RESEARCH ARTICLE

Smg-interior and Smg-Closure.

A.R. Thilagavathi\(^1\) and K. Indirani\(^2\).

1. Sri G.V.G Visalakshi College for Women, Udumalpet, Tirupur District, Tamil Nadu, India.
2. Department of Mathematics, Nirmala College for Women, Coimbatore, Tamil Nadu, India.

Abstract

The aim of this paper is to introduce the notion of Smg-interior, Smg-closure in topological spaces and new class of quasi Smg-open and quasi closed function on spaces with minimal structures.

Key words:

*Corresponding Author

K. Indirani.

Introduction:-

In 1970 the notion of generalized closed (briefly g-closed) sets were introduced and investigated by LEVINE [2]. MAKI [1] introduced the notions of minimal structures and minimal spaces. Recently many modifications of g closed sets have defined and investigated.

Valeiru Popa [3] introduced the notions of \(m_X\)-closed sets on spaces with minimal structures. In [4], Noiri introduced and studied the concepts of mg-closed sets on spaces with minimal structures. In [5], Pushpalatha and Subha introduced and investigated the notions of strongly minimal g-closed sets (briefly smg-closed sets).

In this paper, the notion of smg-interior is defined and some of its basic properties are studied. Also we introduce the concept of smg-closure in topological spaces using the notions of smg-closed sets.

Preliminaries:-

Definition 2.1: [3] Let \((X, \tau)\) be a topological space. Then the families \(\tau, \text{SO}(X)\) and \(\alpha\text{O}(X)\) are all \(m\)-structures on \(X\).

Remark 2.2: [3] Let \((X, \tau)\) be a topological space and \(A\) a subset of \(X\). If \(m_X = \tau\) (resp. \(\text{SO}(X), \alpha\text{O}(X)\)) then we have

1. \(m_X\text{-cl}(A) = \text{cl}(A)\) (resp. \(\text{scl}(A), \text{pcl}(A), \text{uccl}(A)\)).
2. \(m_X\text{-int}(A) = \text{int}(A)\) (resp. \(\text{sint}(A), \text{pint}(A), \text{aint}(A)\)).

Lemma 2.3: [3] Let \(X\) be a nonempty set with a minimal structure \(m_X\) and \(A\) a subset of \(X\). Then \(x \in m_X\text{-cl}(A)\) if and only if \(U \cap A \neq \emptyset\) for every \(U \in m_X\) containing \(x\).

Definition 2.4: [4] Let \((X, m_X)\) be an \(m\)-space. A subset \(A\) of \(X\) is said to be mg-closed if \(m_X\text{-cl}(A) \subseteq G\) whenever \(A \subseteq G\) and \(G\) is \(m_X\)-open. The complement of a mg-closed set is said to be a mg-open set.
Definition 2.5:- A minimal structure \(m_X \) on a nonempty set \(X \) is said to have the property \(\mathcal{B} \) if the union of any family of subsets belonging to \(m_X \) belongs to \(m_X \).

Definition 2.6:- [5] Let \((X, m_X)\) be an m-space. A subset \(A \) of \(X \) is said to be strongly minimal generalized closed (briefly smg-closed) if \(m_X\text{-cl}(A) \subseteq G \) whenever \(A \subseteq G \) and \(G \) is mg-open. The complement of a smg-closed set is called a smg-open set in \((X, m_X)\).

We denote the set of all smg-closed (resp. smg-open) sets in \(X \) by SMGC(X)(resp. SMGO(X)).

Remark 2.7: [6] Let \(X \) be a non-empty set with a minimal structure \(m_X \) satisfying the property \(\mathcal{B} \). Then every \(m_X \)-closed set is smg-closed but not conversely.

Lemma 2.8: [3] Let \((X, m_X)\) be an m-space and \(m_X \) satisfy property \(\mathcal{B} \). Then for subset \(A \) of \(X \), the following properties hold:
1. \(A \in m_X \) if and only if \(m_X\text{-int}(A) = A \).
2. \(A \) is \(m_X \)-closed if and only if \(m_X\text{-cl}(A) = A \).
3. \(m_X\text{-int}(A) \in m_X \) and \(m_X\text{-cl}(A) \) is \(m_X \)-closed.

Remark 2.9: [5] Let \(X \) be a non-empty set with a minimal structure \(m_X \) satisfying the property \(\mathcal{B} \). We have the following implications:
\(m_X \)-closed set \(\rightarrow \) smg-closed set \(\rightarrow \) mg-closed set.

The reverse implications are not true.

Example 2.10: Consider \(X = \{a, b, c\} \) with minimal structures satisfying the property \(\mathcal{B} \). We have \(m_X = \{\emptyset, X, \{b\}, \{a, b\}, \{a, c\}\} \). Here \(A = \{b, c\} \) is smg-closed set but not \(m_X \)-closed.

Example 2.11: Consider \(X = \{a, b, c\} \) with minimal structures satisfying the property \(\mathcal{B} \). We have \(m_X = \{\emptyset, X, \{a\}, \{b, c\}\} \). Here \(A = \{a, b\} \) is mg-closed set but not smg-closed.

Definition 2.12: [3] A function \(f : (X, m_X) \rightarrow (Y, m_Y) \), where \((X, m_X)\) and \((Y, m_Y)\) are nonempty sets \(X \) and \(Y \) with minimal structures \(m_X \) and \(m_Y \), respectively, is said to be \(M \)-continuous if for each \(x \in X \) and each \(V \in m_Y \) containing \(f(x) \), there exists \(U \in m_X \) containing \(x \) such that \(f(U) \subseteq V \).

Definition 2.13: Let \(X \) be a non-empty set with a minimal structure \(m_X \) satisfying the property \(\mathcal{B} \). A function \(f : (X, m_X) \rightarrow (Y, m_Y) \) is said to be strongly minimal g-continuous (briefly, smg-continuous) if \(f^{-1}(V) \) is smg-closed in \((X, m_X)\) for every \(m_Y \)-closed set \(V \) in \((Y, m_Y)\).

Smg-interior and Smg-Closure:-

Definition 3.1: Let \(X \) be a topological space and let \(x \in X \). A subset \(N \) of \(X \) is said to be smg-neighborhood (briefly smg-nbhd) of \(x \) if there exists a smg-open set \(G \) such that \(x \in G \subseteq N \).

Definition 3.2: Let \(A \) be a subset of \(X \). A point \(x \in A \) is said to be smg-interior point of \(A \) if \(A \) is a smg-nbhd of \(x \).

The set of all smg-interior points of \(A \) is called the smg-interior of \(A \) and is denoted by \(\text{smg-int}(A) \).

Theorem 3.3: If \(A \) be a subset of \(X \). Then \(\text{smg-int}(A) = \bigcup \{G : G \text{ is smg-open, } G \subseteq A\} \).

Theorem 3.4: Let \(A \) and \(B \) be subsets of \(X \). Then
1. \(\text{smg-int}(X) = X \) and \(\text{smg-int}(\emptyset) = \emptyset \).
2. \(\text{smg-int}(A) \subseteq A \).
3. If B is any smg-open set contained in A, then $B \subseteq \text{smg-int}(A)$.

4. If $A \subseteq B$, then $\text{smg-int}(A) \subseteq \text{smg-int}(B)$

5. $\text{smg-int}(\text{smg-int}(A)) = \text{smg-int}(A)$.

Theorem 3.5: If a subset A of a space X is smg-open, then $\text{smg-int}(A) = A$.

Example 3.6: Let $X = \{a, b, c, d\}$ with minimal structure $m_X = \{\varnothing, X, \{c\}, \{a, d\}\}$. If $A = \{a, c\}$, then $\text{smg-int}(A) = \{a, c\} = A$ but it is not smg-open.

Theorem 3.7: If A and B are subsets of X, then $\text{smg-int}(A) \cup \text{smg-int}(B) \subseteq \text{smg-int}(A \cup B)$.

Proof. We know that $A \subseteq A \cup B$ and $B \subseteq A \cup B$. We have, by Theorem 3.4(4), $\text{smg-int}(A) \subseteq \text{smg-int}(A \cup B)$ and $\text{smg-int}(B) \subseteq \text{smg-int}(A \cup B)$. This implies that $\text{smg-int}(A) \cup \text{smg-int}(B) \subseteq \text{smg-int}(A \cup B)$.

Containment relation in the above Theorem 3.5 may be proper as seen from the following example.

Example 3.8: Let $X = \{a, b, c, d\}$ with minimal structure $m_X = \{\varnothing, X, \{d\}, \{a, b, c\}, \{a, c, d\}\}$. If we take $A = \{a\}$ and $B = \{b, c\}$, then $\text{smg-int}(A) \cup \text{smg-int}(B) = \{a, c\} \subseteq \{a, b, c\} = \text{smg-int}(A \cup B)$ and $\text{smg-int}(A) \cup \text{smg-int}(B) \neq \text{smg-int}(A \cup B)$.

Theorem 3.9: If A and B are subsets of X, then $\text{smg-int}(A \cap B) = \text{smg-int}(A) \cap \text{smg-int}(B)$.

Proof: We know that $A \cap B \subseteq A$ and $A \cap B \subseteq B$. We have, by Theorem 3.4(4), $\text{smg-int}(A \cap B) \subseteq \text{smg-int}(A)$ and $\text{smg-int}(A \cap B) \subseteq \text{smg-int}(B)$. This implies that $\text{smg-int}(A \cap B) \subseteq \text{smg-int}(A \cap B) \rightarrow (1)$.

Again, let $x \in \text{smg-int}(A) \cap \text{smg-int}(B)$. Then $x \in \text{smg-int}(A)$ and $x \in \text{smg-int}(B)$. Hence x is a smg-interior point of each of sets A and B. It follows that A and B are smg-nbds of x, so that their intersection $A \cap B$ is also a smg-nbhd of x. Hence $x \in \text{smg-int}(A \cap B)$. Thus $x \in \text{smg-int}(A) \cap \text{smg-int}(B)$ implies that $x \in \text{smg-int}(A \cap B)$. Therefore $\text{smg-int}(A \cap B) \subseteq \text{smg-int}(A \cap B) \rightarrow (2)$. From (1) and (2), we get $\text{smg-int}(A \cap B) = \text{smg-int}(A) \cap \text{smg-int}(B)$.

Theorem 3.10: If A is a subset of a space X, then $m_X^{-1}(A) \subseteq \text{smg-int}(A)$

Remark 3.11: Containment relation in the above Theorem 3.10 may be proper as seen from the following example.

Example 3.12: In Example 3.6, if we take $A = \{b\}$, we have $\text{smg-int}(A) = \{b\}$ and $m_X^{-1}(A) = \varnothing$. It follows that $m_X^{-1}(A) \subseteq \text{smg-int}(A)$ and $m_X^{-1}(A) \neq \text{smg-int}(A)$.

Analogous to closure in a space X, we define smg-closure in a space X as follows.

Definition 3.13: Let A be a subset of a space X. We define the smg-closure of A to be the intersection of all smg-closed sets containing A. In symbols, $\text{smg-cl}(A) = \bigcap \{F : A \subseteq F, F \text{ is smg-closed set}\}$.

Theorem 3.14: Let A and B be subsets of X. Then

1. $\text{smg-cl}(X) = X$ and $\text{smg-cl}(\varnothing) = \varnothing$.
2. $A \subseteq \text{smg-cl}(A)$.
3. If B is any smg-closed set containing A, then $\text{smg-cl}(A) \subseteq B$.
4. If $A \subseteq B$, then $\text{smg-cl}(A) \subseteq \text{smg-cl}(B)$.
5. $\text{smg-cl}(A) = \text{smg-cl}(\text{smg-cl}(A))$.

Theorem 3.15: If $A \subseteq X$ is smg-closed, then $\text{smg-cl}(A) = A$.

Example 3.16: In Example 3.6, if we take $A = \{a, b\}$, we have $\text{smg-cl}(A) = \{a, b\} = A$ but it is not smg-closed.

Theorem 3.17: If A and B are subsets of a space X, then $\text{smg-cl}(A \cap B) \subseteq \text{smg-cl}(A) \cap \text{smg-cl}(B)$.
smgcl(B).

Example 3.18: In Example 3.6, if we take \(A = |b| \) and \(B = |c| \), we have \(\text{smg-cl}(A \cap B) = \varnothing \subseteq |b| = \text{smg-cl}(A) \cap \text{smg-cl}(B) \) and \(\text{smg-cl}(A \cap B) \not\subseteq \text{smg-cl}(A) \cap \text{smg-cl}(B) \).

Theorem 3.19: If \(A \) and \(B \) are subsets of a space \(X \), then \(\text{smg-cl}(A \cup B) \subseteq \text{smg-cl}(A) \cup \text{smg-cl}(B) \).

Lemma 3.20: Let \(X \) be a nonempty set with a minimal structure \(m_X \) and \(A \) a subset of \(X \). Then \(x \in \text{smg-cl}(A) \) if and only if \(U \cap A = \varnothing \) for every smg-open set \(U \) containing \(x \).

Theorem 3.21: If \(A \) is a subset of a space \(X \), then \(\text{smg-cl}(A) \subseteq m_X \cdot \text{cl}(A) \).

proof. Let \(A \) be a subset of a space \(X \). By the definition of \(m_X \)-closure, \(m_X \cdot \text{cl}(A) = \bigcap \{ F : A \subseteq F, X - F \in m_X \} \). If \(A \subseteq F \) is \(m_X \)-closed, then \(A \subseteq F \in \text{SMGC}(X) \), because every \(m_X \)-closed set is smg-closed. That is smg-cl(A) \(\subseteq F \). Therefore \(\text{smg-cl}(A) \subseteq \bigcap \{ F : A \subseteq F, X - F \in m_X \} = m_X \cdot \text{cl}(A) \). Hence \(\text{smg-cl}(A) \subseteq m_X \cdot \text{cl}(A) \).

Remark 3.22: Containment relation in the above Theorem 3.21 may be proper as seen from the following example.

Example 3.23: In Example 3.6, if we take \(A = |a| \), we have \(\text{smg-cl}(A) = |a|, b \) and \(m_X \cdot \text{cl}(A) = X \). It follows that \(\text{smg-cl}(A) \subseteq m_X \cdot \text{cl}(A) \) and \(\text{smg-cl}(A) \not\subseteq m_X \cdot \text{cl}(A) \).

Theorem 3.24: Let \(A \) be any subset of \(X \). Then

1. \((\text{smg-int}(A))^C = \text{smg-cl}(A^C) \).
2. \(\text{smg-int}(A) = (\text{smg-cl}(A^C))^C \).
3. \(\text{smg-cl}(A) = (\text{smg-int}(A^C))^C \).

Proof: (1) Let \(x \in (\text{smg-int}(A))^C \). Then \(x \notin \text{smg-int}(A) \). That is every smg-open set \(U \) containing \(x \) is such that \(U \not\subseteq A \). That is every smg-open set \(U \) containing \(x \) is such that \(U \cap A^C = \varnothing \). By Lemma 3.20, \(x \in \text{smg-cl}(A^C) \) and therefore \(\text{smg-int}(A))^C \subseteq \text{smg-cl}(A^C) \). Conversely, let \(x \in \text{smg-cl}(A^C) \). Then by Lemma 3.20, every smg-open set \(U \) containing \(x \) is such that \(U \cap A^C = \varnothing \). That is every smg-open set \(U \) containing \(x \) is such that \(U \not\subseteq A \). This implies by definition of smg-interior of \(A \), \(x \notin \text{smg-int}(A) \). That is \(x \in (\text{smg-int}(A))^C \) and \(\text{smg-cl}(A^C) \subseteq (\text{smg-int}(A))^C \). Thus \((\text{smg-int}(A))^C = \text{smg-cl}(A^C) \).

(2) Follows by taking complements in (1). (3) Follows by replacing \(A \) by \(A^C \) in (1).

References: