

Journal homepage: http://www.journalijar.com

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH

RESEARCH ARTICLE

Using Irreducible Characters Table for Cyclic Groups C_2 and C_{2v} in Transformation

Haider Baqer Ameen shelash

Department of Mathematics of Faculty Math & Comp Science of kufa University

Manuscript Info	Abstract		
<i>Manuscript History:</i> Received: 29 August 2014 Final Accepted: 10 September 2014 Published Online: October 2014	In this paper, we introduce a new method to transform image by using irreducible character table for point group C_2 , C_{2v} by considering character table as square matrix of size 2 × 2, 4 × 4, and designing an algorithm for it, which includes the transformation matrix of the image to the sets of matrices square of size 2 × 2, 4 × 4		
Key words:			
*Corresponding Author			
Haider.Baqer.Ameen.shelash			
	Copy Right, IJAR, 2014,. All rights reserved		

1- Introduction

Image processing refers to the various operations, Purpose of transformation is to convert the data into a form where compression is easier. This transformation will transform the pixels which are correlated into a representation where they are decorrelated. The new values are usually smaller on average than the original values. The net effect is to reduce the redundancy of representation. For lossy compression, the transform coefficients can now be quantized according to their statistical properties, producing a much compressed representation of the original image data , in this paper we presented a new method to cipher and anti-cipher .[3],[4],[5]

point group(1.1):[6]

Particularly we will consider the following point groups which molecules can belong to The group Cn. A molecule belongs to the group Cn if it has a n-fold axis. C_2 group as it has the elements E and C_2 . The group C_{nv} . A molecule belongs to the group C_{nv} if in addition to the identity E and a Cn axis, it has n vertical mirror planes σv .

Character table(1.2):[6]

	C ₂	Ι	(12)				
	χ_1	1	1				
	χ2	1	-1				
Character table C ₂							
C_{2v}							

C_{2v}	Ι	(12)	σ_V	σ_V
χ_1	1	1	1	1
χ_2	1	-1	1	-1
χ ₃	1	1	-1	-1
χ_4	1	-1	-1	1

Character table

We can see the character table $\equiv (C_2 v) = (\equiv C_2 \otimes \equiv C_2)$

2- Algorithm :

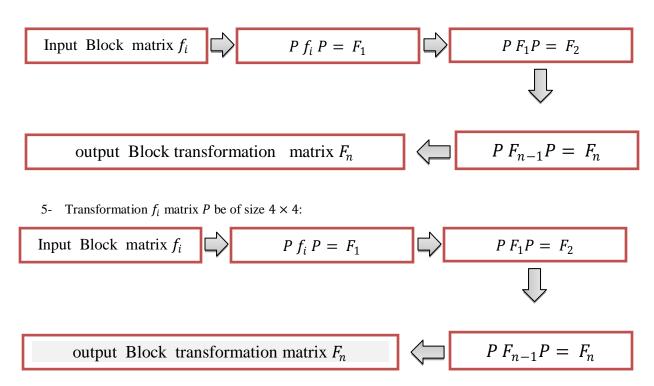
In this section will divide the matrix into the blocks matrix of the same order $2x^2$ or $4x^4$. **Definition**(2.1) : [4],[3]

Let an matrix f be represented as an nxn matrix of integer numbers $f = \begin{bmatrix} f_1 & \cdots & f_m \\ \vdots & \ddots & \vdots \\ f_n & \cdots & f_k \end{bmatrix}$, where f_i are blocks matrix of order ixi

General transform F = P f Q, If P and Q are non-singular (non-zero determinants), inverse matrices exist and $f = P^{-1} F Q^{-1}$

Rule (2.2):

- 4- Transformation f_i matrix when P be of size 2 × 2:



So we get the final matrix encoded F_n And for the purpose of obtaining the original matrix and without the use of inverse matrix, so the answer will be in the following main theorems

3- Main result

In this section we present important theorems on open cipher , where its cipher an n loop.

Theorem (3.3):

Let P_1 and P_2 are matrices of size 2×2 , then :

$$P_1 \times P_2 = 2I_2$$
, where I_2 identity matrix of size 2×2

Proof:

$$P_1 \times P_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = 2I_2$$

Theorem (3.4):

Let P_1 , P_2 , ..., P_{n-1} , P_n are matrices n-time of size 2 × 2 and n even then :

 $P_1 \times P_2 \times ... \times P_{n-1} \times P_n = 2^{\frac{n}{2}} I_2$, where I_2 identity matrix

Proof:

$$P_{1} \times P_{2} \times ... \times P_{n-1} \times P_{n} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \times ... \times \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$= 2I_{2} \times 2I_{2} \times ... \times 2I_{2}$$
$$= 2^{\frac{n}{2}}I_{2}.$$

Theorem (3.5):

Let P_1 and P_2 are matrices of size 4×4 , then :

$$P_1 \times P_2 = 4I_4$$
, where I_4 identity matrix of size 4×4 .

Proof:

Theorem (3.6):

Let P_1 , P_2 , ..., P_{n-1} , P_n are matrices n-time of size 4×4 and n even then :

$$P_1 \times P_2 \times ... \times P_{n-1} \times P_n = 4^{\frac{n}{2}} I_4$$
, where I_4 identity matrix

Proof:

Theorem (3.7):

Let P be matrix of size 2×2 , and F_i is transformation for matrix of size 2×2 , for level nthen:

1- Keys when n even :

$$f=\frac{1}{2^n}([F_i])$$

1- Keys when nodd :

$$f = \frac{1}{2^n} \left(P^{-1} \left[[F_n] P^{-1} \right] \right)$$

Proof:

If n is even level:

Let F_n be transformation level n (n even), then we need n-time inverse matric for P. i.e.:

$$f = [P^{-1} \cdot P^{-1} \dots P^{-1} F_n P^{-1} \dots P^{-1} P^{-1}]$$

$$f = \{\frac{1}{2}P \cdot \frac{1}{2}P \dots \frac{1}{2}P F_n \frac{1}{2}P \dots \frac{1}{2}P \cdot \frac{1}{2}P \}$$

$$f = \{\frac{1}{2^n} (P \cdot P \dots P)F_n \frac{1}{2^n} P \cdot P \dots P\}$$

$$f = \{\frac{1}{2^n} (2^{\frac{n}{2}}I_2) F_n \frac{1}{2^n} (2^{\frac{n}{2}}I_2) \}$$

$$f = \{\frac{2^n}{4^n} (I_2F_nI_2) \}$$

$$f = \{\frac{1}{2^n} (F_n) \}$$

If n is odd level:

Let F_n be transformation in level n (n odd), then we need n-time inverse matric for P. i.e : $f = \begin{bmatrix} P^{-1} & P^{-1} & P^{-1} & P^{-1} \end{bmatrix} P^{-1} P^{-1} P^{-1}$

$$f = [P^{-1}, P^{-1} \dots P^{-1}F_n P^{-1}, P^{-1} \dots P^{-1}]$$

$$f = \{\frac{1}{2}P, \frac{1}{2}P, \dots \frac{1}{2}P (P^{-1}F_n P^{-1}), \frac{1}{2}P, \frac{1}{2}P, \dots \frac{1}{2}P\}$$

$$f = \{\frac{1}{2^n}(P, P, \dots P)(A^{-1}F_n A^{-1}), \frac{1}{2^n}(P, P, \dots P)\}$$

$$f = \{\frac{1}{2^n}(2^{\frac{n}{2}}I_2)(P^{-1}F_n P^{-1}), \frac{1}{2^n}(2^{\frac{n}{2}}I_2)\}$$

$$f = \{\frac{2^n}{4^n}(I_2(P^{-1}F_n P^{-1}), I_2)\}$$

$$f = \{\frac{1}{2^n}(P^{-1}F_n P^{-1})\}$$

$$f = \{\frac{1}{2^n}(P^{-1}F_n P^{-1})\}$$

Theorem(3.8):

Let P be matrix of size 4×4 , and F_i is transformation matrix, for level n then:

1- Keys when n is even number:

$$f=\frac{1}{4^n}([F_n])$$

2- Keys when n isodd number :

$$f = \frac{1}{4^n} \left(P^{-1} \left[[F_n] P^{-1} \right] \right)$$

Proof:

If n is even level:

Let F_n be betransformation for n-time, then we need n-time inverse matric for P. i.e. $f = [P^{-1} \cdot P^{-1} \dots P^{-1} F_n P^{-1} \cdot P^{-1} \dots P^{-1}]$

$$f = [P^{-1}, P^{-1}, \dots, P^{-1}F_n P^{-1}, P^{-1}, \dots, P^{-1}]$$

$$f = \{\frac{1}{4}P, \frac{1}{4}P, \dots, \frac{1}{4}PF_n, \frac{1}{4}P, \dots, \frac{1}{4}P, \frac{1}{4}P\}$$

$$f = \{\frac{1}{4^n}(P, P, \dots, P)F_n, \frac{1}{4^n}(P, P, \dots, P)\}$$

$$f = \{\frac{1}{4^n}(\frac{4^n}{2}I_4)F_n, \frac{1}{4^n}(\frac{4^n}{2}I_4)\}$$

$$f = \{\frac{4^n}{16^n}(I_4(F_n)I_4)\}$$

$$f = \{\frac{1}{4^n}(F_n)\}$$

If n is odd level: Let F_n be betransformation for n-time, then we need n-time inverse matric for P. i.e.

$$\begin{split} f &= [P^{-1}.P^{-1}\dots P^{-1}F_nP^{-1}\dots P^{-1}.P^{-1}]\\ f &= \{\frac{1}{4}P.\frac{1}{4}P\dots\frac{1}{4}P\ (P^{-1}F_nP^{-1})\frac{1}{4}P\dots\frac{1}{4}P.\frac{1}{4}P\}\\ f &= \{\frac{1}{4^n}(P.P\dots P)(P^{-1}F_nP^{-1})\frac{1}{4^n}(P.P\dots P)\}\\ f &= \{\frac{1}{4^n}\Big(4^{\frac{n}{2}}I_4\Big)(P^{-1}F_nP^{-1})\frac{1}{4^n}\Big(4^{\frac{n}{2}}I_4\Big)\}\\ f &= \{\frac{4^n}{16^n}\ (I_4(P^{-1}F_nP^{-1})I_4\)\}\\ f &= \{\frac{1}{4^n}(P^{-1}F_nP^{-1})\} \end{split}$$

4- Application :

Now we can applied the transformation

$$f = \begin{bmatrix} f_1 & \cdots & f_n \\ \vdots & \ddots & \vdots \\ f_m & \cdots & f_r \end{bmatrix} = \begin{bmatrix} 12 & 213 & 123 & 244 \\ 110 & 211 & 9 & 234 \\ 11 & 122 & 243 & 134 & \cdots & f_n \\ 10 & 221 & 233 & 30 \\ \vdots & & \ddots & \vdots \\ f_m & & \cdots & f_r \end{bmatrix}$$

Then the block matrix f_1 of matrix f be

$$f_1 = \begin{bmatrix} 12 & 213 & 123 & 244\\ 110 & 211 & 9 & 234\\ 11 & 122 & 243 & 134\\ 10 & 221 & 233 & 30 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1\\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$F_{1} = \begin{bmatrix} 2160 & -658 & -340 & -590 \\ 44 & 10 & -432 & -10 \\ 152 & -638 & 212 & 678 \\ 12 & -2 & -8 & -398 \end{bmatrix} F_{2} = \begin{bmatrix} 192 & 3408 & 1968 & 3904 \\ 1760 & 3376 & 144 & 3744 \\ 176 & 1952 & 3888 & 2144 \\ 160 & 3536 & 3728 & 480 \end{bmatrix}$$
$$F_{3} = \begin{bmatrix} 34560 & -10528 & -5440 & -9440 \\ 704 & 160 & -6912 & -160 \\ 2432 & -10208 & 3392 & 10848 \\ 192 & -32 & -128 & -6368 \end{bmatrix} F_{4} = \begin{bmatrix} 3072 & 54528 & 31488 & 62464 \\ 28160 & 54016 & 2304 & 59904 \\ 2816 & 31232 & 62208 & 34304 \\ 2560 & 56576 & 59648 & 7680 \end{bmatrix}$$

Here n=4 and degree of partition 4x4 then :

$$f = \frac{1}{4^n} ([F_n])$$

$$f = \frac{1}{4^4} \begin{bmatrix} 3072 & 54528 & 31488 & 62464 \\ 28160 & 54016 & 2304 & 59904 \\ 2816 & 31232 & 62208 & 34304 \\ 2560 & 56576 & 59648 & 7680 \end{bmatrix} = \begin{bmatrix} 12 & 213 & 123 & 244 \\ 110 & 211 & 9 & 234 \\ 11 & 122 & 243 & 134 \\ 10 & 221 & 233 & 30 \end{bmatrix} = f$$

Conclusion :

Transferring messages secretly between participants has interested people for long time, and it's been really important and needed in our modern world, especially with the advent of electronic messaging and the internet. This paper is a suggestion of a transformation that transform the pixels which are correlated into a representation where they are decor related. The new values are usually smaller on an average than the original values. The net effect is to reduce the redundancy of representation. For lossy compression, the transform coefficients can now be quantized according to their statistical properties, producing a much compressed representation of the original the image data. This idea of this transformation can be applied in encrypting and decrypting important data, and that would be my future modification of this paper

References:

[1] AMIYA K AND MADHUMANGAL PAL "two new operators on fuzzy matrices" Appl. Math. & Computing Vol. 15(2004), No. 1 - 2, pp. 91 – 107

[2] Balu, M.S., *Application of Fuzzy Theory to Indian Politics*, Masters Dissertation, Guide: Dr. W. B. VasanthaKandasamy, Department of Mathematics, Indian Instituteof Technology, April 2001.

[3] G. Csurka, C. Zeller, Z. Zhang, and O. Faugeras. Characterizing the uncertainty of the fundamental matrix.Computer Vision and Image Understanding, 68(1):18–36, October 1997.

[4] G.H. Golub and C.F. van Loan. Matrix Computations. The John Hopkins University Press, Baltimore, Maryland, 3 edition, 1996.

[5]. Quang-Tuan Luong and Olivier Faugeras. The fundamental matrix: theory, algorithms, and stability analysis. The International Journal of Computer Vision, 17(1):43–76, January 1995.

[6]M. Hamermesh, "Group Theory and its application to physical problems", *University of Southampton*, 1962. Available