
ISSN 2320-5407                          International Journal of Advanced Research (2014), Volume 2, Issue 10, 849-860 
 

849 

 

                                                   Journal homepage: http://www.journalijar.com                 INTERNATIONAL JOURNAL 

                                                                                                                       OF ADVANCED RESEARCH 

                                                                                                                               

RESEARCH ARTICLE 

 

Comparative Studies of Response Surface Methodology (RSM) and Artificial Neural 
Network (ANN) Predictive Capabilities on Enzymatic Hydrolysis Optimization of Sweet 

Potato Starch 
 

Adesina Olusola
1
*, Okewale Akindele

2
, Olalekan Abiodun

1 

1. Department of Chemical Engineering, Landmark University, Omu-Aran 

2. Department of Chemical Engineering, Federal University of Petroleum Resources, Effurun 

  

Manuscript Info                    Abstract  

 
Manuscript History: 
 

Received: 25 August 2014 

Final Accepted: 29 September 2014 

Published Online: October 2014                                          

 
Key words:  
 

Enzymes,Sweetpotato, Response 

Surface Methodology, Artificial 

Neural Network, Generic 

Algorithm, Optimization 
 

*Corresponding Author 

 

 

Adesina Olusola 

The modeling and optimization efficiencies of artificial neural network 

(ANN) and response surface methodology (RSM) in a two-step enzymatic 

hydrolysis of sweet potato was investigated in this study. Optimization of the 

process was carried out using RSM and generic algorithm (GA) of ANN 

which were then compared. The optimum reducing sugar yields predicted 

were 190.034 g/l and 244.6 g/l for liquefaction and saccharification, 

respectively. These compared well to ANN validated yield of 190.877 g/l 

and 244.68 g/l for liquefaction and saccharification, respectively. The ANN 

model R
2
 were 0.99998 and 0.99933 for both steps, respectively while 0.987 

and 0.996 were obtained for both steps using RSM model. Also RMSE for 

ANN were found to be 0.1664 and 0.37922 while values for RSM were 3.19 

and 0.58 for both steps. This showed that ANN had a higher predictive 

ability and was a better optimization tool than RSM on the hydrolysis of 

starch. 

. 
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Introduction 
The world production of sweet potato tuber was 104.6 x 10

9
 kg in 2008. China was the largest producer 

with an annual production of 78.8 x 10
9
 kg followed by Nigeria (3.3 x 10

9
 kg) having the largest output in Africa 

(FAO, 2008). In developing countries such as Nigeria, million tons of the tubers produced annually are being wasted 

due to lack of appropriate storage facilities. In solving the problem of wastage, value addition to these tubers to 

produce other useful products is imperative (Betiku and Adesina, 2013a). Sweet potato root is rich in starch which is 

composed of amylose and amylopectin. There are two commonest methods of hydrolysis of starch, first is the acid 

hydrolysis, which involves the use of dilute acid to hydrolyze the starch component. However, acid hydrolysis has 

some demerits as it requires the use of corrosion resistant materials, it also gives rise to coloured and saltish content. 

It needs more energy for heating and it is relatively difficult to control. It also gives a solution that needs to be 

neutralized before its use for fermentation purpose (Chaplin and Bucke, 1990). Acid hydrolysis is being largely 

replaced by enzymatic hydrolysis. In enzymatic hydrolysis, alpha-amylase (E.C.3.2.1.1) hydrolyzes starch by 

randomly cleaving the internal alpha-1,4glucosidic bonds while glucoamylases (E.C.3.2.1.3) are also able to 

hydrolyze the 1,6-linkages at the branching points of amylopectin which is then finally broken down into glucose. 

The obtained sugar syrups are employed by the food industry to make sweets, drinks, juices and products such as 

citric acid, gluconic acid and ethanol. It equally finds uses in paper and textile industry (Pandey, et al., 2000; Arzhar 

and Hamdy, 1981a). 

Modelling and optimization has been noted to be the most important stages in biological process, this is 

because it leads to system improvement and increases the efficiency of the process without increasing the cost (Bas 

and Boyhaci, 2007). The classical unifactorial method of optimization is not only time-consuming and tedious but 

also does not depict the complete effects of the parameters in the process and ignores the combined interactions 
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between the physicochemical parameters (Ebrahimpour et al., 2008; Desai et al., 2008). This method can also lead to 

misinterpretation of results (Bas and Boyhaci, 2005; Fattah et al., 2005) and it seldom guarantees the determination 

of optimal conditions (Survase et al., 2006). These limitations of a single factor optimization process can be 

overcome by using empirical methods which are statistical-based approach and artificial intelligence-based black 

box based approach (Desai et al., 2008). 

Response Surface Methodology (RSM) as a good example of Statistical-based approach is a comprehensive 

experimental design and mathematical modeling, through the partial regression fitting of the experimental factors 

(Wang et al., 2011). It has the advantage of reducing the number of experimental runs needed to give adequate 

information for statistically acceptable results. Many authors have reported on the use of RSM model for various 

biological media, such as citric acid (Imandi et al., 2008; Betiku and Adesina, 2013b), ethanol (Wang et al., 2011), 

Scleroglucan (Desai et al., 2008) and thermostable lipase (Ebrahimpour et al., 2008). Generally RSM model assesses 

the relationships between the response(s) and the independent variables (Chen et al., 2002), and defines the effect of 

the independent variables, alone or in combination, in processes (Ebrahimpour et al., 2008).  

Artificial neural network (ANN) is a highly simplified model of the structure of a biological network (Bas 

and Boyhaci, 2007). The fundamental processing element of ANN is an artificial neuron which receives inputs from 

other sources, combines them, generally performs a non-linear operation on the result, and then outputs the final 

result (Manshar and Diyakar, 2005). The ability of the ANNs to recognize and reproduce the cause-effect 

relationships through training for the multiple input-output systems makes them more efficient to represent even the 

most complex systems (Pareck et al., 2002). It has emerged as an attractive tool for non-linear multivariate modeling 

(Desai et al., 2004). It has also become the most popular artificial learning tool in biotechnology with a wide 

application range, including optimization of bioprocesses (Manshar and Diyakar, 2005). The power of ANN is that it 

is generic in structure and possesses the ability to learn from historical data. Advantages of ANN compared to RSM 

are: (i) ANN does not require a prior specification of suitable fitting function and (ii) ANN has universal 

approximation capability, i.e. it can approximate almost all kinds of non-linear functions including quadratic 

functions.(Desai et al., 2008). 

Generic Algorithms(GAs) (Davis, 1991; Goldberg, 1989) is an artificial intelligence-based stochastic non-

linear optimization formalism, which is used to optimize the input space of ANN model. This hybrid methodology is 

called ANN-GA. The GA makes use of principles of biological evolution namely, “survival-of-the-fittest” and 

“random exchange of data during propagation” followed by biologically evolving species. GA has been proved to be 

an ideal technique to solve diverse optimization problems in biochemical engineering (Sarkar and Modak, 2003; 

Nandi et al., 2002). Desai et al. (2008) compared the predictive capabilities of RSM and ANN on the fermentative 

production of scleroglucan while Ebrahimpour et al., (2008) worked on thermostable lipase production, but 

apparently, no existing report on such comparative analysis could be found on enzymatic hydrolysis of starchy 

materials.  

The Objective of our work was  modelling of enzymatic hydrolysis of starch using two empirical methods 

of ANN and RSM, optimization of the process variable as it affects hydrolysis of starch, comparison of prediction 

capability and optimization efficiencies of the methods.  

  

     

Material and Methods 
Sweet Potato Starch Preparation  

Sweet potato tubers were obtained from a local market in Nigeria. The tubers were washed, peeled and milled with 

water. The slurry of sweet potato was mixed with water and later filtered with teflon cloth after which the filtrate 

was sun-dried and packed into container. 

 

Enzymes 

Enzymes used for the study were alpha-amylase (E.C.3.2.1.1) from bacterium source (Bacillus licheniformis) and 

glucoamylase(E.C.3.2.1.3) from Aspergillusniger. They were both obtained from the Federal Institute of Industrial 

Research (FIIRO), Oshodi, Lagos, Nigeria. 

Starch hydrolysis and Enzymatic Studies 

25 % w/v slurry of sweet potato starch was made with water containing 40ppm Ca
2+

. Ca
2+ 

increases the activity of 

enzyme in the medium. The pH was adjusted to 6.5 with citrate-phosphate buffer. The slurried starch was 

gelatinized by heating the mixture to 100ºC for 20 min afterward, α-amylase (6.4 units/ml) was added according to 

BBD in Table 1 for liquefaction to take place. Enzyme activities were stopped by heating the mixture to boil and 

final mixtures were centrifuged at 12,000 rpm for 15 min. The supernatants were then analyzed for reducing sugar. 
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After the optimum condition for liquefaction had been established, it was then later subjected saccharification by 

addition of glucoamylase (789.6 units/ml) at pH of 4.5 according to BBD in Table 2.  

 

Table 1: Coding of experiment factor and levels for liquefaction  

Variable Symbol Coded variable levels 

    -1 0 +1 

Temperature (
o
C) X1 55 60 65 

 Time (min) X2 55 60 65 

Enzyme dose (v/v) X3 0.5 0.75 1.0 

 

Table 2: Coding of experiment factor and levels for saccharification 

Variable Symbol Coded variable levels 

    -1 0 +1 

Temperature (
o
C) X1 40 50 60 

 Time (min) X2 20 40 60 

Enzyme dose (v/v) X3 0.5 0.75 1.0 

 

Analysis 

Reducing sugar estimation 

The reducing sugar produced from sweet potato starch was determined using dinitrosalicylic acid (DNS) method of 

Miller (1959). The procedure involves addition of 3 ml of the DNS to 1 ml of the supernatant in the test tube which 

was boiled for 15 min, cooled and diluted with water. Absorbance were later measured at a wavelength of 540 nm 

against blank using the UV-Visible Spectrophotometer (Libra 21 Model, UK) after which glucose calibration curve 

had been prepared.  

 

Modelling and Optimization  

RSM experimental design 

The Design-Expert 8.03 software was used to generate the experimental runs and modeling of the experimental data. 

A total of 17 experimental runs were generated for each step of hydrolysis using BBD for each step of the 

hydrolysis. The same experimental design was used for both RSM and ANN analysis. The variables considered for 

both the liquefaction and saccharification steps of hydrolysis were temperature (X1), time (X2) and enzyme dose 

(X3). The coded independent variables levels for both liquefaction and saccharification steps are shown in Table 1 

and Table 2, respectively.  

 

Optimization 

Response surface methodology (RSM) was used to optimize the quadratic model. The generalized response surface 

model for describing the variation in response variable is given as equation (1) 

𝑌 =  𝛽0 +   𝛽𝑖𝑋𝑖
𝑘
𝑖=1 +  𝛽𝑖𝑖𝑋𝑖

2 +  𝛽𝑖𝑗𝑋𝑖𝑋𝑗 +  𝜀 𝑖<𝑗
𝑘
𝑖=1      (1) 

whereY is the predicted response by RSM, i and j are the linear and quadratic coefficients, respectively, β is the 

regression coefficient, k is the number of factors studied and optimized in the experiment, and ε represents the 

random error (Ghorbania, 2008). 

 

Artificial neural network analysis 

A commercial ANN software, NeuralPower version 2.5 (CPC-X Software) was employed in the study. The data 

were tested with multilayer normal feed forward and multilayer full feed forward neural networks. The networks 

were trained with different learning algorithms (incremental back propagation, IBP; batch back propagation, BBP; 

quickprop, QP; Levenberg-Marquardt algorithm, LM and Generic algorithm GA). The network architecture 

consisted of an input layer with three neurons, an output layer with one neuron, and 2 hidden layers. The inputs for 

the network included temperature, time and enzyme dose, while the output was the reducing sugar concentration. In 

order to determine the optimal number of nodes for ANN hydrolysis network, a series of topologies were used, in 

which the number of nodes were varied (Mansour and Mostafa, 2011). The transfer functions of hidden and output 

layers (sigmoid, hyperbolic tangent function, Gaussian, linear, threshold linear and bipolar linear) were iteratively 

determined by developing several networks. The ANN was trained using a default stopping criteria of 100000 

(Betiku and Ajala, 2014). Experimental data was divided into training and testing data sets. Fourteen experimental 

data were used for training while three were used for testing for both each stage of hydrolysis.  
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Data verification 

Decision on the optimum topology was based on the minimum error of testing (Mansour and Mostafa, 2011) and the 

maximum coefficient of determination (R
2
) and each topology was repeated ten times. In quest for optimum 

condition, each network was trained until the network root of mean square error (RMSE) is near zero and coefficient 

of determination (R
2
) is close to 1. RSME and R

2 
are calculated by Eqs. (2) and (3) respectively. 

 

RMSE = (1

𝑛
 (𝑦𝑖 − 𝑦𝑑𝑖 )
𝑛
𝑖=1

2
)
1/2 

       

 (2) 

R
2
 = 1- 

 (𝑦𝑖−𝑦𝑑𝑖 )𝑛
𝑖=1

2

 (𝑦𝑖−𝑦𝑚 )𝑛
𝑖=1

2    (3) 

 

wheren is the number of points, 𝑦𝑖 is the predicted value, 𝑦𝑑𝑖  is the actual value, and 𝑦𝑚 is the average of the actual 

values. (Mansour and Monstafa, 2011) 

 Other parameters for the network were chosen as the default values of the used software. At the start of the training, 

weights were initialized with random values and adjusted through a training process in order to minimize network 

error (Basri et.al, 2007). 

 

Result and Discussion  
RSM Modeling and Optimization 

A quadratic model was used to describe both steps of hydrolysis stages of sweet potato starch. Results of the 

analysis of variance (Tables 3 and 4) show the F-value of 11909.01 and 2183.31 for liquefaction and 

saccharification, respectively with (p < 0.0001). This indicates that the model obtained is significant. The data 

obtained fit well to a quadratic model and it exhibits low standard deviation (Betiku and Adesina, 2013a). It has high 

coefficient of determination (R
2
) of 0.987 and 0.996 for the liquefaction and saccharification, respectively. This 

demonstrates that the model proves adequate for the representation of the actual relationship among the selected 

factors (Betiku and Adesina, 2013b). The p-values were used as a tool to check the significance of each of the 

coefficients, which in turn, are necessary to understand the pattern of the mutual interactions between the test 

variables (Ebrahimpour et al., 2008). In the case of liquefaction step of the hydrolysis, p < 0.05 for each of  the three 

linear terms (X1, X2, X3), three cross-products (X1X2, X2X3,X1X3) and the three quadratic terms (X1

2

,  X2

2

 and X3

2

), 

these indicated that the model terms were significant. For the saccharification step, the results showed that the two 

linear terms ( X1, X3), three cross products (X1X2, X1X3, X2X3) and the three quadratic terms (X1

2

, X2

2

 and X3

2

) 

weresignificant model terms at 95% confidence level , i.e p < 0.05, also the interaction between X1 X2, X1 X3, and 

X2, X3were remarkably significant model terms at 95% confidence level. Therefore, the quadratic model obtained in 

this study for both liquefaction and saccharification stages of hydrolysis are represented in Eq.4 and 5, respectively. 

The final equation in terms of coded factors for the BBD response surface quadratic model is expressed in Y 

(reducing sugar concentration in g/l). 

 

𝑌 = 111.79− 10.22𝑋1 + 23.43𝑋2 + 26.25𝑋3 − 0.58𝑋1𝑋2 − 9.03𝑋1𝑋3 + 13.86𝑋2𝑋3 + 2.61𝑋1
2 + 2.41𝑋2

2 +
1.88𝑋3

2       ……(4) 

 

𝑌 = 210.41 + 1.71𝑋1 + 9.88𝑋2 + 4.13𝑋3 + 3.32𝑋2 − 2.75𝑋1𝑋3 + 9.77𝑋2𝑋3 − 9.24𝑋1
2 + 10.1

− 2.83𝑋3
2                                                                                                         .… (5) 

 

The optimization tool of RSM was used to optimize the reducing sugar yield of both steps of the hydrolysis. The 

optimum conditions predicted for the liquefaction were: temperature (64.9 
o
C), time (58 min) and enzyme dose (1% 

v/v) and corresponding to a predicted response of 190.034 g/l of reducing sugar concentration. This was validated as 

average yield of 189.03 g/l with four replicates. In the case of saccharification step, the optimum conditions 

predicted were temperature (42.84 
o
C), time (59 min), and enzyme dose (0.999 % v/v), while the response value was 

242.95 % . It was also validated as 243.6 g/l with four replicates. This confirmed the efficacy of the quadratic 

mathematical model used for the hydrolysis (Betiku and Ajala, 2014). 

 

ANN Modeling 

The neural network architectures and topologies of ANN were selected and tested for estimation and prediction of 

reducing sugar yield of hydrolysis of sweet potato starch (Betiku and Ajala, 2014). The effect of learning algorithm 

and transfer function were studied by successful training of neural network model employing the different learning 



ISSN 2320-5407                          International Journal of Advanced Research (2014), Volume 2, Issue 10, 849-860 
 

853 

 

algorithms and transfer functions of ANN (Ebrahimpour et al., 2008). After a series of testing it was found that 

quick propagation (QP) was the best algorithm with hyperbolic tangent function as hidden and sigmoid transfer 

functions for output layer for liquefaction stage, while in the case of saccharification stage the best algorithm was 

tahn as hidden and output transfer functions. Various topologies (from 1 to 20 hidden neurons) were also examined 

using QP algorithm. After repeated trials, it was found that a network with 16 hidden neurons produced the best 

performance for liquefaction step of hydrolysis and 15 hidden neurons for saccharification step of hydrolysis as 

depicted inFigure 1(a-b) whichillustrates the performance of the network for testing data versus the number of 

neurons in the hidden layer. ANN optimum configuration was achieved using multilayer normal feed forward quick 

prop network, the configuration model was 3-16-1 and 3-15-1 for liquefaction and saccharification, respectively. 

Also the best ANN model was observed to be Multilayer Normal Feed Forward (MNFF) with R
2 

and RSME for 

training set as 0.99998 and 0.1664, respectively while for testing set are 0.9993 and 0.1764, respectively for 

liquefaction. For saccharification, R
2 

and RSME for training set were 0.99947 and 0.37922, respectively while 

corresponding value for testing set were 0.9979 and 0.3924, respectively (Table 5a-b). Figure 2(a-c) and Figure 3(a-

c) depict the surface plots for the hydrolysis of sweet potato starch. The curvature nature of the curves showed that 

there was an interaction between the response and the individual variables, in the case of liquefaction stage of the 

hydrolysis, it showed an increase in reducing sugar as the temperature increased until 60.3 
o
C mark, after which 

subsequent increase in the temperature led to reverse in trend. However on the effect of enzyme dosage, increase in 

enzyme dosage within the investigated value showed increase in the yield of reducing sugar. Meanwhile as the 

contact time increases, a maximum in yield of reducing sugar at time 61.7 min was observed. In the case of 

saccharification stage, an increase in reducing sugar was observed within the first 26 min, this was followed a 

sudden decrease, which however picked up subsequently. More so, increase in enzyme dosage increased the yield of 

reducing sugar linearly. On temperature effect, maximum yield was observed at 40.7 
o
C mark after which there was 

a decline in the yield of the reducing sugar. Figures 4(a-b) depict the importance of the level of the variables 

considered on the yield of reducing sugar. For both stages of hydrolysis, temperature was the most important 

variable, this was followed by enzyme dosage and time, being the least 

 

Table 3: Analysis of Variance of Regression Equation for Liquefaction 

  Sum of   Mean F- p-value 

 Source Squares df Square Value 

  Model 11909.01 9 1323.22 10577.56 < 0.0001 

 

  X1 

835.18

  1 835.18 6676.24 < 0.0001 

   X2 4390.78 1 4390.78 35098.98 < 0.0001 

   X3 5511.45 1 5511.45 44057.36 < 0.0001 

   X1X2 1.33 1 1.33 10.66 0.0138 

   X1X3 325.98 1 325.98 2605.84 < 0.0001 

   X2X3 768.68 1 768.68 6144.63 < 0.0001 

   X1
2
 28.58 1 28.58 228.45 < 0.0001 

 

  X2
2
 24.36 1 24.36 

194.72

  < 0.0001 

   X3
2
 14.89 1 14.89 118.99 < 0.0001 

 Residual 0.88 7 0.13     

 Lack of Fit 0.43 3 0.14 1.30 0.3898 

 Pure Error 0.44 4 3.19     

 Cor Total 11909.88 16       

  

Table 4: Analysis of Variance of Regression Equation for Saccharification 

  Sum of   Mean F- p-value 

 Source Squares Df Squares Value 

  Model 2183.31 9 242.59 517.35 < 0.0001 

   X1 23.46 1 23.46 50.03 0.0002 
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  X2 81.51 1 781.51 1666.64 < 0.0001 

   X3 136.37 1 136.37 290.83 < 0.0001 

   X1X2 44.22 1 44.22 94.31 < 0.0001 

   X1X3 30.25 1 30.25 64.51 < 0.0001 

   X2X3 381.62 1 381.62 813.83 < 0.0001 

   X1
2
 359.15 1 359.15 765.93 < 0.0001 

   X2
2
 433.5 1 433.5 924.48 < 0.0001 

   X3
2
 33.68 1 33.68 71.83 < 0.0001 

 Residual 3.28 7 0.47 
  

 Lack of Fit 0.98 3 0.33 0.57 0.6646 

 Pure Error 2.30 4 0.58     

 Cor Total 2186.60 16 
     

  

 

 

 
Figure 1(a-b):Performance of the network for testing data versus the number of neurons in the hidden layer. a. 

Liquefaction  b. Saccharification 

 

Figure 2(a-c): Surface plots for liquefaction of sweet potato starch. 

a. effect of enzyme dose, temperature and their reciprocal interaction on glucose yield 

b. effect of enzyme dose, time and their reciprocal interaction on glucose yield.  

c. effect of time, temperature and their reciprocal interaction on glucose yield 
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Figure 3(a-c): Surface plots for Saccharification of sweet potato starch. 

a. effect of enzyme dose, temperature and their reciprocal interaction on glucose yield 

b. effect of enzyme dose, time and their reciprocal interaction on glucose yield.  

c. effect of time, temperature and their reciprocal interaction on glucose yield 

 

 

Figure 4a: level of Importance of process variable on the yield of reducing sugar for liquefaction 

A: Temperature 

B: Time 

C: Enzyme dosage 

 

Figure 4b: level of Importance of process variable on the yield of reducing sugar for saccharification 

A: Temperature 

B: Time 

C: Enzyme dosage 

 

 

Table 5a: Effect of ANN architecture and topologies on R
2
 and RSME obtained in training and testing data set for 

liquefaction 

Configuration Algorithm Model Output 

transfer 

function 

Input 

transfer 

function 

Training 

set R
2
 

Testing 

set R
2
 

Training 

set 

RSME 

Testing 

set RSME 

3-16-1 QP MNFF Tanh Sigmoid 0.99998 0.9993 0.1664 0.1764 

3-16-1 QP MNFF Tanh Linear  0.9274 0.9019 0.3520 0.4921 

3-16-1 BBP MNFF Linear Sigmoid 0.9937 0.9919 0.4978 0.5432 

3-16-1 IBP MNFF Tanh Linear 0.95841 0.9184 0.60673 0.7334 

3-15-1 QP MNFF Tanh Gaussian  0.91902 0.9097 0.6002 0.6231 

 

Table 5b: Effect of ANN architecture and topologies on R
2
 and RSME obtained in training and testing data set for 

saccharification. 

Configuration Algorithm Model Output 

transfer 

function 

Input 

transfer 

function 

Training 

set R
2
 

Testing 

set R
2
 

Training 

set 

RSME 

Testing 

set RSME 

3-15-1 QP MNFF Tanh Tanh 0.99947 0.9979 0.37922 0.3924 

3-15-1 QP MNFF Tanh Linear  0.9294 0.9099 1.4720 1.5231 

3-15-1 BBP MNFF Linear Sigmoid 0.99909 0.9989 0.4978 0.5432 

3-15-1 IBP MNFF Tanh Linear 0.87841 0.8284 1.6173 1.7345 

3-15-1 QP MNFF Tanh Gaussian  0.99902 0.9917 0.3902 0.4231 
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Optimization using ANN-GA 

The input vector comprising of input variables (temperature, time and enzyme dosage) was optimized using GA. For 

liquefaction, ANN-GA predicted reducing sugar yield of 190.034 g/l at optimized conditions of temperature 64.9 
o
C, 

time 57.5 min and enzyme dosage of 0.99 % v/v, the predicted yield was validated in triplicate as 190.877 g/l. In the 

case of saccharification, 244.6 g/l was predicted at optimum conditions of   temperature, 42.8 
o
C, time, 59.99 min 

and enzyme dosage of 0.99 % v/v, which was validated as 244.68 g/l of reducing sugar concentration. 

ANN and RSM Comparison 

Tables 6 and 7 showed Box-Behnken design (BBD) of the process variables and the experimental, predicted 

responses for RSM model and ANN model for liquefaction and Saccharification, respectively. In comparing values 

predicted by both models, it was observed that ANN model predictions are more accurate than RSM. This confirmed 

the superiority in prediction capability of ANN over RSM. Also in comparing the R
2 

and RSME for both models, R
2 

and RSME for ANN model were 0.99998 and 0.1664, respectively for liquefaction while that of RSM model were 

0.987 and 3.19, respectively. In the case of saccharification, R
2 

and RSME for ANN were 0.99947 and 0.37922 

while that of RSM model were 0.996 and 0.58, respectively. This further showed that ANN was more accurate in 

data fitting than RSM as it is shown in Figures 5 and 6. 

 

Conclusion. 

This work focused on comparison of ANN and RSM models for their predictive capability and optimization 

efficiency in starch hydrolysis. A box Behnken design was used to design the experiment, ANN showed higher 

accuracy in finding optimum condition and predicting yield. Thus, artificial intelligence-based method performed 

better than RSM for data fitting, optimization and estimation capabilities.  
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Table 6: Box-Behnken design of three variables and the experimentally determined, RSM model predicted and ANN 

model predicted for liquefaction. 

  

Std run X1 

(deg) 

X2 

(min) 

X3 

(v/v)% 

Experimental 

value 

      RSM 

  Predicted           

ANN 

Predicted 

 

1 -1 -1 0 103.00 103.03     103  

2 1 -1 0 83.48 83.50     83.48  

3 -1 1 0 150.92 150.93    150.92  

4 1 1 0 129.45 129.43    127.45  

5 1 0 -1 91.50 91.28      91.5  

6 1 0 -1 89.00 88.81       89  

7 -1 0 1 161.61 161.81     161.61  

8 1 0 1 123.00 123.23         123  

9 0 -1 -1 80.00 80.20             80  

10 0 1` -1 99.22 99.44     99.22  

11 0 -1 1 105.21 104.99           105.21  

12 0 1 1 179.80 179.60   179.80  

13 0 0 0 112.00 111.79    111.79  

14 0 0 0 111.43 111.79     111.79  

15 0 0 0 112.10 111.79    111.79  

16 0 0 0 111.43 111.79    111.79  

17 0 0 0 112.00 111.79    111.79  
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Table 7: Box-Behnken design of three variables and the experimentally determined, RSM model predicted and ANN 

model predicted for Saccharification. 

 

Std. Run X1        (deg) X2   

 (min) 

X3        %(v/v) Experimental 

value 

      RSM 

Predicted           

ANN Predicted 

1 -1 -1 0 203.3 203.05 203.3 

2 1 -1 0 200 199.83 200 

3 -1 1 0 216 216.17 216 

4 1 1 0 226 226.25 226 

5 -1 0 -1 190 189.76 190 

6 1 0 -1 199 198.68 199 

7 -1 0 1 203.2 203.52 203.2 

8 1 0 1 201.2 201.44 201.2 

9 0 -1 -1 213 213.49 213 

10 0 1 -1 213.65 213.72 213.65 

11 0 -1 1 202.28 202.21 202.28 

12 0 1 1 242 241.51 242 

13 0 0 0 211 210.41 210.41 

14 0 0 0 209.52 210.41 210.41 

15 0 0 0 209.65 210.41 210.41 

16 0 0 0 210.95 210.41 210.41 

17 0 0 0 210.95 210.41 210.41 

 

 
Figure 5(a):ANN model predicted yield versus experimental yield for liquefaction 
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             (b):RSM model predicted yield versus experimental yield for liquefaction 

 

 
Figure 6(a):ANN model predicted yield versus experimental yield for Saccharification 

(b): RSM predicted yield versus experimental yield for Saccharification 

.  
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