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Order statistics deals with the properties and applications of random 

variables and their functions. In this study the distribution of order 

statistics for samples is derived and Taylor’s expansion technique is 

applied for the calculation of moments of the functions. The 

transformation of random variable X, i.e. h(X) has been computed in 

several ways as well and it is found that the variance of ln(X(m+1)) is 

negligible as compared to the variance of X(m+1). In this paper the 

probability distribution of ln(X(m+1)) is completely evaluated for large 

samples. 
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Introduction:- 
Order statistics is important to highlight significant properties of a sample, for instance its location, dispersion and 

skewness (Buitendag, 2014).Bairamov et al. (2001) investigated the finite sample and asymptotic distributions of the 

statistics based on order statistics as well as their use in statistical inference. The concept of order statistics is 

common in many areas as it makes use of data dealing with natural problems related to sciences and life sciences 

(David&Nagaraja, 2004; Menzel &Morganti, 2013; Balakrishnan, & Cohen,2014; Parrado-Gallardo et al., 2014; 

Lück& Wolf, 2016). 

 

Likewise, in empirical economic studies, the size of parameters across different populations is often compared to 

measure for instance relative growth rates between states, wage discriminations between firms and technical 

efficiencies amongst production units which involves handling of huge numbers of populations (Horrace, 2000; 

Kampelmann&Rycx, 2016; Grinza et al., 2018). In this process transformation of data is widely used to assist in the 

interpretation of data, to derive a pivot for the construction of confidence intervals, testing of hypotheses, for 

stabilizing the variance in an ANOVA set up, etc. (Gumbel, 2012). 

 

Box and Cox (1964) developed a transformation for transforming data to a normal model. Transformations have 

been used in applied sciences with success (Carrol and Ruppert,1988; Cohen, 2001; Lütkepohl & Xu, 2012). Chao et 

al. (2001) estimate the impact of data transformation on forecasting models by using Monte Carlo experiments. 

 

The transformations on the sample mean, X , have been frequently derived for a given probability distribution 

 ;xf , using Taylor’s expansion.  

 

If ~iX Binomial (1,p)  with       ;             
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Variance stabilizing transformation, i.e.    Ch  22  , where 2  is the variance of the given distribution and 

 h  is the derivative of h(x) at X= . This differential equation, with  Xhh  )(  when applied to Poisson 

probability function yields:  
n

XV
4

1
  such that  Xn2  has approximate normal distribution N(0,1/4).  

 

Taylor’s method has been used in the present paper for the approximate complex calculation of moments of the 

functions of order statistics,   iXh , for a random sample of size n, and Taylor’s expansion has been done around 

the median of the given distribution  ~  instead of the mathematical expectation (). 

 

Theory Of Transformation 

Suppose a probability distribution is given as  ;xf  and assume   iXh  is considered where 

     nXXX  . . . 21   are the ordered variables. Then  
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The higher powers of    ~iX  have been ignored. 

Thus, applying expectation on both the sides: 
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For the mathematical expectation of   iXh , we require   iXE , which would be calculated by the probability 

distribution of X(i) in a random sample size n, i.e. 
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For the variance of   iXh , we have  

 

            22
iii XhEXhEXhV  . 

 

To obtain    iXhE 2
, squaring both sides in the expansion of    iXh  using (3) and applying expectation we have  

                     }~~~{]~[~~]~[2~][
2222  hhhXEhhXEhXhE iii   
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   iXhV = )(medianCVar  

 

The model of    iXh  would be different for each X(i), in a given probability distribution. 

 

Example: 

 

Consider the exponential distribution: 

 

     Expxf   X>0  >0 

 

defining h(X(i)) as function of ln(X(i)) where X(i) for i=m is the median in a random sample of size n = 2m+1. Thus 

 1mX  is the median. The median of given exponential model is  
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The probability density function (pdf) of  1mX  by expression (5) provides   )( 1mXE : 
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The following tables give the computed values of    )( 1mXE  and   )( 1mXV  

 

The computed results of (median) of exponential distribution: 

 

 

Table 1:-The expected values of median  1mX  of exponential distribution: Median values of exponential 

distribution for different values of parameter λ. 

λ 0.5 1.0 1.5 2.0 2.5 

~  1.3862 0.6931 0.4621 0.3466 0.2773 

 

Table 2:-The expected values of median of exponential distribution for different values of sample size n and 

parameter λ. 

          

n m λ= 0.5 λ= 1.0 λ= 1.5 λ=2.0 λ= 2.5 

5 2 1.5666 0.7833 0.5222 0.3917 0.3133 

7 3 1.5190 0.7595 0.5063 0.3796 0.3038 

9 4 1.4913 0.7456 0.4971 0.3728 0.2983 

11 5 1.4731 0.7365 0.4910 0.3682 0.2946 

13 6 1.4602 0.7301 0.4867 0.3650 0.2920 

 

Table 3:-The variance values of median of exponential distribution for different values of sample size n and 

parameter λ. 

  1mXV  

n m λ= 0.5 λ= 1.0 λ= 1.5 λ=2.0 λ= 2.5 

5 2 0.8544 0.2136 0.0949 0.0534 0.0342 

7 3 0.6027 0.1507 0.0670 0.0377 0.0241 

9 4 0.4646 0.1162 0.0516 0.0290 0.0186 

11 5 0.3777 0.0944 0.0496 0.0236 0.0151 

13 6 0.3180 0.0795 0.0318 0.0199 0.0127 
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Now substituting these values in the expressions (4) and (6) to obtain the mean and variance of function of ln(x)  

The computed results of Log(median) of exponential distribution: 

 

Table 4:-The Log (median) values of exponential distribution for different values of parameter λ. 

λ 0.5 1.0 1.5 2.0 2.5 

)~ln(  0.3266 -0.3665 -0.7720 -1.0520 -1.2828 

 

The expected values of Log (median) of exponential distribution: 

Table 5:-The expected values of log (median) of exponential distribution for different values of sample size n and 

parameter λ. 

              

n m λ 0.5 λ 1.0 λ 1.5 λ 2.0 λ 2.5 

5 2 0.2676 -0.4255 -0.8310 -1.1187 -1.3418 

7 3 0.2835 -0.4059 -0.8152 -1.1028 -1.3260 

9 4 0.2926 -0.4005 -0.8060 -1.0937 -1.3168 

11 5 0.2986 -0.3946 -0.8000 -1.0877 -1.3109 

13 6 0.30276 -0.3938 -0.7958 -1.0835 -1.3067 

 

The variance values of Log (median) of exponential distribution: 

Table 6: The variance values of log (median) of exponential distribution for different values of sample size n and 

parameter λ. 

              

n m λ 0.5 λ 1.0 λ 1.5 λ 2.0 λ 2.5 

5 2 0.4060 0.4060 0.4060 0.4056 0.4060 

7 3 0.2927 0.2927 0.2927 0.2927 0.2927 

9 4 0.2287 0.2287 0.2287 0.2287 0.2287 

11 5 0.1876 0.1876 0.1876 0.1876 0.1876 

13 6 0.1590 0.1590 0.1590 0.1590 0.1590 

 

Simulation: To confirm the results, we performed a simulation study (100 replications) for samples of size n=5, 

7,9,11 and 13. The samples were generated from the exponential distribution    /1 xExpxF  , x> 0 with  = 

0.5, 1.0,1.5,2.0 and 2.5. The results are given in following tables. The simulations are produced by using software 

package Minitab (Ryan& Joiner, 1994). 

 

Table 7:-Simulated values of E[x(m+1)] and V[x(m+1)] for different values of parameter λ. 

E[x(m+1)] and V[x(m+1)] 

n m λ = 0.5 λ = 1.0 λ = 1.5 λ= 2.0 λ= 2.5 

5 2 1.4491 

(0.7646) 

0.7289 

(0.2191) 

0.5679 

(0.1141) 

0.4250 

(0.0754) 

0.3089 

(0.0339) 

7 3 1.4727 

(0.5477) 

0.7524 

(0.1407) 

0.5485 

(0.1266) 

0.3592 

(0.0347) 

0.2946 

(0.0281) 

9 4 1.4972 

(0.5257) 

0.7644 

(0.1035) 

0.5245 

(0.0723) 

0.4084 

(0.0278) 

0.3141 

(0.0281) 

11 5 1.4832 

(0.4413) 

0.7253 

(0.1143) 

0.4728 

(0.0384) 

0.3686 

(0.0352) 

0.2921 

(0.0199) 

13 6 1.4891 

(0.4382) 

0.7587 

(0.0958) 

0.5132 

(0.0542) 

0.3572 

(0.0158) 

0.2889 

(0.0103) 

 

Table 8:-Simulated values of E[Log(x(m+1))] and V[Log(x(m+1))] for different values of parameter λ. 

n m λ = 0.5 λ = 1.0 λ = 1.5 λ= 2.0 λ= 2.5 

5 2 0.1733 

(.4420) 

-.5022 

(0.3951) 

-0.7484 

(0.4060) 

-0.0315 

(0.3957) 

-1.3555 

(0.4040) 

7 3 0.2600 -0.4051 -0.7905 -1.1555 -1.3902 
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(.2870) (0.2747) (0.3009) (0.2996) (0.3043) 

9 4 0.2829 

(0.2565) 

-0.3649 

(0.2436) 

-0.7913 

(0.2544) 

-0.9821 

(0.2994) 

-1.3127 

(0.2434) 

11 5 -1.2149 

(0.1931) 

-0.4187 

(0.1982) 

-0.8308 

(0.1900) 

-1.1169 

(0.2060) 

-1.3402 

(0.2068) 

13 6 0.3097 

(0.1772) 

-0.3615 

(0.1807) 

-0.7680 

(0.2090) 

-1.0938 

(0.1873) 

-1.2999 

(0.1797) 

 

Conclusion:- 
The transformations of random variable X, i.e. h(X) have been used in several ways. Employing order statistics, it is 

seen that the variance of ln(X(m+1)) is very small compared to the variance of X(m+1). The reduction of variance 

increases the precision of the observations. In the present case ln(X(m+1)) would be asymptotically normally 

distributed, as it is known that X(m+1) is asymptotically normal. Thus, the probability distribution of ln(X(m+1)) is 

completely evaluated for large samples. 
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