus $(\operatorname{smg-int}(A))^{C} = \operatorname{smg-cl}(A^{C})$.

(2) Follows by taking complements in (1). (3) Follows by replacing A by A^{c} in (1).

References:-

- 1. Maki, H.: On generalizing semi-open and preopen sets, Report for meeting on topological theory spaces and its applications, August 1996, Yatsushiro College of Technology, 13-18.
- 2. Levine, N.: Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96.
- 3. Popa, V. and Noiri, T.: On M-continuous functions, Anal. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Tecor. (2), 18(23)(2000), 31-41.
- 4. Noiri, T.: 11th meetings on topological spaces and its applications, Fukuoka University Seminar House, (2006), 1-9.
- 5. Pushpalatha, A. and Subha, E.: Strongly generalized closed sets in minimal structures, Int. Journal of Mat. Analysis, 3(26)(2009), 1259-1263.
- 6. Sundaram, P. and Pushpalatha, A.: Strongly generalized closed sets in topological spaces, Far East J. Math. Sci., (FJMS), 3(4)(2001), 563-575.