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Spectrum sensing is the core and key task of the Cognitive Radio. In 

this paper, we propose a spectrum sensing technique based on the 

estimates of the spectrum of a multiband signal obtained from its non-

uniform multicoset sampler operating at the sub-Nyquist rate. We show 

that our proposed spectrum sensing method provides accurate results 

using fewer data samples. We discuss in detail the effect of false 

detections based on the signal reconstructed from non-uniform 

multicoset samples. 
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Introduction:- 
The available electromagnetic radio spectrum is a precious resource, but it is not utilized efficiently because at a 
particular geographical location and time only a fraction of the entire spectrum is used. This effect combined with 

the current static licensing approach of the spectrum gives rise to unused spectrum white spaces or spectrum holes. 

Cognitive Radio (CR), a new way of looking at wireless communications, has the potential to become the solution to 

the spectrum underutilization problem, by permitting unlicensed users to utilize these spectrum holes [1]. The key 

task of CR is Spectrum sensing, defined as detecting the presence or absence of a signal by observing the radio 

spectrum. Some traditional spectrum sensing techniques are energy detection, matched filter and cyclostationary 

feature detection that have been proposed for narrow band sensing [2]. All these techniques filter the received signal 

with narrowband band-pass filters and then sample it uniformly at the Nyquist rate and then process the signal. In 

these approaches to spectrum sensing, the detection method is based on binary hypothesis-testing problem i.e. to 

detect the presence (H1) or absence (H0) of a primary user in the considered band. 

 
With the advances in wireless communications, future cognitive radios should be capable of scanning a wideband of 

frequencies, over a few GHz. The usual sampling of a wideband signal needs high sampling rate ADCs, which are 

required to operate at or above the Nyquist rate. The spectrum sensing techniques mentioned above have their 

respective advantages and disadvantages. However, a common drawback is that they operate at Nyquist sampling 

rate. A major challenge is the development of efficient techniques to process the wideband signal sampled at 

Nyquist rate in real-time. 

 

To overcome this problem, compressive sensing based solutions have been proposed in [3], [4] and [5]. In [3], 

authors proposed method based on Analog to Information converter. From the compressed samples of the signal, the 

spectrum can be estimated by solving an optimization problem. Wireless signals are typically sparse in the 

frequency domain. Using this fact in [5], a sensing method based on MUSIC algorithm has been proposed. It 
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estimates the signal in time domain directly from its multicoset samples and spectrum holes are detected using 

subspace methods. Authors also showed that the proposed method would bring substantial saving in terms of the 

sampling rate at low spectrum occupancy. However, more data samples are required at low SNRs to detect the 

signal correctly. 

 

In this paper, based on the sparsity of wideband signals in the frequency domain and using non-uniform sub-Nyquist 
Multicoset sampling of the input signal, we propose a wideband spectrum sensing method for the detection of active 

bands which reduces the average sampling rate. At low SNR values, the performance of the proposed method is 

examined with fewer data samples and is found to produce accurate results.  The impact of the false detections of the 

proposed sensing method is analyzed using the reconstructed signal in time domain. The remainder of the paper is 

organized as follows. Section II details signal model and problem statement. Section III, provides an overview of 

multicoset sapling. The proposed non-uniform spectrum sensing method is presented in Section IV. Numerical 

results are presented in Section V followed by the empirical evaluation of threshold in Section VI. The impact of the 

proposed method on the multicoset sampler is discussed in Section VII followed by conclusion in Section VIII. 

 

Signal Model and Problem Statement:- 
Let 𝑥(𝑡) be a real valued, finite-energy, continuous-time signal and let  𝑋 𝑓 =  𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡∞

−∞
 be its Fourier 

transform. We treat a multiband signal model ℳ in which 𝑥(𝑡) is band limited to ℬ =  
−𝐹𝑁𝑦𝑞

2
,

 𝐹𝑁𝑦𝑞

2
 . 

 
Fig.1:- Division of the observation band into L=20 cells where 𝛫 = {𝜅𝑟}𝑟=1

12  are the indexes of the active cell. 

 

ℱ is the spectral support of the signal 𝑥(𝑡) such that ℱ ⊂ ℬ and consists of at most 𝑁𝐵 frequency intervals (bands) 

whose width is 𝑏. 

 

Multicoset sampling starts by dividing the entire frequency band into L narrowband cells, each of them with 

bandwidth b, such that 𝐹𝑁𝑦𝑞 = 𝐿 × 𝑏 [6]- [7]. These cells are indexed from 0 to 𝐿 − 1, see Figure 1. Active cells are 

the spectral cells which contain part of the signal spectrum. The indexes of the active cells are collected into a set 𝛫 

called the active cells set where 𝛫 = {𝜅𝑟}𝑟=1
𝑞

. Note that 𝑞 =  𝛫 , where   ∗   is the cardinality operator. For the 

particular band shown in Figure 1, the set of active cells indexes is 𝛫 = {𝜅1 , 𝜅2 ,… , 𝜅12 } = {1, 2, 4, 5, 8, 9, 10, 11, 14, 

15, 17, 18} with q = 12 and NB = 6. To recover Nyquist rate samples of the received signal from sub-Nyquist 

Multicoset samples. 

 

The knowledge of the number of bands 𝑁𝐵 and 𝛫 is of paramount importance [6] since they are required to 
reconstruct the time domain signal but are unknown to the system. Therefore, based on this discussion our problem 

is: Given the observation band, ℬ =  
−𝐹𝑁𝑦𝑞

2
,

 𝐹𝑁𝑦𝑞

2
 ,  the objective is to detect correctly the active cells set 𝛫 for 

optimal reconstruction of the non-unifromly sub-nyquist sampled signal 𝑥(𝑡) and to analyze the impact of the false 

detection of K on the averaging sampling rate of the system. 

 

Multicoset Sampler:- 
Figure 2 shows the complete block diagram of a Multicoset sampler and the proposed non-uniform spectrum sensing 

scheme. The multicoset sampler samples the incoming analog signal at a rate lower than the Nyquist sampling 

frequency. Using these samples the non-uniform sensing block performs spectrum detection and computes the 

parameters  𝑁𝐵 and 𝛫, which required for reconstruction of the signal in the reconstruction block. 
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Fig. 2:- Multicoset sampler for Wideband signals along with the proposed Non-uniform Spectrum sensing 
method shown within the dotted block 

 

 
Fig. 3:- L uniformly spaced Nyquist samples and corresponding p multicoset samples. 

 

In this paper, our objective is to study the performance of the proposed non-uniform sensing method. Therefore, we 

give an overview of the multicoset sampling scheme. Multicoset sampling is a periodic non-uniform sampling 

technique which samples the input signal 𝑥(𝑡) at a rate lower than the Nyquist rate, thereby capturing only the 

amount of information required for an accurate reconstruction of the signal based on the Landau lower bound [8].  

 

Multicoset sampling starts by choosing an appropriate sampling period 𝑇, which is less than or equal to the Nyquist 

period of 𝑥(𝑡). Then the input signal 𝑥(𝑡) is non-uniformly sampled at 𝑡𝑖 𝑛 = (𝑛𝐿 + 𝑐𝑖)𝑇, where 1 ≤ 𝑖 ≤ 𝑝 and 

𝑛 ∈ ℤ [9]. The sampling pattern is the set ∁= {𝑐𝑖} which contains p distinct, unique integers from 0 to L-1 chosen to 

minimize the condition number [5]. The parameters L and p are selected such that L ≥ p > 0.  

 

Multicoset sampling can be viewed as first sampling the input signal at a uniform rate with period T and then 

selecting only p non-uniform samples from L uniform samples (see Figure 3). The process is repeated for 

consecutive segments each having L uniform samples such a way that the sampling period of the p selected samples 

is L.  

 

The set ∁ specifies the p samples such that 0 ≤ 𝑐1 ≤ 𝑐2 ≤ ⋯ ≤ 𝐿 − 1. Multicoset sampler can be implemented using 

p ADCs working in parallel [10]. Each ADC operates uniformly at a period 𝑇𝑠 = 𝐿𝑇. The multicoset sampler, 
provides p data sequences for i = 1… p, given by 

𝑥𝑖 = 𝑥 𝑛𝐿 + 𝑐𝑖 𝑇 = (𝑛 +
𝑐𝑖

𝐿
)𝑇𝑠 (1) 

where 1 ≤ 𝑖 ≤ 𝑝. Therefore, the average sampling rate of the multicoset sampler is  𝐹𝑎𝑣𝑔 = 𝛼𝐹𝑁𝑦𝑞 , where 𝛼 =
𝑝

𝑞
. To 

recover the signal 𝑥 𝑡  sampled at the sub-Nyquist rate,  𝑁𝐵 and 𝛫 must be known to the reconstruction block [6]. 

 

Proposed Non-Uniform Spectrum Sensing Model:- 
In this section, we discuss our proposed Non-Uniform Spectrum Sensing Block (NUSS) (shown in dotted block in 

Figure 2) to compute the parameters  𝑁𝐵 and 𝛫 which can allow successful reconstruction of 𝑥(𝑡). The function of 

each sub-block is explained in the subsections to follow, 

 

Non-uniform spectrum estimation block:- 

As stated in Section II, our objective is to detect the total number of bands 𝑁𝐵 and the set of active cells 𝛫. Since the 

input signal 𝑥(𝑡) is under sampled and the samples are unevenly spaced, the usual spectrum sensing techniques like 

FFT based energy detection and cyclostationary based detection cannot be used [2]. To overcome this hurdle, we 

treat this scenario as a missing data problem and in this paper we propose to use the Lomb-Scargle method [11] to 
estimate the power spectral density (PSD) of the non-uniformly sampled signal. In the remaining sub-blocks of the 

sensing model, 𝑁𝐵 and 𝛫 are computed from this estimated PSD. The Lomb-Scargle periodogram is a popular tool 
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to detect if an unevenly spaced data is due to noise or it also contains the contribution of a signal by providing an 

estimate of the PSD.  

 

Lomb-Scargle method [12] evaluates the samples, only at times tn that are actually measured. Suppose that there are 

Ns samples 𝑥(𝑡𝑛 ), n = 1... Ns. The PSD estimate obtained from Lomb-Scargle method is defined by (1) (spectral 

power as a function of angular frequency 𝜔 = 2πf > 0 with 𝑓 ⊂ 𝐵 = [
−fNyq

2
 , 

fNyq

2
]).  

𝛾 = 𝛾  𝜔 =
1

2𝜎2

   𝑥𝑖 − 𝑥𝑖 cos𝜔 𝑡𝑖 − 𝛿 𝑖  2

 cos2 𝜔 𝑡𝑖 − 𝛿 𝑖

   + 

 

1

2𝜎2

   𝑥𝑖 − 𝑥𝑖 sin 𝜔 𝑡𝑖 − 𝛿 𝑖  2

 sin2 𝜔 𝑡𝑖 − 𝛿 𝑖

 

 

(2) 

Where 𝑥 and 𝜎2 represent the mean and variance of the samples 

 

Moving average filter block:- 

It is observed that the PSD estimate 𝛾  obtained from the Lomb-Scargle method has a high variance. As a result of 

which NB and K are not easy to detect if the PSD estimates are used in their original form. Therefore, we use a 

moving average filter to smoothen the 𝛾  obtained from the non- uniform sampled data. The moving average filter 

smoothes the incoming 𝛾  by replacing each data point with the average of the neighboring data points defined within 

a specified span.  

 

This process is equivalent to low-pass filtering with the response of the smoothing given by the difference equation  

 

 
Fig. 4:- Support detection using threshold in non-uniform spectrum sensing block 

Where 𝛾 𝑠 𝑓  is the smoothed value for the PSD at the frequency𝑓, 𝑀 is the number of neighboring data points on 

either side of  𝛾 𝑠 𝑓  where 2M+1 is the span. 

 

Support Detector Block:- 

Once a smooth PSD estimate has been obtained, the spectral support F is computed with reference to a threshold 

value,  𝜂 which is selected as a function of maximum PSD value 𝛾 𝑚𝑎𝑥 , i.e., 

𝜂 =   𝛾 𝑚𝑎𝑥 + 𝛽  (4) 

where  ∗  is the floor function. If 𝛾 𝑠  is normalized such that 𝛾 𝑚𝑎𝑥 = 0 dB then 𝜂 = 𝛽 dB, where 𝛽 is negative 

valued. Selection of 𝛽 plays a critical role in the performance of the proposed method. With reference to threshold 𝜂, 

the number of bands 𝑁𝐵  are computed. The process is illustrated in Figure 4 for a signal with 𝑁𝐵=4. The spectral 

support is calculated using the following equation 

Ϝ =   𝑎𝑖 , 𝑏𝑖 

𝑁𝐵

𝑖=1

 (5) 

𝛾 𝑠 𝑓 =
1

2𝑀 + 1
 𝛾  𝑓 + 𝑀 + 𝛾  𝑓 + 𝑀 − 1 + ⋯   + 𝛾 (𝑓 − 𝑀)       

 
(3) 
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where 𝑎𝑖  and 𝑏𝑖 represent the crossing points at the threshold 𝜂. Once the support F is found, the set K can be 

calculated using (6) as follows 

 𝑎𝑖𝐿𝑇  ≤  {𝑘𝑖 }  ≤   𝑏𝑖𝐿𝑇  (6) 

Where 1 ≤ 𝑖 ≤ 𝑁𝐵 and 𝑇 =
1

𝑓𝑛𝑦𝑞
.When all the  𝑘𝑖 sets are calculated for each band, the set of spectral indexes 

K is computed as 

𝐾 =    𝑘𝑖  

𝑁𝐵

𝑖=1

= {𝑘𝑟}𝑟=1
𝑞

 (7) 

The set K then is sent to the reconstruction stage to recover 𝑥 (𝑡), as shown in Figure 2. 

 

Performance of The Proposed Non-Uniform Detector:- 

In this section, we present some numerical results for our proposed non-uniform spectrum sensing block. For 

simulations, the wideband of interest is in the range of ℬ = [−300, 300] MHz, therefore, the Nyquist sampling rate is 

𝐹𝑁𝑦𝑞  = 600 MHz we consider a multiband signal with  𝑁𝐵 = 6 bands, each with a maximum bandwidth of b=10 

MHz. Therefore, the input signal is sparse in the frequency domain. For simplicity we consider the NB bands having 

the same amplitude. 16 QAM modulation scheme is used to transmitted the signal that is corrupted by the additive 

white Gaussian noise channel. 

 

Given 𝐹𝑚𝑎𝑥 = 300 MHz, it is desired to detect  𝑁𝐵 and K for the input signal which is sampled at a sub-Nyquist rate 

using the multicoset sampler. For the NUSS block 𝛽 is set equal to -3.5 dB. The performance of the proposed 

system is evaluated by computing the probability of correctly detecting the occupancy of signal and probability of 

false alarm in terms of  𝑁𝐵 and K as follows 

𝑃𝑑 𝑁𝐵 = Pr 𝑁𝐵
 = 𝑁𝐵  

𝑃𝑑 𝐾 = Pr 𝐾 = 𝐾  
(8) 

𝑃𝑓𝑎  𝑁𝐵 = Pr 𝑁𝐵
 > 𝑁𝐵  

𝑃𝑓𝑎  𝐾 = Pr  𝐾  >  𝐾   𝐾  ⊂  𝐾   
(9) 

 

Equation 9 gives the probability of false alarm (𝑃𝑓𝑎 ) where  𝐾  represents the cardinality of K. The subscripts 𝑁𝐵 

and K are used to distinguish the probabilities for the number of bands and the active cell set, respectively. We 

present both the 𝑃𝑑 𝐾  and 𝑃𝑑 𝑁𝐵   as the correct detection probability of the active cells and the probability of 

correct detection of  𝑁𝐵, see equations (8) and (9). We have performed 1000 iterations at various values of 𝛼 to 

compute 𝑃𝑑  and 𝑃𝑓𝑎 . Results in Figures (5-8) are plotted explicitly to show the performance of the NUSS block. 

Furthermore the results are compared with the energy detector. The results for energy detector are plotted for 

𝑃𝑓𝑎 =0.01 [13].  

 
Fig. 5:- 𝑷𝒅 𝑲  and 𝑷𝒅 𝑵𝑩  plotted against varying SNR for 𝜶= 0.4, 0.5, 0.6. 
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Fig. 6:-  𝑷𝒅 𝑲  and 𝑷𝒅 𝑵𝑩  plotted against varying 𝜶 for different SNR 

 
Fig. 7:- 𝑷𝒇𝒂 𝑲  and 𝑷𝒇𝒂 𝑵𝑩  plotted against varying SNR for 𝜶= 0.4, 0.5, 0.6. 

 
Fig. 8:- 𝑃𝑓𝑎  𝐾  and 𝑃𝑓𝑎  𝑁𝐵  plotted for varying 𝛼 at different SNR 

 

In Figure 5,  𝑃𝑑 𝐾  and 𝑃𝑑 𝑁𝐵  are plotted against varying SNR for 𝛼= 0.4, 0.5, 0.6. It is observed that for 𝛼= 0.4, at 

low SNR, i.e., below 0 dB 𝑃𝑑(𝐾) is low and 𝑃𝑑(𝐾) increases as SNR is increased reaching close to 1. 
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At 𝛼= 0.5, the performance is better after SNR= 2dB. With 𝛼= 0.6, even better performance is obtained, and the 

results are close to the energy detector. The common pattern observed here is that as SNR increases 𝑃𝑑  increases and 

saturates at a particular SNR value because of less noise and both 𝑃𝑑(𝑘)and 𝑃𝑑(𝑁𝐵 ) are close and follow the pattern 

mentioned above.  

 

In Figure 6 where  𝑃𝑑 𝐾  and 𝑃𝑑 𝑁𝐵  are plotted for various values of 𝛼. The proposed sensing model behaves poorly 

at 𝛼=0.3, but its performance improves at 𝛼=0.4. At 𝛼=0.5, our proposed sensing model detects with high 

probability, and it gets close to 1 for 𝛼=0.7. Figure 6 shows that the performance of the proposed sensing method 

depends on the number of non-uniform samples available at the NUSS block for detection. 

 

In figure 7, we plot 𝑃𝑓𝑎  𝑁𝐵  and 𝑃𝑓𝑎(𝐾) as a function of varying SNR. At low SNR, i.e., at -5dB the values of  

𝑃𝑓𝑎  𝑁𝐵  and 𝑃𝑓𝑎(𝐾) are high. Bur as SNR increases, 𝑃𝑓𝑎  𝑁𝐵   and 𝑃𝑓𝑎 (𝐾) drop quickly, becoming close to zero at 

SNR=1 dB. At 𝛼= 0.6, the performance of proposed method matches the performance of the energy detector for 

SNR above 1dB. 𝑃𝑓𝑎  𝑁𝐵  and 𝑃𝑓𝑎 (𝐾) also depends on the number of non-uniform samples available. This can be 

explained using Figure 8, where 𝑃𝑓𝑎  𝑁𝐵  and 𝑃𝑓𝑎 (𝐾) are plotted for various values for 𝛼. As 𝛼 increases from 0.3 to 

0.7, 𝑃𝑓𝑎  drops rapidly reaching close to zero due to the availability of more number of samples. It is observed that 

performance of the sensing model improves with increasing 𝛼. 

 

Empirical Evaluation of 𝜷:- 

As seen from the previous section, the threshold 𝜂 depends on 𝛽. This section provides the empirical evaluation 

of 𝛽. Optimum values of 𝛽 result in a higher difference between 𝑃𝑑  and 𝑃𝑓𝑎  given in equation (10). For simplicity of 

explanation, in this section, we only present results for detection of spectral indexes K. 

 
 

 
Fig. 9:- Normalized PSD estimate obtained from NUSS block 

 
(a) 𝛼 = 0.4 

Δ𝑃 = 𝑃𝑑 − 𝑃𝑓𝑎  (10) 
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(b) 𝛼 = 0.5 

 
(c) 𝛼 = 0.7 

Fig. 10:- Selection of optimal value of threshold 𝜂. 

 

Also, the PSD estimate obtained from the moving average filter of the NUSS block is normalized such that 𝛾 𝑚𝑎𝑥 =0 

dB and therefore from equation (4),  𝜂 = 𝛽.The signal parameters are the same as were in Section V. 1000 Monte-

Carlo iterations are performed to find β empirically 𝛽.  
 

Figure 9 shows the PSD estimate for 𝛼=0.4 and SNR=10dB. In figure 10, we have plotted Δ𝑃 against varying 𝛽 

values for 𝛼=0.4, 0.5 and 0.7 for three values of SNR, i.e., 0, 5, 10 dB. From Figure 10(a), we observe that for small  

𝛼=0.4, maximum values of Δ𝑃 occur between 𝛽 = -4.5 dB and 𝛽 = -3 dB but Δ𝑃 does not reach one because of the 

small number of samples available.  

 

In Figure 10(b), 𝛼=0.5, Δ𝑃 is higher compared to 𝛼=0.4 in Figure 10(a) also maximum Δ𝑃 is observed between 𝛽 = 

-5.5 dB and 𝛽 = -3 dB because of availability of more number of samples. In Figure 10(c), 𝛼=0.7 Δ𝑃 reaches even at 

low SNR due to the availability of more number of samples. Maximum Δ𝑃 is observed between 𝛽 = -6 dB and 𝛽 = -

3 dB at the cost of more number of samples also the reconstruction is less noisy.  

 

From the results in Figure 10, it is observed that 𝛽= -3.5 dB is within the optimal Δ𝑃 range for the three values of 𝛼 

and SNR considered which can be selected to establish a trade-off between 𝛼 and detection performance.Therefore, 

in this paper, we have selected 𝛽 = -3.5 dB which provides satisfactory results as was shown in the numerical results 

in Section V. 
 

Reconstruction Performance:- 
In this section, we analyze the impact of false detections of the proposed non-uniform sensing method on the 

reconstruction of 𝑥(𝑡) shown in Figure 2. The performance is analyzed in terms of the RMSE (Root Mean Squared 

Error) of the reconstructed time domain signal, i.e, 
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𝑅𝑀𝑆𝐸 =
 𝑥  𝑡 − 𝑥(𝑡) 2

 𝑥(𝑡) 2

 (11) 

The simulation parameters are the same as were in Section V, i.e., A multiband signal with ℬ = [-300 MHz, 300 

MHz] and the Nyquist sampling rate is 𝑓𝑚𝑎𝑥 =600 MHz and  𝑁𝐵=6. 

 

In Figure 11, RMSE is plotted against SNR values for α=0.3 and 0.4 for non-blind multicoset sampler and blind 

multicoset sampler. The non-blind multicoset sampler has perfect knowledge about the number of bands 𝑁𝐵 and 

spectral indexes K of the input signal while blind multicoset sampler uses the proposed NUSS block to estimate 𝑁𝐵 

and K. It is observed that for α = 0.3, the RMSE for blind multicoset sampler is very high compared to RMSE for 

the non-blind multicoset sampler. This is because of the high number of false detections provided by the NUSS 
block at α = 0.3. However for α = 0.4, the performance of the NUSS block improves for SNR values greater than 5 

dB, and it is observed that the RMSE for blind multicoset sampler matches that of the non-blind multicoset sampler. 

 

To summarize the performance of the proposed sensing method we have plotted RMSE against varying values of α 

for different SNR values in Figure 12. We can observe from RMSE curves that the performance of the proposed 

non-uniform sensing method is poor at α = 0.3 even at high SNR because of high𝑃𝑓𝑎 . Furthermore, as α increases 

RMSE reduces because more number of samples are available for reconstruction and 𝑃𝑑  is high. 

 

 
Fig. 11:- Comparison of blind and non-blind multicoset samplers in terms of RMSE plotted against various 

SNR values 

 
Fig. 12:- Comparison of the non-blind and blind multicoset sampler in terms of RMSE plotted against various 

values of α 

 

Conclusion:- 
In this paper, we have proposed a spectrum sensing technique based on non-uniform sub-Nyquist multicoset 

sampling. We have shown that the proposed sensing method shows high detection and low false alarm probabilities 
also the performance of the proposed method improves with the increase in the number of the non-uniform samples. 

Finally, the effect of false detection is shown using RMSE of the reconstructed time domain signal. 



ISSN: 2320-5407                                                                                      Int. J. Adv. Res. 4(8), 675-684 

684 
 

References:- 
1. S. Haykin, "Cognitive Radio: Brain-empowered wireless communications," IEEE Journal on Selected Areas in 

Commincations, vol. 23, no. 2, pp. 201-220, Feb 2005. 

2. Y. C. Lang, A. T. Hoang and R. Zhang Y. Zeng, "A review on Spectrum Sensing for Cognitive radio: 

challenges and solutions," EURASIP J. Adv. Signal process, vol. 2010, pp. 2:2-2:2, Jan 2010. 

3. Y. Wang, A. Pandharipande and G. Leus Y. Polo, "Compressive wideband spectrum sensing," IEEE 

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2337-2340, April 2009. 

4. Z.Tian and G. Giannakis, "Compressed sensing for wideband cognitive radios," IEEE ICASSP, vol. 4, pp. IV-

1357-IV-1360, April 2007. 

5. K. Haghighi, A. Owrang and M. Viberg M. Rashidi, "A wideband spectrum sensing method for cognitive radio 

using sub-nyquist sampling," Digital SignalProcessing Workshop and IEEE Signal Processing Education 

Workshop (DSP/SPE), pp. 30-35, Jan 2011. 

6. M. Rashidi, "Non- uniform sampling and reconstruction of multiband signals and its application in wideband 
spectrum sensing of cognitive radio," CoRR, vol. abs/1010.2518, 2010. 

7. M. Rashidi and Y. C. Eldar, "Blind multiband signal reconstruction: Compressed sensing for analog signals," 

IEEE Transactions on Signal Processing, vol. 57, no. 3, pp. 993-1009, Mar 2003. 

8. R. Venkataramani and Y. Bresler, "Optimal sub-nyquist sampling and reconstruction of multiband signals," 

IEEE Transactions on Signal Processing, vol. 49, no. 10, pp. 2301-2313, 2001. 

9. M. Mishali and Y. C. Eldar, "From theroy to practice: Sub-nyquist sampling of sparse wideband analog 

signals," IEEE Journal of Selected Topics in Signal Processing, vol. 4, no. 2, pp. 375-391, 2010. 

10. B. Aziz and D. Le Guennec S. Traore, "Dynamic single branch non-uniform smapler," International Conference 

on Digital Signal Processing (DSP 2013), Feb 2013. 

11. J. D. Scargle, "Studies in astronimical time series analysis II. statistical aspects of spectral analysis of unevely 

sampled data," Astrophysical Journal, vol. 263, pp. 835-853, 1982. 
12. Samba Traor´e, Amor Nafkha and Daniel Le Guennec Babar Aziz, "Spectrum Sensing for Cognitive Radio," 

IEEE Global Communications Conference, pp. 816-821, Dec 2014. 

13. K. Haghighi, A. Panahi nad M. Viberg M. Rashidi, "A nlls based sub-nyquist rate sectrum sensing for the 

wideband cognitive radio," IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks 

(DySPAN), pp. 545-551, May 2011. 


