OPERATORS USED IN COMPLEX VALUED HARMONIC UNIVALENT AND MULTIVALENT FUNCTION.

Dr. Noohi Khan (AP II).
Amity University Lucknow, Up.

Manuscript Info

Abstract

To evaluate the effect of implant platform/abutment design/crown material combinations on the stress distribution around implant-supported dental restorations. A literature search was made in three databases including PubMed, Cochrane and Web of Science. Inclusion criteria were in vitro studies, switched implant platform versus regular implant platform, titanium implants, internal hex connection and stress values of bone. Two review authors independently screened the articles for inclusion. This was followed by hand searching in the reference lists of all eligible studies for additional studies. Results: the search resulted in 16 eligible studies concerning the effect of platform switching on peri-implant bone stress, however no papers were found studying the effect of different implant platform/abutment design/crown material complexes on bone stress. From the included studies, platform switching concept can replace conventional platform designs to improve implant survival rate, provided it should be used within its indications.

Harmoic Univalent Function:-

A continuous complex valued function $f = u + iv$ defined in a simply connected complex domain D is said to be harmonic in D if both u and v are real harmonic in D. Let F and G be analytic in D so that $F(0) = G(0) = 0$, $\text{Re}F = u$, $\text{Re}G = v$ by writing $(F+iG)/2 = h$, $(F-iG)/2 = g$. The function f admits the representation $f = h + ig$, where h and g are analytic in D. h is called the analytic part of f and g, the co-analytic part of f. Clunie and Shell-Small [15] observe that $f = h + ig$ is locally univalent and sense-preserving if and only if $|g'(z)| < |h'(z)|$, $z \in D$. Further if f can be normalize so that $f(0) = h(0) = f_z(0) = 1 = 0$. The SH denotes the family of all harmonic, complex valued, orientation-preserving normalized univalent functions defined on Δ. Thus the function f in SH admits the representation $f = h + ig$, where,

$$h(z) = z + \sum_{n=2}^{\infty} a_n z^n, \quad g(z) = \sum_{n=1}^{\infty} b_n z^n; \quad |b_1| < 1$$

are analytic functions in Δ.

CORRESPONDING AUTHOR:- Dr. Noohi Khan (AP II).
Address:- Amity University Lucknow, Up.

COPY RIGHT: IJAR, 2017. All rights reserved.
It follows from the orientation-preserving property that \(| b_1 | < 1\). Therefore, \((f - \overline{b_1 f})/(1 - | b_1 |^2) \in SH\) whenever \(f \in SH\). Thus a subclass \(SH^0\) of \(SH\) is defined by \(SH^0 = \{f \in SH : g'(0) = b_1 = 0\}\).

Note that \(S \subset SH^0 \subset SH\). Both families \(SH\) and \(SH^0\) are normal families. That is every sequence of functions in \(SH\) (or \(SH^0\)) has a subsequence that converges locally uniformly in \(\Delta\).

It is noted that \(SH \equiv S\) if \(g = 0\).

Let \(TH\) denote the sub class of \(SH\) with negative coefficients whose members \(f = h + \overline{g}\), where \(h\) and \(g\) are of the form

\[
(1.1.2) \quad h(z) = z - \sum_{n=2}^{\infty}|a_n|z^n \text{ and } g(z) = \sum_{n=1}^{\infty}|b_n|z^n, \quad |b_1| < 1, \quad z \in \Delta.
\]

Complex Valued Harmonic Multivalent Function

Let \(f\) be a harmonic function in a Jordan domain \(D\) with boundary \(C\). Suppose \(f\) is continuous in \(\overline{D}\) and \(f(z) \neq 0\) on \(C\). Suppose \(f\) has no singular zeros in \(D\), and let \(m\) to be sum of the orders of the zeros of \(f\) in \(D\). Then \(\Delta_c \arg(f(z)) = 2\pi m\), where \(\Delta_c \arg(f(z))\) denotes the change in argument of \(f(z)\) as \(z\) traverses \(C\).

It is also shown that if \(f\) is sense-preserving harmonic function near a point \(z_0\), where \(f(z_0) = \omega_0\) and if \(f(z) - \omega_0\) has a zero of order \(m\) \((m \geq 1)\) at \(z_0\), then to each sufficiently small \(\epsilon > 0\) there corresponds a \(\delta > 0\) with the property: “for each \(\alpha \in N_\delta(\omega_0) = \{\omega : |\omega - \omega_0| < \delta\}\), the function \(f(z) - \alpha\) has exactly \(m\) zeros, counted according to multiplicity, in \(N_\epsilon(z_0)\)”.

According to above argument, functions in \(SH(m)\) are harmonic and sense-preserving in \(\Delta\). The class \(SH(1)\) of harmonic univalent functions was studied in details by Clunie and Sheil Small [15]. It was observed that \(m\)-valent mapping need not be orientation-preserving.

Let \(TH(m)\) denotes the subclass of \(SH(m)\) whose members are of the form

\[
(1.2.1) \quad h(z) = z^m + \sum_{n=2}^{\infty}a_{n+m-1}z^{n+m-1}
\]

\[
g(z) = \sum_{n=1}^{\infty}b_{n+m-1}z^{n+m-1}, \quad |b_m| < 1.
\]

According to above argument, functions in \(SH(m)\) are harmonic and sense-preserving in \(\Delta\) if \(J_f > 0\text{ in }\Delta\). The class \(SH(1)\) of harmonic univalent functions was studied in details by Clunie and Sheil Small [15]. It was observed that \(m\)-valent mapping need not be orientation-preserving.
Let $\text{SH}(m), m \geq 1$ denotes the class of functions $f = h + g$ that are m-valent harmonic and orientation-preserving functions in the unit disc $\Delta = \{z : |z| < 1\}$ for which $f(0) = f'(0) - 1 = 0$. Then f in $\text{SH}(m)$ can be expressed as $f = h + g$, where h and g are analytic functions of the form

$$h(z) = z^m + \sum_{n=2}^{\infty} a_{n+m-1} z^{n+m-1}, \quad g(z) = \sum_{n=1}^{\infty} b_{n+m-1} z^{n+m-1}, \quad |b_m| < 1$$

Note that $\text{SH}^0(m) \subseteq \text{SH}(m)$ with $b_m = 0$.

Also $\text{TH}(m)$ denote the class of functions $f = h + g$ so that h and g are of the form:

$$h(z) = z^m - \sum_{n=2}^{\infty} |a_{n+m-1}| z^{n+m-1}, \quad g(z) = \sum_{n=1}^{\infty} |b_{n+m-1}| z^{n+m-1}, \quad |b_m| < 1$$

Hadamard Product:

The Hadamard product (or convolution) of two analytic functions $f_1(z)$ and $f_2(z)$ is defined by

$$(f_1 * f_2)(z) = (f_2 * f_1)(z) = \sum_{n=0}^{\infty} c_n d_n z^n$$

where $f_1(z) = \sum_{n=0}^{\infty} c_n z^n$ and $f_2(z) = \sum_{n=0}^{\infty} d_n z^n, z \in \Delta$.

The Pochhammer symbol $(\lambda)_n$ is given by

$$(\lambda)_n := \frac{\Gamma(\lambda + n)}{\Gamma(\lambda)} = \begin{cases} 1 & (n = 0) \\ \lambda (\lambda + 1) - (\lambda + n - 1) & (n \in \mathbb{N}) \end{cases}$$

Consider a function $\phi_m(a, c; z)$, defined as

$$(1.3.1) \quad \phi_m(a, c; z) = z^m F(a, 1; c; z) = \sum_{n=0}^{\infty} (a)_n z^{n+m}$$

$$= z^m + \sum_{n=2}^{\infty} \frac{(a)_{n-1}}{(c)_{n-1}} z^{n+m-1}$$

$$(a \in \mathbb{R}; c \in \mathbb{R} \setminus Z_0, Z_0 := \{0, -1, -2, \ldots\}; z \in \Delta)$$

where $F(a, 1; c; z)$ is well known Gauss hypergeometric function.

Linear Operator:

Corresponding to the function $\phi_m(a, c; z)$ a linear operator $L_m(a, c)$ on the analytic functions of the form (1.1.1) is considered which is defined by means of the following Hadamard product:

$$(1.4.1) \quad L_m(a, c) h(z) = \phi_m(a, c; z) * h(z).$$

The linear operator of the harmonic function $f = h + g$, where h and g are given by (1.1.1) is defined as

$$(1.4.1) \quad L_m(a, c)f(z) = L_m(a, c)h(z) + L_m(a, c)g(z)$$

where,

$$L_m(a, c) h(z) = z^m + \sum_{n=2}^{\infty} \frac{(a)_{n-1}}{(c)_{n-1}} a_{n+m-1} z^{n+m-1}$$

and
\[L_m(a, c)g(z) = \sum_{n=1}^{\infty} \left(\frac{a}{c} \right)_n b_{n+m-1} z^{n+m-1}; \quad a \mid b_m \mid < c. \]

Salagean Operator:

For analytic function \(h(z) \in S(m) \), Salagean [33] introduced an operator \(D_m^v \) defined as follows:

\[
D_m^0 h(z) = h(z), \quad D_m^1 h(z) = D_m(h(z)) = \frac{z}{m} h'(z) \quad \text{and} \\
D_m^v h(z) = D_m(D_m^{v-1} h(z)) = \frac{z(D_m^{v-1} h(z))'}{m} = z + \sum_{n=2}^{\infty} \left(\frac{n+m-1}{m} \right)^v a_{n+m-1} z^{n+m-1}, \quad v \in \mathbb{N}.
\]

Whereas, Jahangiri et al. [22] defined the Salagean operator \(D_m^v f(z) \) for multivalent harmonic function as follows:

\[
(1.5.1) \quad D_m^v f(z) = D_m^v h(z) + (-1)^v D_m^v g(z)
\]

where,

\[
D_m^v h(z) = z^m + \sum_{n=2}^{\infty} \left(\frac{n+m-1}{m} \right)^v a_{n+m-1} z^{n+m-1} \\
D_m^v g(z) = \sum_{n=1}^{\infty} \left(\frac{n+m-1}{m} \right)^v b_{n+m-1} z^{n+m-1}.
\]

References:

10. Al-Amiri, H.S., On a class of close to convex functions with negative coefficients, Mathematica, Tome 31 (45) (1989), No.(1), 1-7.
34. Seker, B. and Eker, S., On Salagean type Harmonic Multivalent Functions, p. 52-63.
45. N Khan “A Generalized Class of k-Uniformly harmonic functions based on Salagean operators, published online in SAJM south asian journal of mathematics in march 2015 Vol.5 (2)89-96.ISSN 2251-1512.
46. N.Khan “Inequalities on Multivalent harmonic starlike functions involving hypergeometric functions” published in IOSR-JM in may 2016,vol 12,issue 2,ISSN:2319-765X.

1712