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In the present study, a new low-cost oil adsorbent was prepared based 

on graft copolymerization of commercial chitosan biopolymer 

derivative. Aminated Chitosan (AmCS) was prepared from chitin 

which initially extracted from the marine waste sources, followed by 

amination step using p-benzoquinone (PBQ) as activation agent and 

ethylenediamine (EDA) as amine source. The prepared AmCS was 
grafted with a hydrophobic butyl acrylate (ButA) monomer via a free 

radical polymerization process, and the resultant grafted copolymer was 

characterized using FT-IR, TGA, DSC, and SEM characterization 

tools. The oleophilic character of the grafted copolymer was 

investigated using oil uptake measurements. Moreover, oil/water- 

contact angle measurements (wettability) displayed that the 

hydrophobic and oleophilic characters of the grafted copolymer were 

enhanced after the grafting process and recorded maximum values 115⁰ 
and 28⁰ using water and crude oil droplets respectively compared to 

52⁰ and 82⁰ in case of the native aminated chitosan. Evaluation of the 
oil spill cleanup process was also optimized using crude oil- artificial 

seawater system under different adsorption conditions. Oil adsorption 

values were increased gradually from 49 to 84% for the grafted AmCS 

samples with increasing the oil viscosity in the following order; gasoil 

< mobil-1 oil < light crude oil < heavy crude oil using 0.1g of the 

adsorbent sample, while the native AmCS only increased from 17.5 to 

37% at the same adsorption conditions. The results obtained clearly 

suggested that the developed AmCS-poly (ButA) graft copolymer 

could be applied as a new low-cost oil adsorbent material for marine oil 

spill cleanup technologies. 
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Introduction:- 
Commonly, more than 35 billion gallons of petroleum oil are transported across the seas every day and about 100 

million gallons are spilled every year [1, 2]. This poses a great risk of pollution to the marine ecosystem, hence the 

petroleum oil pollution affects sea life, aquaculture, tourism, economy, and human health [3, 4]. In fact, Oily 

contaminants in the polluted sea water may be identified in different forms such as heavy hydrocarbons (tars, crude 

oils and diesel oil) and light hydrocarbons (kerosene, jet fuel and gasoline) in addition to fats, lubricants and cutting 

liquids [5, 6]. Numerous physical, chemical, and biological methods have been established for oil spill removal, 

including burning, oxidation/reduction, chemical dispersants, booms, skimmers, and biological agents [7-9]. 

However, the main limitations of these methods are the high cost, environmental harmfulness and their inefficiency 

at high water tide. Actually, sorbent materials are applied for solving these problems since this sorbent technique is 

the most effective and cost saving for reducing the environmental damage [10]. 

 
To date, several categories of oil sorbent materials such as natural organic sorbents, inorganic sorbents, and 

synthetic organic sorbents have been widely studied. Oil adsorbent materials have been stated to be one of the most 

highly effective sorbents from the economic and ecologic point of view such as bentonite, silica aerogels, activated 

carbon, and polymers [11-14]. Additionally, the development of oil adsorbent materials based on natural organic 

waste materials was presented to afford resources for marine oil spill clean-up with low-cost production [15]. It has 

been reported that adsorbents based on biopolymeric materials resultant from renewable resources are an innovating 

solution to replace the other conventional petroleum-based adsorbents. However, to obtain useful and inexpensive 

products some of their properties such as the poor mechanical properties, high water uptake, and moisture sensitivity 

should be improved [16]. 

 

Chitosan (CS) is the partially de-acetylated form of the naturally chitin polysaccharide (the second abundant 

biopolymers after cellulose) which extracted from the shrimps, crab, and other crustaceans skeleton [17]. Chitosan is 
a cationic biopolymer consists of a copolymer of ß-(1→4)-2-acetamido-2-deoxy-D-glucopyranose and de-acetylated 

unite ß-(1→4)-2-amino-2-deoxy-D-glucopyranose [18]. Actually, chitosan can be used in various applications such 

as medical, pharmaceutical, food packaging, water treatment, and other industrial applications compared to the other 

natural polymers [19-24]. This is due to its excellent properties such as bio-degradability, low cost production, non-

toxicity, and simplicity modification [17, 23]. Moreover, chitosan has various functional groups such as hydroxyl 

and amino groups which induced simple chemical alteration and modifications. Physical and chemical modifications 

of chitosan such as amination, sulfonation, carboxymethylation, coating, and grafting allow formation of different 

functional derivatives with special hydrophilic and/or hydrophobic characters [25-28].  

 

Grafting of chitosan with other polymers is an important topic in the production of functionalized materials with 

enhanced properties. Where, chitosan presents two types of reactive sites which can be modified by grafting the C-2 
(free amino groups) on deacetylated units and the C-3 and C-6 (hydroxyl groups) in either acetylated or deacetylated 

units [29]. Much works have been carried out to perform grafting copolymerization of chitosan and vinyl acrylate 

monomers such as acrylic acid, methyl methacrylate, acrylamide, and other acrylate monomer derivatives [30-35]. 

The resultant graft copolymers normally have the main properties of both initial components. 

 

In the present study, a new graft copolymer adsorbent based on aminated chitosan derivative and a hydrophobic n-

butyl acrylate monomer was prepared using free radical polymerization process. The resultant aminated chitosan- 

poly( butyl acrylate) graft copolymer (AmCS-g-poly (ButA)) was characterized using different characterization 

techniques. Furthermore, the hydrophobic/hydrophilic and oleophilic characters were investigated using oil/water 

uptake and oil/water contact angle measurements. The evaluation study of the prepared grafted copolymer for the 

adsorption of oil spill was achieved under different environmental seawater conditions.  

 

Experimental:- 

Materials:- 

Shrimp shells were collected from marine waste sources in Alexandria (Egypt), N-butyl acrylate (98%) was 

obtained from Sigma-Aldrich (Germany), p-Benzoquinone (PBQ; 99%) was obtained from Sigma-Aldrich 

(Germany), Ethylenediamine (EDA; 99%) was purchased from Alfa Aesar (Germany), Potassium persulphate (KPS; 

99%) was purchased from sigma-Aldrich (Germany), Sodium hydroxide (99%), ethanol (99%), hydrochloric acid 

(purity 37%), and acetic acid (98%) were brought from El-Nasr Company (Alexandria). Mobile-1 oil was supplied 

from Exxon Mobil Co. (Egypt). Gasoil was delivered from Misr petroleum Co. (Egypt). Light and crude oils were 

provided from Belayem Petroleum Company, (Egypt). Viscosity values of the used oil types were listed in Table 1. 
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Table 1:- Measurement values of viscosity for the used oil types 

Type of oil Viscosity Kin. @ 40 OC  (Centistokes) 

Gasoil 2 

Mobil-1 oil 8.1 

Light crude oil 15.5 

Heavy crude oil 110 

 

Methods:- 
Extraction of chitin:- 

Extraction of chitin from shrimp shells was achieved according to the reported published method [36]. In brief; the 

shrimp shells were dispersed at room temperature in 5% HCl (w/v) in the ratio of 1:14 (w/v) and left overnight. The 

de-mineralized shells were washed using distilled water to remove the excess of acid and other impurities, then 

treated with 5% (w/v) NaOH at room temperature for 24hr. Pure chitin was obtained after The washing the collected 

residues several times with water to neutrality. 

 

Preparation of aminated chitosan (AmCS):- 

Aminated chitosan derivative was prepared according to author's preceding work [25]. Firstly, chitin (4g) was 

activated by dispersing it in 50ml of p-benzoquinone (PBQ) of a known concentration at a chosen pH with 

continuous stirring for 6hr at 50°C. The resulted PBQ-activated chitin was separated and washed with distilled water 
for removing the excess of un-reacted PBQ. Secondly, PBQ-activated chitin was dispersed in 50ml of EDA of a 

known concentration at 50°C for 6hr with continuous stirring. The resultant aminated chitin was separated and 

washed with distilled water to eliminate un-reacted EDA. Finally, the pure aminated chitin was de-acetylated using 

aqueous solution of 50% NaOH at 120–150°C for 6 hr. The resulted aminated chitosan was then separated and 

washed with distilled water to remove the excess of NaOH and followed by drying at 40°C.  

 

Preparation of aminated chitosan- poly (butyl acrylate) graft copolymer:- 

Accurately, a known amount of the prepared aminated chitosan (AmCS) was dissolved in 20ml of 2% acetic acid 

solution at room temperature, then ethanol (10ml) was add drop wise to the solution with continuous stirring. 

Potassium persulphate (KPS, 0.1g) was dissolved in 50ml distilled water and added to the aminated chitosan 

solution, the reaction temperature was elevated to 60○C. After 20min, butyl acrylate (10 and 20ml) was added 
slowly with additional amount of KPS (0.05g dissolved in 5ml). The grafting reaction was conducted for 3hr. The 

precipitated grafted copolymer was recovered by centrifugation followed by washing several times with acetone and 

pure methanol using soxhlet for 2hr to remove un-grafted butyl acrylate homopolymer and dried at 50○C. The 

resultant graft copolymers were coded as AmCS-g-poly (ButA 10) and AmCS-g-poly (ButA 20). Fig. 1 represents 

the proposed mechanism for synthesis of aminated chitosan- poly (butyl acrylate) graft copolymer.  

The grafting percentage (Gp %) and grafting efficiency (GE %) were determined as follows [37, 38]:    

 

GP (%) = ((W1 − W0)/W0) × 100                                                                                              

GE (%) = ((W1 − W0)/W2) × 100                                    

Where, W0 is weight of AmCS, W1 is weight of AmCS-g-poly (ButA), and W2 is the weight of ButA monomer. 
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Fig. 1:- Synthesis of aminated chitosan- poly (butyl acrylate) graft copolymer. 

 

Physico-chemical characterization:- 

The chemical structures of the AmCS and AmCS-poly (ButA) graft copolymer were investigated by using Fourier 

Transform Infrared Spectrophotometer (Shimadzu FTIR - 8400 S, Japan). While, Their thermal stability were 
assessed using Thermal Gravimetric Analyzer (Shimadzu TGA –50, Japan) and Differential Scanning Calorimeter 

(Shimadzu DSC–60-A, Japan).The morphological structures of AmCS and AmCS-poly (ButA) graft copolymer 

were observed with the help of a Scanning Electron Microscope (SEM; Joel Jsm 6360LA, Japan).  

 

Additionally, both hydrophobic characters of the prepared graft copolymer were examined using contact angle 

measurement (Rame-hart instrument Co. Model 500-F1, UK) using distilled water and light crude oil droplets. 

 

 

Water/oil uptake measurements:- 

For studying the water/oil uptake behaviors of both AmCS and the prepared grafted copolymers, 0.1g of each 

sample was immersed in 25ml of liquid (water, Gasoil, Mobil-1 oil, Light crude oil, and Heavy crude oil) under 
constant shaking rate (100rpm) for 2hr. The swollen samples were separated and the excess of the adherent liquid 

was removed using filter paper, followed be weighing in a closed electronic balance. The liquid uptake (LU) can be 

expressed by the following equation: 

𝐋𝐔 (%) = ((𝐖𝐬−𝐖𝟎)/𝐖𝟎) × 𝟏𝟎𝟎  

Where; Ws is the weight of the swollen sample, and W0 is the initial dry weight of sample. 

 

Batch oil adsorption experiments:- 

The oil adsorption process was achieved based on the Standard Test Method for adsorbent performance (ASTM 

F726-99) [39] using oil-artificial seawater system with. Various amounts of oil (2.5-15g) were poured into a 500ml 

beaker containing 300ml of artificial sea water, then different amounts of adsorbent sample (0.1-1g) were spread on 

the oil-water surface under different shaking rates (50-200rpm) at different temperatures ranged from 25 to 40○C for 
a known contact time (10-300min.). While, the used oils were gasoil, mobil-1 oil, light and heavy crude oil, Finally, 

samples were removed and weighted using electronic balance. 

 The percentage of oil adsorption (%) was calculated according to the following equations [40, 41 ]: 

𝐎𝐢𝐥 𝐚𝐝𝐬𝐨𝐫𝐩𝐭𝐢𝐨𝐧 (%) = (𝐖𝐚/𝐖𝐛) × 𝟏𝟎𝟎
 Where; Wa is the weight of adsorbed oil (g), and Wb is the initial weight of oil (g). 
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Results and Discussion:- 
The effect of butyl acrylate concentration on the grafting parameters (GP% and GE%) was shown in Fig. 2. Results 

showed that the grafting percentage increased from 77 to 93.5% with increasing the amount of butyl acrylate in the 

feed mixture. These results could be attributed to that increasing the monomer concentration facilates the diffusion 

of monomer into the active sites of aminated chitosan backbone, and subsequently increases the grafting percentage. 

However, increasing the concentration of ButA monomers from 10 to 20 ml decreases the grafting efficiency (GE%) 

from 86 to 74%, this could be due to increasing the divisor value. Generally, both GP% and GE% exhibited to be 

exceed than 70% for the used ButA concentrations. 

   

 
Fig. 2:- Values of GP% and GE% for the prepared grafted copolymers. 

 

FT-IR 

FTIR of AmCS, AmCS-g-poly (ButA 10) and AmCS-g-poly (ButA 20) were investigated and presented in Fig 3. It 

was clear that AmCS shows characteristic hydrophilic bands of aminated polysaccharide; a broad band between 

3200-3600 cm-1 equivalent to the stretching vibration of OH and NH2 groups that spread along the polymer structure 
[42]. C-H stretching of methyl and methylene groups was exhibited between 2835-2950 cm-1, Bands at 1620 cm-1 

result stretching vibration of C=O and NH-C=O. Bands at 1066-1059 cm-1 corresponding to C-O-H stretching [43]. 

On the other hand, the grafted copolymers demonstrate a significant difference in the spectra of FT-IR. Where, the 

absorption bands at 1729 cm-1 were corresponding to stretching vibration of acrylate C=O group and the 

characteristic absorption bands of the C-H stretching vibration and the C-H in-plane bending vibration looked at 

2876, 2930 cm-1 and 1380, 1470 cm-1, respectively. 
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Fig. 3:-  FT-IR spectra of AmCS, AmCS-g-poly (ButA 10), and AmCS-g-poly (ButA 20). 

 

TGA  

Thermal gravimetric analysis of AmCS, AmCS-g-poly (ButA 10), and AmCS-g-poly (ButA 20) was investigated in 

Fig. 4. Aminated chitosan was thermally degraded via three weight loss stops. The first weight loss that initiated 

from ambient temperature to about 150○C was associated with loss moisture content that interrupted in the polymer 
chain. The presence of hydrophilic groups (hydroxyl and amine groups) can be attributed to the capability of the 

polymer to trap moisture from surround atmosphere. 

 

The subsequent degradation that distinguished from 220○C to 320○C was a result of thermal oxidative 

decomposition of the pyranose ring along AmCS backbone. In this phase, the decline was generated from the 

elimination of amine groups to form cross-linked residue [44]. The final degradation step was obtained from the 

decomposition of a new cross-linked residue produced by thermal crosslinking reactions at a higher temperature. 

Table 2 describes more details about the thermal behavior of the grafted copolymers compares to AmCs.  Both 

derivatives exhibiting less moisture content 6.35% and 1.21% respectively, this can attribute to hydrophobic nature 

of poly (butyl acrylate). Where, poly (ButA) exhibits a single degradation step between 380-400○C [45].  The 

obtained results indicated that the grafted copolymers have a great thermal stability than that of neat polymer 
(aminated chitosan).  

 

Table 2:- Thermal gravimetric parameters of AmCS, AmCS-g-poly (ButA 10), and AmCS-g-poly (ButA 20) 

Sample Weight loss (%) 

ambient – 150 
o
C 

T50 (
o
C) 

AmCs 12.13 345.19 

AmCS-g-poly (ButA 10) 6.352 409.43 

AmCS-g-poly (ButA 20) 1.21 411.89 
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Fig. 4:- TGA of AmCS, AmCS-g-poly (ButA 10) and AmCS-g-poly (ButA 20) copolymers. 

 

DSC 

Differential scanning calorimeter of AmCS-g-poly (ButA 10) and AmCS-g-poly (ButA 20) compared to neat 
polymer AmCS was investigated in Fig. 5. Results demonstrate a distinct endothermic band around 100○C that 

indicated to dehydration of moisture content of samples. AmCS has hydrophilic groups such as amine and hydroxyl 

groups, of these groups to trap moisture from surrounding or during preparation increase with increasing the 

hydrophilic nature of AmCS backbone. The relatively large amount of binding water in aminated chitosan was 

decreased after the grafting process under the influence of the hydrophobic nature of poly (butyl acrylate). 

 
Fig. 5:- DSC of AmCS, AmCS-g-poly (ButA 10) and AmCS-g-poly (ButA 20) copolymers. 

 

SEM 

The changes in the morphological structure of the developed grafted copolymers were investigated as shown in Fig. 

6. It was observed from SEM images that the grafting process was affected the surface morphology of the grafted 

copolymers. Where, AmCS has a rough surface, while AmCS-g-poly (ButA 10) and AmCS-g-poly (ButA 20) 
copolymers have flat and smooth homogenous surfaces and the density of the surface increased with increasing the 

amount of butyl acrylate in the grafting medium. These results could be related to hydrophobic nature of poly (butyl 

acrylate). 
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Fig. 6:- SEM images of AmCs, AmCS-g-poly (ButA 10) and AmCS-g-poly (ButA 20) copolymers. 

 

Contact angle 

The hydrophobic/hydrophilic and oleophilic characters of AMCS and AmCS-poly (ButA) graft copolymers were 

investigated as shown in Fig. 7 and Table 2 using water and crude oil droplets based on wettability measurements. It 
was clear from the obtained results that the oleophilic character of the AmCS-g-poly (ButA) were enhanced and 

recorded 45⁰ and 28⁰ in case of CS-g-poly (ButA 10) and CS-g-poly (ButA 20)  respectively compared to the native 

AmCS (82⁰) using light crude oil droplet.  

 

Results also indicated that the hydrophobic character of the grafted copolymer increased with increasing ButA 

amount in the grafting medium and recorded maximum value 115⁰ using water droplet compared to AmCS (52⁰). 
These behaviors could be related to the nature of the used hydrophobic ButA monomers.  

 

Table 2:- Data of contact angle for aminated chitosan and its developed grafted copolymers using water and heavy 

crude oil droplets 

 

Sample   
(Water) 

  

(Light crude oil) 

AmCS 52 82 

CS-g-poly (ButA10 ) 105 45 

CS-g-poly (ButA 20) 115 28 

 
Fig. 7:- Contact angle images for AmCS, AmCS-g-poly (ButA10), and AmCS-g-poly (ButA20). 

 

Water/oil uptake measurements:- 

Fig. 8 represents the behavior of AmCS, AmCS-g-poly (ButA 10), and AmCS-g-poly (ButA 20) for water and oil 

uptakes (liquid uptake; LU). From the obtained results, it was clear that water uptake of AmCS increased compared 
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to the grafted copolymers, this is due to the available hydrophilic groups (i.e.; hydroxyl and amine groups) of AmCS 

which bind with water molecules resulting an increasing water uptake value. While, in case of the prepared grafted 

copolymers the water uptake have very little values due to the consumption of the hydrophilic groups of AmCS 

through the grafting process. In contrast, oil uptake increased with increasing ButA monomer in the feed mixture, 

and this can be explained by increasing the hydrophobic character of the resultant graft copolymers with increasing 

the grafted ButA molecules onto AmCS polymer. Results also showed that oil uptake values increased gradually 
with increasing viscosity of the used oil type, where maximum oil uptake was observed using heavy crude oil. 

 

 
Fig. 7:- Liquid uptake behaviors of AmCS, AmCS-g-poly (ButA 10), and AmCS-g-poly (ButA 20). 

 

Oil adsorption measurements:- 

The hydrophobic-oleophilic nature of n-butyl acrylate reflects positively on the prepared Aminated chitosan grafted 

poly (butyl acrylate), where the adsorption process was improved after grafting process. Basically, AmCS and the 

grafted copolymers were assessed their ability for oil adsorption under seawater conditions as following: 

 

Effect of oil type:- 

The effect of oil type on the oil adsorption percentage was explored using four oil types with different viscosity 

values as shown in Fig.8A. It was observed that the oil adsorption values increased gradually with the following 

order; Gasoil < Mobil-1 oil < Light crude oil < Heavy crude oil. Where, maximum values for adsorption were 

recorded using the heavy crude oil. These results can be explained by increasing the adherent forces between the 

adsorbent and oil surface with increasing oil viscosity, and consequently the oil adsorption increases. On the other 
hand, it was observed that the oil adsorption values of the grafted copolymers were increased with increasing the 

amount of butyl acrylate in the grafting medium (77% and 84%) compared to the AmCS (37%) using heavy crude 

oil. 
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Fig. 8A:- Effect of oil type on the oil adsorption (%) for AmCS, AmCS-g-poly (ButA 10), and AmCS-g-poly (ButA 

20) at constant contact time (180min), adsorbent amount (0.1g), oil amount (5g), agitation rate (100 rpm), and 

adsorption temperature medium (30○C). 

Effect of initial oil amount:- 

Fig. 8B shows the effect of the initial amount of oil on the oil adsorption process was studied and investigated as 
shown in Fig. 8B. It was clear from results that oil adsorption decreased with increasing the initial amount of oil 

from 2.5 to 15g. Commonly, it well known that oil adsorption (%) is defined as the ratio of the adsorbed oil amount 

to the initial amount of oil. Accordingly, the oil adsorption values take adverse trend with increasing the initial 

amount of oil.  

 

 
Fig. 8b. Effect of initial amount of oil on the oil adsorption (%)AmCS, AmCS-g-poly (ButA 10), and AmCS-g-poly 

(ButA 20) at constant contact time (180 min), adsorbent amount (0.1g), agitation rate (100 rpm), and adsorption 

temperature medium (30○C) using heavy crude oil. 
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Effect of adsorbent amount:- 

The effect of the adsorbent amount on the oil adsorption (%) was investigated as shown in Fig. 8C. In all cases, 

results indicated that the oil adsorption (%) increased gradually with increasing the adsorbent amount up to 1g. Also, 

it was noted that only 0.5g of AmCS-g-poly (ButA 20) sample was needed to reach the maximum oil adsorption 

value (96%), while 1g was required for AmCS and AmCS-g-poly (ButA 10)  to reaches the maximum adsorption 

values (55% and 96%). Increasing the adsorbent amount increases the exposed sites for adsorption of oil molecules. 
Moreover, increasing the hydrophobic ButA amount in the adsorbent sample decreases the required amount of 

adsorbent.  

 

Where, only 0.1g of the grafted copolymers can adsorb more than 75% of heavy crude oil compared to AmCS 

(37%) at the same adsorption conditions and this is due to increasing the oleophilic properties after grafting with 

ButA monomer.  

 

 
Fig. 8:- Effect of initial amount of adsorbent on the oil adsorption (%) for AmCS, AmCS-g-poly (ButA 10), and 

AmCS-g-poly (ButA 20) at constant contact time (180 min), oil amount (5g), agitation rate (100 rpm), and 

adsorption temperature medium (30
○
C) using heavy crude oil. 

 

Effect of contact time:- 
Fig. 8C represents the effect of variation contact time from 10 min to 300 min on the oil adsorption (%) of AmCS 

and the grafted copolymers (10-300 min). Results investigated that that with increasing the contact time up to 180 

min the oil adsorption (%) increased and reached maximum values 37%, 77%, and 84% for AmCS, AmCS-g-poly 

(ButA 10), and AmCS-g-poly (ButA 20) respectively. While, further increasing in the contact time beyond 180 min 

decreases the oil adsorption values. These results could be attributed to that increasing contact time from 10 min to 

180 min enhances the available adsorbent sites to attract large number of oil molecules resulting increase in the oil 

adsorption values. However, with increasing contact time beyond 180 min (the equilibrium contact time), no further 

oil molecules can be adsorbed and the affinity of adsorbent sample towards oil molecules decreased, then oil 

desorption process occurred followed by decreasing oil adsorption (%). 
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Fig. 8D:- Effect contact time on the oil adsorption (%) for CS, CS-g-poly (ButA10), and CS-g-poly (ButA20), 

adsorbent amount (0.1g), oil amount (5g), agitation rate (100 rpm), and adsorption temperature medium (30○C) 

using heavy crude oil. 

 

Effect of rpm:- 
Fig. 8E shows the effect of variation shaking speed on the oil adsorption (%). The obtained results indicated that the 

oil adsorption values increased gradually with increasing the shaking speed up to 150 rpm. These results could be 

attributed to that with increasing the rate from 50 to 150 rpm, the dispersion of oil spill increases and enhances the 

diffusion of oil spills towards the surface of adsorbent samples resulting an increasing in oil adsorption (%). 

However, further increase up to 200 rpm causes decreasing in the oil adsorption (%) could decrease the attraction 

forces between oil molecules and the available sites of adsorbent surface, followed by oil desorption process.  
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Fig. 8E:- Effect of agitation rate (rpm) on the oil adsorption (%) for CS, CS-g-poly (ButA10), and CS-g-poly 

(ButA20) at constant contact time (180 min), adsorbent amount (0.1g), oil amount (5g), and adsorption temperature 

medium (30○C) using heavy crude oil. 

 

Effect of adsorption temperature:- 
The effect of variation adsorption medium temperature oil the adsorption process was investigated as shown in Fig. 
8F. It was clear from results that oil adsorption (%) was greatly improved and reached maximum values with 

increasing adsorption temperature up to 35oC. These results could be due to increasing the diffusion rate of oil 

molecules into the adsorbent surface sites with increasing temperature from 25 to 35oC. However, increasing 

temperature beyond 35oC decreases the oil adsorption values, which causes less probability of oil attachment on the 

adsorbent surface and the desorption process occur.  

 

 
Fig. 8F:- Effect of adsorption medium temperature on the oil adsorption (%) for CS, CS-g-poly (ButA10), and CS-

g-poly (ButA20) at constant contact time (180 min), adsorbent amount (0.1g), oil amount (5g), and agitation rate 

(100 rpm)  using heavy crude oil. 

 

Conclusion:- 
Aminated chitosan-poly (butyl acrylate) graft copolymers were developed and characterized. The effect of butyl 

acrylate amount on the grafting percentage and grafting efficiency was studied. Both hydrophobic and oleophilic 

characters of the resultant graft copolymers were significantly enhanced through oil/water- contact angle 

measurements and oil/water uptake studies. The oil adsorption process was evaluated using different oil types. The 

oil adsorption (%) was found more than 95% in case of the grafted aminated chitosan- poly (butyl acrylate) 
copolymers compared to the native aminated chitosan ( about 37%) at constant contact time (180 min), adsorbent 

amount (0.1g), oil amount (5g), agitation rate (100 rpm), and adsorption temperature medium (30○C) using heavy 

crude oil. The developed adsorbent could be applied as a low-cost oleophilic adsorbent material for oil spill cleanup. 

 

Conflicts of Interest:- 

The authors have no conflict of interest to declare. 

 

References:- 
1. M. Radetic, V. Ilic, D. Radojevic, R. Miladinovic, D. Jocic, P. Jovancic. Efficiency of recycled wool-based 

nonwoven material for the removal of oils from water. Chemosphere, 70 (2008) 525–530. 

0

20

40

60

80

100

25
30

35
40

O
il 

ad
so

rp
ti

o
n

 (%
)

Temperature (°C)

AmCS

AmCS-g-poly(ButA10 )

AmCS-g-poly(ButA 20)



ISSN: 2320-5407                                                                                Int. J. Adv. Res. 4(11), 2080-2094 

2093 

 

2. M. O.  Adebajo, R. L. Frost, J. T. Kloprogge, O. Carmody, S. Kokot, Porous materials for oil spill cleanup, A 

Review of Synthesis. J. porous. Mater., 10 (2003)159–170. 

3. H. Lee, D. Min, D. Ph. Impacts of oil spills : ecological , human health and economic. Plan II Honors Program 

The University of Texas at Austin Department of Civil. Architectural and Environmental Engineering Co-

Supervisor, (2011) 1–70. 

4. L. Wang, L. Zhuo, Y. He, Y. Zhao, W. Li, X. Wang, F. Lee. Oil spill identification. Guang Pu Xue Yu Guang 
Pu Fen Xi., 24 (2004) 1537–9. 

5. A. Nikkhah, H. Zilouei, A. Asadinezhad, A. Keshavarz. Removal of oil from water using polyurethane foam 

modified with nanoclay. Chemical Engineering Journal, 262 (2015) 278–285 

6. Srinivasan, T. Viraraghavan. Oil removal from water using biomaterials, Bioresour. Technol., 101 (2010) 6594–

6600. 

7. M. Inagaki, A. Kawahara, Y. Nishi, N. Iwashita. Heavy oil sorption and recovery by using carbon fiber 

felts.Carbon, 40 (2002) 1487–1492. 

8. Tansel, B. Pascual. Removal of emulsified fuel oils from brackish and pond water by dissolved air flotation with 

and without polyelectrolyte use: pilot-scale investigation for estuarine and near shore applications. 

Chemosphere, 85 (2011) 1182–1186. 

9. J. Rethmeier, A. Jonas. Lignite based oil binder mats: a new absorbent strategy and technology, Spill Sci. 

Technol., B 8 (2003) 565–567. 
10. C. Cojocaru, M. Macoveanu, I. Cretescu. Peat-based sorbents for the removal of oil spills from water surface: 

Application of artificial neural network modeling. Colloids and Surfaces A: Physicochem. Eng. Aspects, 384 

(2011) 675– 684. 

11. D. Bastani, A.A. Safekordi, A. Alihosseini, V. Taghikhani. Study of oil sorption by expanded perlite at 298.15 

K, Sep. Purif. Technol., 52 (2006) 295–300. 

12. S. Panpanit, C. Visvanathan. The role of bentonite addition in UF flux enhancement mechanisms for oil/water 

emulsion, J. Membr. Sci., 184 (2001) 59–68. 

13. A. Al-Majed, A. R. Adebayo, M. E. Hossain. A novel technology for sustainable oil spills control, Environ. 

Eng. Manag. J., 13 (2014) 265–274. 

14. M. Saito, N. Ishii, S. Ogura, S. Maemura, H. Suzuki, Development and water tank tests of Sugi bark sorbent 

(SBS), Spill. Sci. Technol., B. 8 (2003) 475-482. 
15. M. A. L. Milhome, D. Keukeleire, J. P. Ribeiro, R. F.  Nascimento. Removal of phenol and conventional 

pollutants from aqueous effluent by chitosan and chitin. Quim. Nova, 32 (2009) 2122-2127.  

16. P. Anbinder., C. Macchi, J. Amalvy, A. Somoza. Chitosan-graft-poly (n-butyl acrylate) copolymer: Synthesis 

and characterization of a natural/synthetic hybrid material. Carbohydrate Polymers, 145 (2016) 86–94. 

17. M. Rinaudo, Chitin and chitosan: properties and applications. Prog. Polym. Sci., 31 (2006) 603–632. 

18. D.Baskar, T. S. Kumar. Effect of deacetylation time on the preparation: properties and swelling behavior of 

chitosan films. Carbohydrate Polymers, (2009)78, 767–772. 

19. M. El-Sayed, T. M. Tamer, A. M. Omer, M. S. Mohy Eldin. Development of novel chitosan schiff base 

derivatives for cationic dye removal: methyl orange model, Desalin. Water Treat., (2016) 1–14. 

20. J. Rhim, P. Ng. Natural biopolymer-based nanocomposite films for packaging applications. Critical Reviews in 

Food Science and Nutrition, 47 (2007) 411–433. 

21. M. S. Mohy Eldin, A. I. Hashem, A. M. Omer, T. M. Tamer. Wound dressing membranes based on chitosan: 
Preparation, characterization and biomedical evaluation. Int. J. of Adv. Res., 3 (2015) 908- 922.  

22. T.A. Sonia, C. P. Sharma. Chitosan and Its Derivatives for Drug Delivery Perspective. Adv Polym Sci (2011) 

243: 23–54. 

23. N.M. Alves, J.F. Mano. Chitosan derivatives obtained by chemical modifications for biomedical and 

environmental applications. International Journal of Biological Macromolecules, 43 (2008) 401–414 

24. H.S. Blair, J. Guthrie, T. Law, P. Turkington. Chitosan and modified chitosan membranes. 1: Preparation and 

characterization, J. Appl. Polym. Sci., (1987) 33, 641-656.  

25. M. S. Mohy Eldin, E. A. Soliman, A. I. Hashem, T. M. Tamer. Antimicrobial activity of novel aminated 

chitosan derivatives for biomedical applications. Adv. polym. technol., 31 (2012) 414-428.  

26. A. Madhusudhan, G. B. Reddy, M. Venkatesham, G. Veerabhadram, D. A. Kumar, S. Natarajan, M. Y. Yang, 

A. Hu, S. S. Singh. Efficient pH dependent drug delivery to target cancer cells by gold nanoparticles capped 
with carboxymethyl chitosan. Int. J. Mol. Sci., 15 (2014) 8216-8234. 

27. G. Vikhoreva, G. Bannikova, P. Stolbushkina, A. Panov, N. Drozd, V. Makarov, V. Varlamov, L. Gal’braikh. 

Preparation and anticoagulant activity of a low-molecular-weight sulfated chitosan. Carbohydrate Polymers 62 

(2005) 327–332 

https://www.researchgate.net/researcher/2083215163_MS_Mohy_Eldin
https://www.researchgate.net/researcher/82062852_EA_Soliman
https://www.researchgate.net/researcher/2083696154_AI_Hashem


ISSN: 2320-5407                                                                                Int. J. Adv. Res. 4(11), 2080-2094 

2094 

 

28. D. W. Jenkins, S. M. Hudson. ―Review of Vinyl Graft Copolyme-rization Featuring Recent Advances toward 

Controlled Radical-Based Reactions and Illustrated with Chitin/Chitosan Trunk Polymers,‖ Chemical Reviews, 

101 (2001) 3245-3273. 

29. L. L. Lloyd, J. F. Kennedy, P. Methacanon, M. Paterson, C. J. Knill. Carbohydrate polymers as wound 

management aids. Carbohydrate Polymers, 37 (1998) 315–322. 

30. R. Jayakumar, M. Prabaharan, R. L. Reis and J. F. Mano. Graft copolymerized chitosan—present status and 
applications.Carbohydr. Polym., 62 (2005) 142–158. 

31. K.V. H. Prashanth, R. N. Tharanathan. Studies on graft copolymerization of chitosan with synthetic monomers.  

Carbohydrate Polymers, 54 (2003) 343-351. 

32. M. Pati, P. L. Nayak. Graft copolymerization of methyl acrylate on chitosan: Initiated by ceric ammonium 

nitrate as the initiator-characterization and antimicrobial activity. Advances in Applied Science Research, 3 

(2012) 1646-1654. 

33. H.H. Sokker, Naeem M. El-Sawy, M.A. Hassan, Bahgat E. El-Anadouli. Adsorption of crude oil from aqueous 

solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization. 

Journal of Hazardous Materials, 190 (2011) 359–365 

34. R. Nithya and P. N. Sudha. Grafting of n-butyl acrylate on to chitosan by ceric ion initiation and its 

antimicrobial activity. Der Pharmacia Lettre, 6 (2014) 58-64 

35. T. M. Tamer, A. M. Omer, M. A. Hassan, M. E. Hassan, M. M. Sabet, M. S. Mohy Eldin. Development of 
thermo-sensitive poly N-isopropyl acrylamide grafted chitosan derivatives, J. Appl. Pharm. Sci., 5 (2015) 001-

006.  

36. M. M. Islama, S. M. Masumb, M. M. Rahmana, M. A. I. Mollab, A. A. Shaikhc, S. K. Roya. Preparation of 

chitosan from shrimp shell and investigation of its properties. Int. J. Basic App. Sci. IJBAS-IJENS., 11 (2011) 

77- 80. 

37. M. S. Mohy Eldin, H. M. El-Sherif, E. A. Soliman, A. A. Elzatahry, A. M. Omer. Polyacrylamide-grafted 

carboxymethyl cellulose: smart pH-Sensitive hydrogel for protein concentration. J. Appl. Polym. Sci., 12 (2011) 

469-79.  

38. M. S. Mohy Eldin, A. M. Omer, E. A. Soliman, E. A. Hassan. Superabsorbent polyacrylamide grafted 

carboxymethyl cellulose pH sensitive hydrogel: I. Preparation and characterization. Desalin. Water Treat., 51 

(2013) 3196–206.  
39. B. Alireza, T. Jun, M. Gordon. Standardization of oil sorbent performance testing, J.   Test. Eval., 43 (2015) 1– 

8. 

40. A. Nikkhah, H. Zilouei, A. Asadinezhad, A. Keshavarz. Removal of oil from water using polyurethane foam 

modified with nanoclay, Chem. Eng. J., 262 (2015) 278–285.  

41. M. Patowary, R. Ananthakrishnan, K. Pathak. Superhydrophobic and oleophilic barium sulfate material for oil 

spill clean-ups: Fabrication of surface modified sorbent by a one-step interaction approach, J. Environ. Chem. 

Eng., 2 (2014) 2078–2084.  

42. T. Sun, D. Zhou, J. Xie, F. Mao, Preparation of chitosan oligomers and their antioxidant activity, Eur. Food 

Res. Technol., 225 (2007) 451–456. 

43. S. Kumara, P. K. Duttab, J. Koh, A physico-chemical and biological study of novel chitosan–chloroquinoline 

derivative for biomedical applications, Int. J. Biol. Macromol., 49 (2011) 356– 361. 

44. J. Zawadzki, H. Kaczmarek. Thermal treatment of chitosan in various conditions, Carbohydr. Polym., 80 (2010) 
394–400. 

45. J. L. Fuente, M. F. Garcia, E. L. Madruga. Characterization and Thermal Properties of Poly(n-butyl acrylate-g-

styrene) Graft Copolymers. Journal of Applied Polymer Science, 80 (2001)783–789. 

https://scholar.google.co.uk/citations?view_op=view_citation&hl=en&user=QQnjKecAAAAJ&citation_for_view=QQnjKecAAAAJ:kNdYIx-mwKoC
http://pelagiaresearchlibrary.com/advances-in-applied-science/vol3-iss3/AASR-2012-3-3-1646-1654.pdf
http://pelagiaresearchlibrary.com/advances-in-applied-science/vol3-iss3/AASR-2012-3-3-1646-1654.pdf
http://pelagiaresearchlibrary.com/advances-in-applied-science/vol3-iss3/AASR-2012-3-3-1646-1654.pdf

	tittle
	Introduction
	Methods
	Results
	Conclusion
	References

