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Introduction:-

Banach Fixed Point theorem also called contraction mapping principle or contraction mapping theorem [5]. In
metric space gives guarantees the existence and uniqueness of fixed point of some self-mappings of metric space
providing constructive method stated by Stephan Banach in 1922. In recent years lot of work have been done in non-
linear analysis, the study of non-contraction mapping with the existence of fixed point take attention of some authors
in non-linear analysis with the details of existence of a fixed point and also the non-expansive mapping.

Random fixed point theorems in abstract space are useful in the study of non-linear random equations for proving
the existence and uniqueness of theorems. It’s well known that a physical problems the differential and integral
equations are generally non-linear, so Banach contraction principle [7] provides a powerful tool for getting the
solution of their equation. Many problems of analysis and applied mathematics are used to find the solutions of non-
linear functional equations which can be formulated in terms of finding the fixed points of a non-linear mapping.

Preliminaries:-

We recall some definitions and properties of normed linear space.

Definition 2.1 A set X of elements is called a vector space or linear space or Linear Vector Space over the real’s if
we have a function + on X x X to X and a function dot (-) on R x X to X that satisfy the following conditions

e X+Yy=Yy+X

e (X+y)+z=x+(y+x)

e Thereexist @ € X suchthat X+& =X forall Xxe X .

e A(X+Yy)=AXx+Ay, 1eR, x,yeR.

o Ax)=(M)Xx, L, ueR,xeX.

e 0x=6,1x=Xx.

Here we call ‘+ addition and -’ scalar multiplication and @ is unique.
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Definition 2.2 Let X be a vector space over the real or complex number, A mapping |||| : X = R" iscalled a norm
provided that the following conditions are satisfied following conditions
1 |[x|=0<x=0

2 e yl<d+ly]
3. Jlex| =lel]
If X is a vector space and |||| is a norm on X then the pair(X,”.”) is called norms vector space. We called X is a

metric space if X is a vector space and |||| is norm on X and we define metric d by d (X, y) = ||X - y|| forall x, y in

X.
If a normed vector space is complete in this metric then it is called a Banach Space.

Remark 2.1 If we define a metric space p by p(X,Yy) = ||X— y|| then a normed vector space becomes a metric
space.

Definition 2.3 (Banach Space) A Banach Space (X, ||||) is a normed vector space such that X is complete under the

metric included by the norm ||||

Definition 2.4 A sequence {Xk}in a normed linear space is said to be a Cauchy sequence if ||Xk =X || — Qask, |

tends to infinity. i.e for given & > 0 there exist an integer N such that ||Xk —X || <0 forallk, I >N.

Definition 2.5[9] Let X is a metric space equipped with a distance d and a mapping f from X to X is said to be
Lipschitz continuous if there exist A4 > 0 such that,
d(f(k), f(1)<ad(k,1) forall k,1e X .

The A for which the above inequality holds is the Lipschitz constant of f.
If A= 1 then f'is said to be non-expansive and if A < 1 then f'is said to be a contradiction.

Fixed Point Theorem For Self Mapping In Banach Space:-
The Banach Fixed point theorem states as follows

Theorem 3.1[7] Let (X, & ) complete metric space and f : X — X is a contraction then f has a unique fixed point.
Theorem 3.2 Let f be mapping of a Banach space X into itself, if f satisfies the following conditions, f>= | where I is

identity mapping.
[ =1k = G|+ — £ )l — £ Y]+ [k — £ D - f (k)
f(k)-f()|<

+B(Ik= £ G+ = £ O+ 5 (k= f W[ = £ )+ Ik 1]
Then for every K, I belongsto X, 0<a, 5,0 &n <1 and Sax+4+ 25 +1 is less than 2 then f has a fixed

point. If & + 26 + 7 <1then f has a unique fixed point.
Proof: Suppose that k is a fixed point of the Banach Space X.

et DK
2

Im=K||=[f @)= 20| =] F 1) - F(F (k)|

, m=f(l) and t=21—m then we have
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- 1= £ £+ = F O - 20+ = 2 [ f k) - £ )
1= O+ £ () — 12 ()|
+,B(||I — )+ k) - fz(k)H)Jré(Hl —£2(k)|+[ f () f (|)||)+n||| — (k)|
FCO = £+ = £ Ak =1+ [k 1] £ k) - £ ()
1= £ G +[k— £ k)|
+A(11= £ O+~ 00+ 8 (k1[4 £ 6= F O]+t~ 1 60

tollk-
(k)-fM

(1= 1Ol £ 0] 5 (k1160 £+~ £ 0
k- £ gLk 1100~ 1]

=]
(1= 1O £ 0l (k]G0 E )+t~ 6

(-1l
(k)— 1)

(1= 1O £ 0] (k]G0 F )+l 60

_ M= Ok — £ r
m k||30{ YO [ F k) - FE(F+1)%)

m-k|<el=

Im—k] <=

m-k]<el=

m—k] <l

B = F O+ k= £ 0O+ S k=2 (F+ x| +][ k)~ F & (F+ 0[] +7]5(F +Dx—f (k)|

< N=FOlK=FC, 4y
Im Wéa{ Thotgo] k-1l

+A (1= 1O +Jk= 1 G+ 33k 1 G+ |~ £ G+~ o)
[m—Kl <a[ 21t O] +4[k-f )]+ s3]k~ f©)
(1= T O+Ik = £ )+ Sk = TGO ]+ 3]k — T ()
Im=K|<(4+B+5+3)[k—f )]+ Qa+ A1)
=kl =[21~t=K| <[} (£ + Dx=m=x] =] £ G -m] = £ (<) £ O]
k=1l = £ 60l 1 Gk = £ @] +[k = F O - £ 60
[k =1+ [r=£ ]
+B (k= T+ = O+ 5 (k= F @+ = £ )+ k1|
k= £ GO (I 1]+ [lk = £ )+ ]Ik = F W= f
[k=1m]

K] <

K] <e
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+B([k= T+ = )+ 5 (lk = F @+ = £ )+ k1|
e = FCOIN -]
Im k||£a_ Kt Q] +H1 = )|
+B (k= T+ = O+ 5 (k= F @+ = £ )+ k1|
k= f G- fO[_,, .
AT +HECF+ )X = £ (K)|
+B (k= @+ = W)+ (k= £ G(F+DxX|+[&(F+1Dx—=f K)]|)+7]k -5 (f + 1)x||m—K]|

S O]
Bk £+l 1)+ 5 (3l £ 0ll+ 2k~ Gl) +n ke~ £ 0]
i < a2l1 -~ £+ £ 0[]+ Al TGOl - £ )+
+8(Jk=f )+ 3]k =T ()
Im—k| < [(%+ﬂ+5+g)||k — f(K)|+ Qo+ B)|I - f (|)||] 0
Then,
[m =t <[(m—k)— (k=) < (m—k)[+[[(k 1)
(g4 p+5+8) k=T +Ra+ A -1 (O)]]
(g4 p+5+8) k=T +Ra+ A -1 (O)]]
Im—t| <[ (a+28+25+n)[k—fK)]|+@a+28)|I- )]

And also,
[m—K][=f1)— (2 —m)

:||f(|)—2|— f(l))”
:2|||— f(|)||
2 -t <(a+x+24+2u+2B+25+n)|k—f(K)|+@a+22+2P)|1 - ()|
(2—(Aa+2p+22))1- T ()]
<[(a+x+22+2u+2p+25+n)]|k—f(K)|

I— f(D|<wl|k - f(k :(0!+Z+2/1+2y+2ﬂ+25+;7)
” ()” W” ( )” , Where 74 [2_(4a+22+21]

Where, Sa+4p+26+n<2

Let us consider =5 (f +1) then for everyk € X , we have
|o? (k) - ()| =[la) 1]
=|ls(F +DI-1|
=3[1- )]

K] <

Im-K||< e

(1
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<slk-f)]
Then from the definition of 1 we say that {o” (k) }is a Cauchy sequence in X. And hence by completeness
{o? (k)}converges to some elements k, € X .
Hence , !Tﬂl o’ (k) =k,
~ o(ky) =k,
i.e. K, is fixed point of f .
About Uniqueness if possible let |, # K, is another fixed point of f, then
”ko - |0|| - ” F ko)~ f (Io)”
<a ”ko _|0||||ko — f (ko)||+||ko —f (ko)””ko —f (Io)”+”ko —f (IO)HHIO —f (ko)”
ko =Tol+ [l = £ (1)
+B (ko = £ (k)] [l = T A+ (ko = F )]+l = F (ko)) + 2y =1
”ko _ |0||2
ko =to]
<alky —1o|+ 25k, =l |+ 7]k, =15
<a|ky =l + 25|k, = o]+ 7]k =1
ko —lo|| = (cx + 25 +m)[|ky — 1, |
This is a contradiction.

Hence K, =1, ~. fixed point is unique.

This completes the proof.
Theorem 3.3[8] Let f be mapping of a Banach space X into itself, if f satisfies the following conditions,

Ifq- f (fpy] < o 19Tl plla—pl+]a- foll , Ifo—pll o~ falll — Pl +fa- fol
o=t o= o
+7[la—fal+[ fo—pl ]+ 5[l pl+| o fal ]+ []a— fol]
< Ja=rtallfo—pl|p-fo|+&lp—to" - pl(Ifp—al+]a- fal)ilp— fol-+]a- fol"
Ho— ol HLE)
+7[la— fal+[ fo— pl[]+ 5[ p — o]+ fp—al+Ja— fa ]+ 73 p— fo]]

= 1, where | is identity mapping
la- fallp— folllp— fal+lp—al’ Ja- falla- fpllp- fa] +|p-df
2 2
[p—d [p—al

+7[Ip = foll+la— fal J+ 5 lIp - ol + Ja— ol ]+ n [ ] p—al]
With the equation 10x +9 +8y +56 +n <4and P # (q, then it has a unigue fixed point.

ko =] < & + 26| Kky = o[+ 77][Ko = 1|

B

[fo-fa|<a

B

Theorem 3.3[6] Let f be mapping of a Banach space X into itself, if f satisfies the following conditions, f*= I,
where | is identity mapping then,
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 Ip=elja- fol
L+[p-al
+A[|lp=tol+a~ fa ]+ [[p— fal+a— o]+ 5| p—al]
Then for every p,q belongsto X, O<a, B,y &6 <1 and 48 +3y +3ax+ 0 <2 is less than 2 then f has a
fixed point. If ¢+ 2y + <1 then f has a unique fixed point.

| fp— fa)]| < @xmax| (||p—af).|p— o[, la - fal

Conclusion:-
In this paper we have presented some random fixed point theorems by new rational expression for Self Mappings in
Banach Space which satisfy some contractive conditions
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