

RESEARCH ARTICLE

ON SARW CLOSED AND SARW OPEN MAPS IN TOPOLOGICAL SPACES.

Basavaraj M. Ittanagi and Mohan V.

Department of Mathematics, Siddaganga Institute of Technology, Tumakuru-03, Affiliated to VTU, Belagavi, Karnataka state, India.

 Manuscript Info
 Abstract

 Manuscript History
 In this paper, we introduce and studies a new class of closed and open maps is called sαrw-closed and sαrw-open maps in topological space. Also some of their properties have been investigated. We also introduce

their properties.

Received: 15 March 2018 Final Accepted: 17 April 2018 Published: May 2018

Keywords:-

Sarw-closed maps, sarw*-closed maps and sarw-open maps, sarw*-open maps.

Copy Right, IJAR, 2018,. All rights reserved.

sarw*-closed and sarw*-open maps in topological spaces and study of

.....

Introduction:-

In 1982, the concept of generalized closed maps are introduced and studied by S. R, Malghan [22], wg-closed maps and rwg-closed maps were introduced and studied by Nagaveni [25],Later regular closed maps, rw-closed maps and arw-closed maps have been introduced and studied by Long [19], Benchalli [8] and R S Wali [34] respectively. The aim of this paper is to introduce and study sarw-closed and sarw-open, sarw*-closed and sarw*-open maps in topological spaces. Also some of their properties have been investigated.

Preliminaries:-

In this paper X or (X,τ) and Y or (Y,σ) denote topological spaces on which no separation axioms are assumed. For a subset A of a topological space X, cl(A), int(A), X-A or A^c represent closure of A, interior of A and complement of A in X respectively.

Definition 2.1:-A subset A of a topological space (X, τ) is called

- 1. Regular α -open set [32] (briefly, r α -open) if there is a regular open set U such that $U \subset A \subset \alpha cl$ (U).
- 2. Regular semi open set [11] if there is a regular open set U such that $U \subseteq A \subseteq cl(U)$.
- 3. Regular open set [29] if A = int (cl A) and a regular closed set if A = cl (int (A)).
- 4. Semi-preopen set [1] (β -open [10] if A \subseteq cl (int (cl (A))) and a semi-pre closed set (β closed) if int (cl (int (A))) \subseteq A.
- 5. α -open set [15] if $A \subseteq int (cl (int (A)))$ and α -closed set if $cl(int(cl(A))) \subseteq A$.
- 6. Pre-open set [23] if $A \subseteq int (cl (A))$ and pre-closed set if $cl (int (A)) \subseteq A$.
- 7. Semi-open set [18] if $A \subseteq cl$ (int (A)) and semi-closed set if int $(cl (A)) \subseteq A$.

Definition 2.2:-A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be

- 1. Regular-continuous(r-continuous) [2] if $f^{-1}(V)$ is r-closed in X for every closed subset V of Y.
- 2. Completely-continuous [2] if $f^{-1}(V)$ is regular closed in X for every closed subset V of Y.

Corresponding Author:- Basavaraj M. Ittanagi.

Address:- Department of Mathematics, Siddaganga Institute of Technology, Tumakuru-03, Affiliated to VTU, Belagavi, Karnataka state, India.

- 3. g-Continuous [5] if $f^{-1}(V)$ is g-closed in X for every closed subset V of Y.
- 4. sarw-continuous [7] if $f^{-1}(V)$ is sarw closed in X for every closed subset V of Y.
- 5. Strongly sarw-continuous [7] if $f^{-1}(V)$ is closed set in X for every sarw closed set V in Y.
- 6. arw-continuous [34] if $f^{-1}(V)$ is arw-closed in X for every closed subset V of Y.

Definition 2.3:-A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be

- 1. Contra continuous [12] if $f^{-1}(V)$ is open in X for every closed subset V of Y.
- 2. Contra irresolute [23] if $f^{-1}(V)$ is semi-open in X for every semi-closed subset V of Y.
- 3. Contra r-irresolute [22] if $f^{-1}(V)$ is regular-open in X for every regular-closed subset V of Y
- 4. Irresolute [19] if $f^{-1}(V)$ is semi-closed in X for every semi-closed subset V of Y.
- 5. rω*-open(resp rω*-closed) [30] map if f(U) is rω-open (resp rω-closed) in Y for every rω-open (resp rω-closed) subset U of X.
- 6. sarw-irresolute [7] if $f^{-1}(V)$ is sarw closed in X for every sarw-closed subset V of Y.
- 7. α^* -quotient map[31] if f is α -irresolute and $f^1(V)$ is an α open set in (X,τ) implies V is an open set in (Y,σ) .
- 8. αg irresolute [25] if $f^{-1}(V)$ is αg -closed in X for every αg -closed subset V of Y.
- 9. α irresolute [23] if $f^{-1}(V)$ is α -closed in X for every α closed subset V of Y.

Definition 2.4:-A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be

- 1. α -closed map [15] if f (F) is α -closed in Y for every closed subset F of X.
- 2. gspr-closed map [27] if f (V) is gspr-closed in Y for every closed subset V of X
- 3. g-closed map [5] if f (V) is g-closed in Y for every closed subset V of X
- 4. ω -closed map [30] if f (V) is ω -closed in Y for every closed subset V of X
- 5. $rg\alpha$ -closed map [32] if f(V) is $rg\alpha$ -closed in Y for every closed subset V of X
- 6. gr-closed map [10] if f (V) is gr-closed in Y for every closed subset V of X
- 7. g*p-closed map [21] if f(V) is g*p-closed in Y for every closed subset V of X
- 8. rps-closed map [28] if f (V) is rps-closed in Y for every closed subset V of X
- 9. R*-closed map [14] if f (V) is R*-closed in Y for every closed subset V of X
- 10. gprw-closed map [17] if f (V) is gprw-closed in Y for every closed subset V of X.
- 11. wgra-closed map [16] if f(V) is wgra-closed in Y for every closed subset V of X.
- 12. αg -closed map [20] if f (F) is αg -closed in Y for every closed subset F of X.
- 13. swg-closed map [25] if f (V) is swg-closed in Y for every closed subset V of X.
- 14. $r\omega$ -closed map [9] if f (V) is rw-closed in Y for every closed subset V of X.
- 15. rgw-closed map [24] if f (V) is rgw-closed in Y for every closed subset V of X.
- 16. regular closed map[29] if f (F) is closed in Y for every regular closed set F of X
- 17. Contra closed map [4] if f (F) is closed in Y for every open set F of X.
- 18. Contra regular closed map [29] if f (F) is r-closed in Y for every open set F of X.
- 19. Contra semi-closed map [26] if f (F) is s-closed in Y for every open set F of X.
- 20. wg-closed map [25] if f (V) is wg-closed in Y for every closed subset V of X
- 21. rwg-closed map [25] if f (V) is rwg-closed in Y for every closed subset V of X
- 22. gs-closed map [3] if f (V) is gs-closed in Y for every closed subset V of X
- 23. gp-closed map [21] if f (V) is gp-closed in Y for every closed subset V of X
- 24. gpr–closed map [13] if f(V) is gpr–closed in Y for every closed subset V of X
- 25. α gr-closed map [33] if f(V) is α gr-closed in Y for every closed subset V of X
- 26. $\omega\alpha$ -closed map [9] if f (V) is $\omega\alpha$ -closed in Y for every closed subset V of X

Definition 2.5:-A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be

- 1. g-open map [5] if f(U) is g-open in (Y, σ) for every open set U of (X, τ) ,
- 2. gpr-open map [13] if f (U) is gpr-open in (Y, σ) for every open set U of (X, τ) ,
- 3. Regular open map [29] if f(U) is open in (Y, σ) for every regular open set U of (X, τ) .
- 4. rwg-open map [25] if f (U) is rwg-open in (Y, σ) for every open set U of (X, τ) ,
- 5. wg-open map [25] if f (U) is wg-open in (Y, σ) for every open set U of (X, τ) ,
- 6. w- open map [30] if f (U) is w-open in (Y, σ) for every open set U of (X, τ) .

Results 2.6:- [6]

- 1. Every closed (resp regular-closed, α -closed) set is sarw-closed set in X.
- 2. Every sarw-closed set is sg-closed set

3. Every sarw-closed set is gsp-closed (resp rps-closed, gs-closed, gspr-closed) set in X.

Results 2.7:-[6] If a subset A of a topological space X, and

- 1. If A is regular open and sorw-closed then A is α -closed set in X
- 2. If A is open and ag-closed then A is sarw-closed set in X
- 3. If A is open and gp-closed then A is sorw-closed set in X
- 4. If A is regular open and gpr-closed then A is sαrw-closed set in X.
- 5. If A is open and wg-closed then A is sarw-closed set in X.
- 6. If A is regular open and rwg-closed then A is sαrw-closed set in X.
- 7. If A is regular open and α gr-closed then A is sarw-closed set in X.
- 8. If A is ω -open and $\omega\alpha$ -closed then A is sarw-closed set in X.

Results 2.8:-[6] If a subset A of a topological space X, and

- 1. If A is semi-open and sg-closed then it is sarw-closed.
- 2. If A is semi-open and ω -closed then it is sarw-closed.
- 3. A is sarw-open iff $U \subseteq aint (A)$, whenever U is sarw- closed and $U \subseteq A$.

Definition 2.9:-A topological space (X, τ) is called

- 1. $T_{\frac{1}{2}}$ space [22] if every g-closed set is closed.
- 2. T_{sarw} space [7] if every sarw-closed set is closed.

3. sarw-closed maps and sarw-open maps:-

Definition 3.1: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be semi α -regular weakly closed (briefly sarw-closed) if the image of every closed set in (X, τ) is sarw-closed in (Y, σ) .

Theorem 3.2:-Every closed map is sαrw-closed map, but not conversely.

Proof:-Let f: $(X,\tau) \rightarrow (Y, \sigma)$ be closed map and V be any closed set in X. Then f (V) is closed set in Y, since every closed set is sarw-closed set. Hence f (V) is sarw-closed set in Y. Therefore f is sarw-closed.

Example 3.3:-Let $X = Y = \{a, b, c\} \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ be a topology on X. $\tau = \{Y, \phi, \{a\}, \{b, c\}\}$ be a topology on Y. Let f: $(X, \tau) \rightarrow (Y, \sigma)$, defined by f (a) = b, f (b) = c, f(c) = a, then f is sorw-closed map but not closed as image of closed set $\{b, c\}$ in X is $\{a, c\}$, which is not closed set in Y.

Theorem 3.4:-

- 1. Every α -closed map is sarw-closed map, but not conversely.
- 2. Every regular closed map is sarw-closed map, but not conversely

Proof:-

- 1. The proof follows from the fact that every α -closed set is sarw-closed set.
- 2. The proof follows from the fact that every regular closed set is sorw-closed set.

Example 3.5:-

- 1. In example 3.3, f is sarw-closed map but not closed as image of closed set $\{b, c\}$ in X is $\{a, c\}$, which is not α -closed set in Y.
- 2. In example 3.3, f is sorw-closed map but not closed as image of closed set {b, c} in X is {a, c}, which is not regular closed set in Y.

Theorem 3.6:-Every sarw-closed map is sg closed map, but not conversely.

Proof:-The proof follows from the fact that every sorw-closed set is sg-closed set.

Example 3.7:-Let $X = Y = \{a, b, c\}$ $\tau = \{X, \phi, \{a\}, \{b, c\}\}$ be a topology on X. $\tau = \{Y, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ be a topology on Y. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ defined by f (a) = c, f (b) = a, f(c) = b, then f is sg-closed map but not sarw-closed as image of closed set $\{b, c\}$ in X is $\{a, c\}$, which is not sarw-closed set in Y.

Theorem 3.8:-

- 1. Every sarw-closed map is gs closed map, but not conversely.
- 2. Every sarw-closed map is rps closed map, but not conversely.
- 3. Every sarw-closed map is gsp closed map, but not conversely.
- 4. Every sαrw-closed map is gspr closed map, but not conversely.

Proof:-

- 1. The proof follows from the fact that every sorw-closed set is gs closed set.
- 2. The proof follows from the fact that every sorw-closed set is rps closed set.
- 3. The proof follows from the fact that every sarw-closed set is gsp closed set.
- 4. The proof follows from the fact that every sorw-closed set is gspr closed set.

Example 3.9:-

- 1. In example 3.7, f is gs closed map but not sαrw-closed as image of closed set {b, c} in X is {a, c}, which is not sαrw-closed set in Y.
- 2. In example 3.7, f is rps closed map but not sαrw-closed as image of closed set {b, c} in X is {a, c}, which is not sαrw closed set in Y
- 3. In example 3.7, f is gsp closed map but not sαrw-closed as image of closed set {b, c} in X is {a, c}, which is not sαrw closed set in Y.
- 4. In example 3.7, f is gspr closed map but not sarw-closed as image of closed set $\{b, c\}$ in X is $\{a, c\}$, which is not sarw closed set in Y.

Remark 3.10:-The following examples show that sarw-closed maps are independent of pre-closed, β -closed, gp-closed, gpr-closed, swg-closed, rwg-closed, rgw-closed, gprw-closed, pgpr-closed maps.

Example 3.11:-Let $X=\{a,b,c\}$ and $Y=\{a,b,c,d\}$, $\tau =\{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ be a topology on X. $\tau =\{Y, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$ be a topology on Y. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ defined by f (a) = c, f (b) = a, f(c) = b then f is of pre-closed, gp-closed, gpr-closed, swg-closed, rwg-closed, rwg-closed, gprw-closed, pgpr-closed, pgpr-closed maps. But f is not sarw-closed map, as closed set {c} in X is {b}, which is not sarw-closed set in Y.

Example 3.12:-Let X={a,b,c} and Y={a,b,c,d}, $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$ be a topology on X. $\tau = \{Y, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$ be a topology on Y. Let f: $(X, \tau) \rightarrow (Y, \sigma)$ defined by f(a) = c, f(b) = a, f(c) = b then f is sarw-closed, but not a pre-closed, β -closed, gpr-closed, gpr-closed, swg-closed, rwg-closed, wg-closed, gprw-closed, gprw-closed, maps , as closed set {a, c} in X is {b, c}, which is not pre-closed (respectively β -closed, gpr-closed, gpr-closed, gprw-closed, gpry-closed, gpr-closed, g

Remark 3.13;-From the above discussions and known facts, the relation between sorw-closed map and some existing closed maps in topological space is shown in the following figure.

A B means the closed map A implies the closed map B.

 $A \leftarrow B$ means the closed map A and B are independent of each other.

Figure-1

Theorem 3.14:-

- 1. If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is contra regular closed and αgr -closed map then f is sarw closed map.
- 2. If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is contra w- closed and wa-closed map then f is sarw closed map.
- 3. If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is contra closed and αg -closed map then f is sorw closed map.
- 4. If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is contra regular closed and rwg-closed map then f is sorw closed map.
- 5. If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is contra closed and wg-closed map then f is sorw closed map.
- 6. If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is contra regular closed and gpr-closed map then f is sorw closed map.
- 7. If a map f: $(X, \tau) \rightarrow (Y, \sigma)$ is contra closed and gp-closed map then f is sarw closed map

Proof:-

- 1. Let V be any closed set in (X, τ) . Then f(V) is open and αgr -closed. By results 2.7 f(V) is sarw closed in (Y, σ) . Therefore f is sarw closed map.
- 2. Let V be any closed set in (X, τ) . Then f(V) is open and wa-closed. By results 2.7 f(V) is sarw closed in (Y, σ) . Therefore f is sarw closed map.
- 3. Let V be any closed set in (X, τ) . Then f(V) is open and αg -closed. By results 2.7 f(V) is sarw closed in (Y, σ) . Therefore f is sarw closed map.
- 4. Let V be any closed set in (X, τ) . Then f(V) is open and rwg-closed. By results 2.7 f(V) is sarw closed in (Y, σ) . Therefore f is sarw closed map.
- 5. Let V be any closed set in (X, τ) . Then f(V) is open and wg-closed. By results 2.7 f(V) is sarw closed in

 (Y, σ) . Therefore f is sarw closed map.

- 6. Let V be any closed set in (X, τ) . Then f(V) is open and gpr-closed. By results 2.7 f(V) is sarw closed in (Y, σ) . Therefore f is sarw closed map.
- 7. Let V be any closed set in (X, τ) . Then f(V) is open and gp-closed. By results 2.7 f(V) is sarw closed in (Y, σ) . Therefore f is sarw closed map.

Theorem 3.15 If a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is sarw closed, then sarw-cl (f (A)) \subseteq f (cl (A)) for every subset A of (X, τ) .

Proof:- Suppose that f is sorw-closed and $A \subseteq X$. Then cl (A) is closed in X and so f (cl (A)) is sorw-closed in (Y, σ). We have f (A) \subseteq f (cl (A)), sorw-cl(f(A)) \subseteq sorw-cl(f(cl(A))) \rightarrow (i). Since f (cl (A)) is sorw-closed in (Y, σ), sorw-cl (f (cl (A))) = f (cl (A)) \rightarrow (ii), from (i) and (ii), we have sorw-cl (f (A)) \subseteq f (cl (A)) for every subset A of (X, τ).

Corollary 3.16:-

If a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ is sorw-closed, then the image f (A) of closed set A in (X, τ) is τ_{sorw} -closed in (Y, σ) .

Proof:-Let A be a closed set in (X, τ) . Since f is sarw-closed, sarw-cl $(f(A)) \subseteq f(cl(A)) \rightarrow (i)$. Also cl (A) = A, as A is a closed set and so $f(cl(A)) = f(A) \rightarrow (ii)$. From (i) and (ii), we have sarw-cl $(f(A)) \subseteq f(A)$. We know that $f(A) \subseteq$ sarw-cl (f(A)) and so sarw-cl (f(A)) = f(A). Therefore f(A) is τ_{sarw} -closed in (Y, σ) .

Theorem 3.17:-Let (X, τ) be any topological spaces and (Y, σ) be a topological space where" sarw-cl $(A) = \alpha$ -cl (A) for every subset A of Y" and f: $(X, \tau) \rightarrow (Y, \sigma)$ be a map, and then the following are equivalent.

1. f is sarw-closed map.

2. sarw-cl (f (A)) \subseteq f (cl (A)) for every subset A of (X, τ).

Proof:- (1) \Rightarrow (2) Follows from the Theorem 3.15.

 $(2) \Rightarrow (1)$ let A be any closed set of (X, τ) . Then A=cl (A) and so f (A) = f (cl (A)) \supseteq sarw-cl (f (A)) by hypothesis. We have f (A) \subseteq sarw-cl (f (A)), Therefore f (A) = sarw-cl (f (A)). Also f (A) = sarw-cl (f (A)) = \alpha-cl (f (A)), by hypothesis. That is f (A) = α -cl (f (A)) and f (A) is α -closed in (Y, σ). Thus f (A) is sarw-closed set in (Y, σ) and hence f is sarw-closed map.

Theorem 3.18:- A map $f: (X, \tau) \to (Y, \sigma)$ is sarw-closed if and only if for each subset S of (Y, σ) and each open set U containing $f^{1}(S) \subseteq U$, there is a sarw-open set V of (Y, σ) such that $S \subseteq V$ and $f^{1}(V) \subseteq U$.

Proof;- Suppose f is sarw-closed. Let $S \subseteq Y$ and U be an open set of (X, τ) such that $f^1(S) \subseteq U$. Now X - U is closed set in (X, τ) . Since f is sarw-closed, f(X - U) is sarw closed set in (Y, σ) . Then V = Y - f(X - U) is a sarw-open set in (Y, σ) . Note that $f^1(S) \subseteq U$ implies $S \subseteq V$ and $f^1(V) = X - f^1(f(X - U)) \subseteq X - (X - U) = U$. That is $f^1(V) \subset U$.

For the converse, let F be a closed set of (X, τ) . Then $f^{-1}((f(F))^{c}) \subseteq F^{c}$ and F^{c} is an open in (X, τ) . By hypothesis, there exists sarw-open set V in (Y, σ) such that $f(F)^{c} \subseteq V$ and $f^{-1}(V) \subseteq F^{c}$ and so $F \subseteq (f^{-1}(V))^{c}$. Hence $V^{c} \subseteq f(F) \subseteq f(((f^{-1}(V))^{c}) \subseteq V^{c}$ which implies $f(F) = V^{c}$. Since V^{c} is sarw-closed, f(F) is sarw-closed. Thus f(F) is sarw-closed in (Y, σ) and therefore f is sarw-closed map.

Remark 3.19:- The composition of two sorw-closed maps need not be sorw-closed map in general and this is shown by the following example.

Example 3.20: Let $X = Y = Z = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, c\}\}, \sigma = \{Y, \phi, \{a\}, \{b, c\}\}$ and $\eta = \{Z, \phi, \{a\}, \{b\}, \{a, b\}\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ defined by f (a) =b, f (b) =c, f(c) =a and g: $(Y, \sigma) \rightarrow (Z, \eta)$ are the identity maps. Then f and g are sarw-closed maps, but their composition $(g \circ f): (X, \tau) \rightarrow (Z, \eta)$ is not sarw-closed map, because $F = \{a,c\}$ is closed in (X, τ) , but $(g \circ f)$ $(F) = (g \circ f)$ $(\{a,c\}) = g[f(\{a,c\})] = g[\{a,b\}] = \{a,b\}$ which is not sarw-closed in (Z, η) .

Theorem 3.21:- If f: $(X, \tau) \rightarrow (Y, \sigma)$ is closed map and g: $(Y, \sigma) \rightarrow (Z, \eta)$ is sorw-closed map, then the composition $(g \circ f): (X, \tau) \rightarrow (Z, \eta)$ is sorw-closed map.

Proof:-Let F be any closed set in (X, τ) . Since f is closed map, f (F) is closed set in (Y, σ) . Since g is sarw-closed map, g [f (F)] is sarw-closed set in (Z, η) . That is $(g \circ f) (F) = g [f (F)]$ is sarw-closed and hence $(g \circ f)$ is sarw-closed map.

Remark 3.22:- If f: $(X, \tau) \rightarrow (Y, \sigma)$ is sorw-closed map and g: $(Y, \sigma) \rightarrow (Z, \eta)$ is closed map, then the composition need not be sorw-closed map as seen from the following example.

Example 3.23:-Let $X = Y = Z = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}, \sigma = \{Y, \phi, \{a\}, \{b, c\}\}$ and $\eta = \{Z, \phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. Define f: $(X, \tau) \rightarrow (Y, \sigma)$ defined by f(a)=b, f(b)=c, f(c)=b and g: $(Y, \sigma) \rightarrow (Z, \eta)$ defined by g(a)=c, g(b)=a, g(c)=c. Then f is sarw-closed map and g is closed map, but their composition $(g \circ f): (X, \tau) \rightarrow (Z, \eta)$ is not sarw-closed map, because $F = \{c\}$ is closed in (X, τ) , but $(g \circ f)(F) = (g \circ f)(\{c\}) = g[f(\{c\})] = g[\{b\}] = \{a\}$ which is not sarw-closed in (Z, η) .

Theorem 3.24:-If f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ is sarw-closed maps and (Y, σ) be a T_{sarw}-space then $(g \circ f)$: $(X, \tau) \rightarrow (Z, \eta)$ is sarw-closed map.

Proof. Let A be a closed set of (X, τ) . Since f is sarw-closed, f (A) is sarw-closed in (Y, σ) . Then by hypothesis, f (A) is closed. Since g is sarw-closed, g (f (A)) is sarw-closed in (Z, η) and g $[f(A)] = (g \circ f)$ (A). Therefore $(g \circ f)$ is sarw-closed map.

Theorem 3.25:-If f: $(X, \tau) \rightarrow (Y, \sigma)$ is g-closed, g: $(Y, \sigma) \rightarrow (Z, \eta)$ be sorw-closed and (Y, σ) is $T_{1/2}$ -space then their composition $(g \circ f): (X, \tau) \rightarrow (Z, \eta)$ is sorw-closed map.

Proof:-Let A be a closed set of (X, τ) . Since f is g-closed, f (A) is g-closed in (Y, σ) . Since (Y, σ) is $T_{1/2}$ -space, f (A) is closed in (Y, σ) . Since g is sarw-closed, g [f (A)] is sarw-closed in (Z, η) and g (f (A)) = (g \circ f) (A). Therefore $(g \circ f)$ is sarw-closed map.

Definition:-3.26: A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is called sarw-open map if the image f (A) is sarw-open in (Y, σ) for each open set A in (X, τ) .

From the definitions we have the following results.

Theorem 3.27:-

- 1. Every open map is sarw-open but not conversely.
- 2. Every α -open map is sarw-open but not conversely.
- 3. Every sarw–open map is sg-open but not conversely.
- 4. Every sαrw–open map is gs-open but not conversely.
- 5. Every sarw-open map is gsp-open but not conversely.
- 6. Every sαrw–open map is rps-open but not conversely.
- 7. Every sarw–open map is gspr-open but not conversely.

Proof:-proof is straight forward since the compliments of closed sets are open sets.

Theorem 3.28:-For any bijection map f: $(X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent:

- 1. $f^{-1}: (Y, \sigma) \to (X, \tau)$ is sarw-continuous.
- 2. f is sαrw-open map
- 3. f is sarw-closed map.

Proof:-

(1) \Rightarrow (2) Let U is an open set of (X, τ). By assumption, (f¹) ⁻¹ (U) = f (U) is sarw-open in (Y, σ) and so f is sarw-open.

(2) \Rightarrow (3) Let F is a closed set of (X, τ). Then F^c is open set in (X, τ). By assumption, f (F^c) is sarw-open in

 (Y, σ) . That is $f(F^c) = f(F)^c$ is sorw-open in (Y, σ) and therefore f(F) is sorw-closed in (Y, σ) . Hence f is sorw-closed.

 $(3) \Rightarrow (1)$ Let F is a closed set of (X, τ) . By assumption, f(F) is sorw-closed in (Y, σ) . But $f(F) = (f^{-1})^{-1}(F)$ and therefore f^{-1} is sorw-continuous.

Theorem 3.29:-If a map $f: (X, \tau) \to (Y, \sigma)$ is sarw-open, then $f(int (A)) \subseteq$ sarw-int (f(A)) for every subset A of (X, τ) .

Proof:-Let f: $(X, \tau) \rightarrow (Y, \sigma)$ be an open map and A be any subset of (X, τ) . Then int (A) is open in (X, τ) and so f (int (A)) is sarw-open in (Y, σ) . We have f (int (A)) \subseteq f(A). Therefore f (int (A)) \subseteq sarw-int (f (A)).

Theorem 3.30:-If a map $f: (X, \tau) \to (Y, \sigma)$ is sorw-open, then for each neighbourhood U of x in (X, τ) , there exists a sorw-neighbourhood W and f(x) in (Y, σ) such that $W \subseteq f(U)$.

Proof:-Let f: $(X, \tau) \to (Y, \sigma)$ be an sarw-open map. Let $x \in X$ and U be an arbitrary neighbourhood of x in (X, τ) . Then there exists an open set G in (X, τ) such that $x \in G \subseteq U$. Now $f(x) \in f(G) \subseteq f(U)$ and f(G) is sarw-open set in (Y, σ) , as f is an sarw-open map. f (G) is sarw- neighbourhood of each of its points. Taking f (G) = W, W is an sarw-neighbourhood of f(x) in (Y, σ) such that $W \subseteq f(U)$.

Definition 3.31:-A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be sarw*-closed map if the image f(A) is sarw-closed in (Y, σ) for every sarw-closed set A in (X, τ) .

Theorem 3.32:-Every sarw*-closed map is sarw-closed map but not conversely.

Proof:-The proof follows from the definitions and fact that every closed set is sarw-closed.

Example 3.33:-Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$ and f: $(X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then f is sarw-closed map but not sarw*-closed map. Since $\{a, b\}$ is sarw-closed set in (X, τ) , but its image under f is $\{a, b\}$, which is not sarw-closed in (Y, σ) .

Theorem 3.34:-If f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ are sarw*-closed maps, then their composition $(g \circ f): (X, \tau) \rightarrow (Z, \eta)$ is also sarw*-closed.

Proof:-Let F be an sarw-closed set in (X, τ) . Since f is sarw*-closed map, f (F) is sarw- closed set in (Y, σ) . Since g is sarw*-closed map, g (f (F)) is sarw closed set in (Z, η) . Therefore $(g \circ f)$ is sarw*-closed map.

Analogous to sarw*-closed map, we define another new class of maps called sarw*-open maps which are stronger than sarw-open maps.

Definition 3.35:-A map f: $(X, \tau) \rightarrow (Y, \sigma)$ is said to be sarw*-open map if the image f (A) is sarw-open set in (Y, σ) for every sarw-open set A in (X, τ) .

Remark 3.36:-Since every open set is a sarw-open set, we have every sarw*-open map is sarw-open map. The converse is not true in general as seen from the following example.

Example 3.37:-Let $X = Y = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$ and f: $(X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then f is sarw-open map but not sarw*-open map. Since $\{c\}$ is sarw-open set in (X, τ) , but its image under f is $\{c\}$, which is not sarw-open in (Y, σ) .

Theorem 3.38:-If f: $(X, \tau) \rightarrow (Y, \sigma)$ and g: $(Y, \sigma) \rightarrow (Z, \eta)$ are sorw*-open maps, then their composition $(g \circ f): (X, \tau) \rightarrow (Z, \eta)$ is also sorw*-open.

Proof:-Proof is similar to the Theorem 3.34.

Theorem 3.39:-For any bijection map f: $(X, \tau) \rightarrow (Y, \sigma)$, the following statements are equivalent:

- 1. $f^{-1}: (Y, \sigma) \to (X, \tau)$ is sarw irresolute.
- 2. f is sαrw*–open map
- 3. f is sarw*–closed map.

Proof:-Proof is similar to that of Theorem 3.28

References:-

- 1. Abd El-Monsef ME, El-Deeb S N, Mahmoud RA. β- open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ1983; 12:77-90.
- 2. Arya S P, Gupta R. On strongly continuous functions, Kyungpook Math.J.1974; 14:131-143.
- 3. Arya S P, T M Nour, Chatcterizations of s-normal spaces, Indian J Pure Appl, Math. 1990; 21:717-719
- 4. Baker CW. Contra open and Contra closed functions, Math. Sci1994; 17:413-415.
- 5. Balachandran K, Sundaram P, Maki H. On Generalized Continuous Maps in Topological Spaces, Mem. Iac Sci. Kochi Univ. Math., 1991; 12:5-13.
- 6. Basavaraj M Ittanagi and Mohan V, On semi α-regular weakly closed set in Topological spaces, Int J. of Math Archive, 8(7)-2017, 197-204.
- 7. Basavaraj M. Ittanagi and Mohan V, On sαrw continuous and sαrw irresolute Maps in Topological Spaces (Accepted paper in JUSPS)
- Benchalli S.S, Wali R.S., on rω- Closed sets is Topological Spaces, Bull, Malays, Math, sci, soc30, 2007, 99-110.
- 9. Benchalli S.S, Patil P.G, Rayanagaudar T.D. ωα-Closed sets is Topological Spaces, The Global. J Appl. Math and Math. Sci. 2009; 2:53-63.
- 10. Bhattacharya S. on generalized regular closed sets, Int J Contemp. Math science., 201(6), 145-152
- 11. Cameron DE. Properties of s-closed spaces, prac Amer Math, soc 1978;72:581-586
- 12. Dontchev J. Contra continuous functions and strongly S-closed spaces, Int. J Math. Sci. 1996;
- 13. Gnanambal Y., on generalized pre regular closed sets in topological spaces, Indian J Pure. Appl. Math.1997; 28(3):351-360.
- 14. Janaki C, Renu Thomas.on R*-Closed sets in Topological Spaces, Int J of Math Archive. 2012; 3(8):3067-3074
- 15. Jastad ON. On some classes of nearly open sets, Pacific J Math. 1965; 15:961-970
- 16. Jayalakshmi A, JanakiC. on wgrα-closed sets in Topological Spaces, Int J of maths. 2012; 3(6):2386-2392.
- 17. Joshi V, Gupta S, Bhardwaj Kumar R. on Generalized pre Regular weakly(gprw)-closed set in sets in Topological Spaces, int math foruro 2012;7-40:1981- 1992
- 18. Levine N. Generalized closed sets in topology, Rend. Circ Mat. Palermo 1970; 19(2):89-96.
- 19. Long PE, Herington LL. Basic Properties of Regular Closed Functions, Rend. Cir. Mat. Palermo1978; 27:20-28.
- 20. Maki H, Devi R, Balachandran K. Associated topologies of generalized α-closed sets and α-generalized closed sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math1994; 15:51-63.
- 21. Maki H, Umehara J, Noiri T. Every Topological space is pre T¹/₂mem Fac sci, Kochi univ, Math 1996; 17:33-42.
- 22. Malghan S Generalized Closed Maps, J Karnataka Univ. Sci., 1982; 27:82-88.
- 23. Mashhour AS, Abd El-Monsef ME, El-Deeb S N. On pre-continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt1982; 53:47-53.
- 24. Mishra S. On regular generalized weakly (rgw) closed sets in topological spaces, Int. J of Math Analysis 2012; 6(30):1939-1952
- 25. Nagaveni N. Studies on Generalizations of Homeomorphisms in Topological Spaces, Ph.D. Thesis, Bharathiar University, Coimbatore, 1999.
- 26. Navalagi G B. "On Semi-pre Continuous Functions and Properties of Generalized Semi-pre Closed in Topology", IJMS 2002; 29(2):85-98.
- 27. Pushpalatha A. Studies on generalizations of mapping in topological spaces, PhD Thesis, Bharathiar university, Coimbatore,2000.
- 28. Shyala Isac Mary T, P Thangavelv.on Regular pre-semi closed sets in topological spaces, KBM J of Math Sc & comp Applications. 2010;1:9-17
- 29. Stone M. Application of the theory of Boolean rings to general topology, Trans. Amer. Math.Soc.1937;41:374-481.
- 30. Sundaram P, Sheik John M. On w-closed sets in topology, Acta Ciencia Indica2000; 4:389-39
- 31. Thivagar M L. A note on quotient mapping, Bull. Malaysian Math. Soc 1991; 14:21-30
- 32. Vadivel A, K vairamamanickam. rgα-Closed sets & rgα- open sets in Topological Spaces, Int J of math, Analysis. 2009; 3(37):1803-1819
- 33. Veerakumar MKRS. On α-generalized regular closed sets, Indian J of Math. 2002; 44(2):165-181
- 34. Wali R.S., Mandalgeri P.S. On αrw–Continuous and αrw–Irresolute Maps in Topological Spaces, IOSR-JM 2014; 10(6):14-24.