

RESEARCH ARTICLE

CHEMICAL PREPARATIONS, CRYSTAL DATA FOR MONOPHOSPHATES AND CONDENSED PHOSPHATES ASSOCIATED TO BARIUM AND IR STUDIES OF THEIR ANIONS.

Soufiane Zerraf¹, Mustafa Belhabra¹, MalikaTridane^{1,2}And Said Belaaouad.

- 1. Laboratoire de Chimie Physique des Matériaux LCPM, Faculté des Sciences Ben M'sik, Université Hassan II de Casablanca, Maroc.
- 2. Centre Régional des métiers d'éducation et de formation, Bd BirAnzarane Casablanca. Maroc.

Manuscript Info

Manuscript History

Received: 18 November 2018 Final Accepted: 20 December 2018 Published: January 2019

Key words:-

Chemical preparation, monophosphates, infrared vibration spectrometry,X-ray diffraction.

Abstract

Monophosphates and condensed phosphates associated to barium, the subject of this paper, constitute an important part of phosphate chemistry and have been subject to many studies and applications in many fields of research on materials and industry. In order to collect unit-cell parameters of these compounds, establish a data bank of formula existing till now and to have an idea about facilities and difficulties on their preparations, we focus the present research on chemical preparations, crystal data and IR studies for condensed phosphates and monophosphates. The present work reports the chemical preparations, main crystallographic data for condensed phosphates and monophosphates associated to barium and characterization by infrared vibration spectrometry for anions, PO³⁻ in Ba(PO₃)₂, PO₄³⁻ in Ba₃(PO₄)₂, P₂O₇⁴⁻ in BaMnP₂O₇, P₃O₉³⁻ in Ba₃(P₃O₉)_{2.6}H₂O, P₄O₁₂⁴⁻ in Ba₂P₄O₁₂.4H₂O, P₆O₁₈⁶⁻ in Ba₃P₆O₁₈.8H₂O and P₁₀O₃₀.

Copy Right, IJAR, 2018,. All rights reserved.

Introduction:-

This class of phosphates, condensed phosphates and monophosphates, developed over a long period of time and, even today, is still relatively poor understood as compared with condensed silicates, germinates and vanadates. More than four hundred and fifty different types of atomic arrangements are today well established in the field of condensed phosphates and monophosphates. In most cases, dealing with these structure determinations report a detailed description of one atomic arrangement but pay little attention to the existence or the possible existence of isotypic compounds and others. In a domain one can consider now as deeply investigated and where sufficient basic data have been accumulated, this situation has several disadvantages; it favors duplicate structural papers and discourages any attempts to establish correlations in a given region of condensed phosphates and monophosphates the chemical preparations and reports crystal data for condensed phosphates and monophosphates and monophosphates associated to barium and IR vibration spectrometry studies of their anions.

.....

Infrared Vibration Spectrometry

Spectra were recorded in the range 4000-400 cm⁻¹, with a Perkin-Elmer IR 983G spectrophotometer, using samples dispersed in spectroscopically pure KBr pellets.

Corresponding Author:-SoufianeZerraf.

Address:-Laboratoire de Chimie Physique des Matériaux LCPM, Faculté des Sciences Ben M'sik, Université Hassan II de Casablanca. Maroc.

Elaboration And Crystal Data

First let us try to explain what we commonly call a phosphate. A general and rather abstract definition can be given by saying that phosphates are salts of both the monophosphoric acid H_3PO_4 and its various condensed or polymeric forms. The corresponding anions have varied geometries but one common feature: they are all built up by pentavalent phosphorus atoms surrounded by more or less distorted tetrahedra made of four oxygen atoms. In a very elementary way, one can roughly classify phosphates into three main groups : monophosphates $(PO_4)^{3^*}$, (O / P = 4), oxyphosphates $(O(PO_4))^{5-}$ (O / P > 4) and condensed phosphates (O / P < 4) (cyclophosphates $(P_nO_{3n})^{n-}$ n = 3, 4, 5, 6, 8, 9, 10 and 12; oligophosphates $(P_nO_{3n+1})^{(n+2)-}$ n = 2, 3, 4 and 5; long chain polyphosphates $(PO_3)_n^{-}$ n = 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, ∞ and ultraphosphates $(P_{n+2}O_{3n+5})^{n-}$ n = 2, 3, 4 and 6.

Monophosphates PO₄³⁻ α-BaHPO₄

The synthesis of α -BaHPO₄[1] was performed in a Petri dish according to the following chemical reaction: - 4α - BaHPO₄ + 2H₂O (1) $4Ba(OH)_2 + P_4O_{10}$

51.4 mg (0.300 mmol) of barium hydroxide Ba(OH)₂ were dissolved in a Petri dish with 10 ml of water and 21.3 mg (0.150 mmol) of phosphorus pentoxide P_2O_5 were added to the solution. The covered Petri dish was put into a compartment drier at 200°C until the water was evaporated (2 days). The reaction yielded single-phase α -BaHPO₄ as a crystalline, colourless and non hygroscopic powder.

KBaPO₄

Arcanite type KBaPO₄ single crystals may be obtained by either of the following chemical reactions, at 650° C [2]:

 $KBaPO_4 + 2KF$ $K_3PO_4 + BaF_2$ $K_4P_2O_7 + BaF_2$ $KBaPO_4 + KPO_3 + 2KF$

$$Ba_3(PO_4)_2$$

Mixtures of reagent-grade BaCO₃ and $NH_4H_2PO_4$ corresponding to the chemical compositions of Ba₃(PO₄)₂ is prepared. It is calcined at about 1000°C. After grinding the calcined products into powder, it is pressed into pellets and heated again at 1400°C for 40 hours. Then, the sample is slowly cooled to 1250°C and kept at that temperature for over 4 days [3].

$BaCo_2(PO_4)_2$

Single crystals of BaCo₂(PO₄)₂ were prepared from a mixture of BaCO₃ (1.375g), CoBr₂ (1.523g), 85% H₃PO₄ (3.33g), guanidinium carbonate { $(C(NH_2)_3)_2CO_3$; 1.254g} and H₂O (10 ml). These components were sealed in a 23 ml teflon-lined hydrothermal bomb and heated to 180 °C for 3 days. After cooling to ambient temperature over several hours, pink crystals of the title compound were recovered by vacuum filtration and drying in air [4].

$BaCu_2(PO_4)_2$

 $BaCu_2(PO_4)_2$ has been prepared by heating a mixture of $(NH_4)_2HPO_4$, $BaCO_3$ and CuO in the molar ratio 2:1:2. The reaction is carried out in a platinum crucible. The mixture, after being ground, is slowly heated to 1000°C and cooled to 800° C with a cooling rate of 5°C/h. Then the product was put in the furnace and cooled down to room temperature. By this procedure single crystals of $BaCu_2(PO_4)_2$ have been isolated [5].

$Ba(H_2PO_4)_2$

Barium phosphate was prepared as previously reported [6]. Briefly, to a dilute solution of barium chloride diehydrate was slowly added a 1.50 mol dm⁻³ dibasic ammonium phosphate solution and the mixture was heated to 180 °C. The suspension formed was stirred for 1 h, when the solid started to settle out. The solid was filtered and dried under vacuum at 50 °C. Finally, the resulting compound was heated at 440 K for 48 h to eliminate ammonia.

KBaFe₂(PO₄)₃

A polycrystalline sample of KBaFe₂(PO₄)₃ was prepared by heating a stoichiometric mixture of potassium and barium carbonates, ferric oxide and ammonium dihydrogen phosphate for 72 hours at a temperature of 1100°C in a platinum crucible [7].

KBaCr₂(PO₄)₃

A polycrystalline sample of KBaCr₂(PO₄)₃ was prepared by heating a pelleted stoichiometric mixture of barium carbonate, chromium sesquioxide, diammonium hydrogen phosphate and potassium carbonate at a temperature of 1100°C in a platinum crucible for several weeks, with intermediate grinding and pelleting. Initially, the furnace temperature was raised from 80 to 1100°C at a rate of 300°C per hour, and the final cooling was at a rate of 50°C per hour. The product was a green, poorly sintered pellet (heating at 1200°C did not significantly increase the degree of sintering) [8].

Formula	a(Å)	b(Å)	c(Å)	S.G.	Ζ
	α°	β°	γ°		
α- BaHPO ₄	4.5996	22.809	14.081	Aem2	16
$Ba_3(PO_4)_2$	5.6038	5.6038	21.000	R-3m	1
$BaCo_2(PO_4)_2$	4.8554	4.8554	23.215	R-3	3
$BaCu_2(PO_4)_2$	9.226	9.271	10.516	P-1	4
	106.76	101.69	115.70		
$BaKCr_2(PO_4)_3$	9.789	9.789	9.789	P2 ₁ 3	4
$BaKFe_2(PO_4)_3$	9.8732	9.8732	9.8732	P2 ₁ 3	4
BaKPO ₄	7.709	5.663	9.972	Pnma	4
		128.14			
$Ba(HPO_4)_2$	10.273	7.803	8.566	Pccn	4

	Table 1:-Main	Crystallographic	Data for the mono	phosphates :	associated to barium.
--	---------------	------------------	-------------------	--------------	-----------------------

Characterization of PO_4^{3-} in $Ba_3(PO_4)_2$ by IR vibration spectrometry. The IR absorption spectrum of $Ba_3(PO_4)_2$ is reported in Fig 1.

The ion $PO_4^{3^-}$, with tetraedric symmetry, contained in monophosphates has two types of vibrations : valence P-O (P-O bond : valence vibration PO) and deformation O-P-O (O-P-O angle : bending vibration OPO). The PO valence vibrations (P-O bonds) are located about 1140 cm⁻¹ (v₃ : asymmetric stretching) and about 950 cm⁻¹ (v₁ : symmetric stretching). The OPO bending vibrations (OPO angles) are located about 490 cm⁻¹ (v₄ : asymmetric deformation) and 360 cm⁻¹ (v₂ : symmetric deformation). Ion stretching frequencies (PO₄)³⁻ are primarily determined by the fact that only one of P-O bond (P-O internal P-Oi and P-O external P-Oex) type is present in the $PO_4^{3^-}$ ion (P-O ex) in the structural unit. The number and frequency band allocation can be quite different as a result of the symmetry of the crystal (overall symmetry of the crystal cell and the local symmetry of the $PO_4^{3^-}$ ion). The nature of the vibration corresponding to the different observed bands in the spectrum of Ba₃(PO₄)₂ (Fig. 1) is given in Table 2.

Wave number (cm⁻¹)

Figure 1:-IR spectra of the phosphate Ba₃(PO₄)₂

Table 2:-Frequencies (cm⁻¹) of IR absorption bands for Ba₃(PO₄)₂

Frequencies (cm ⁻¹)	Vibrations
3434	v O-H
2346	

1641	δ(H-O-H)
1380	v _{as} PO
1005	v _s PO
674	$\delta_{as} OPO^{-}$
555	δ _S OPO

Condensed phosphates

Oligophosphates $(P_nO_{3n+1})^{(n+2)}$ $P_2O_7^{4}$:

α -Ba₂P₂O₇

The crystals of α -Ba₂P₂O₇were synthesized by combining 0.17 g of BaHPO₄ and 0.05 g of NH₄H₂PO₄ with 0.4 ml of 1MBa(OH)₂ solution in a sealed silver ampoule for 7–10 days at 500°C with a counter pressure of 19000 psi (131 MPa). The contents of the ampoule were washed with deionized water. Colorless needle shaped single crystals of α -Ba₂P₂O₇ were the minor product and colorlesspolyhedrally shaped crystals of BaHPO₄ were the major product [9].

BaMnP₂O₇ monoclinic (1)

A mixture of BaCO₃ (0.987 g, 5.00 mmol), MnO₂ (0.435 g, 5.00 mmol) and P₂O₅ (0.710 g, 5.00 mmol) were ground thoroughly in a mortar, and then transferred to a ceramic crucible. The crucible was then placed in the tube furnace and heated in air to 1100°C for 72 h. At the end of the heating period, the furnace was cooled slowly (approximately 5°C/min) to room temperature. At this temperature the sample was removed from the oven. An yellow crystal was cleaved from the bulk sample and analysed by singlecrystal diffraction. It was found to belong to the monoclinic crystalline system [10].

BaMnP₂O₇ triclinic (2)

A mixture of BaCO₃ (0.987 g, 5.00 mmol), MnO₂ (0.436 g, 5.01 mmol) and P₂O₅ (0.710 g, 5.00 mmol) was ground thoroughly in a mortar, and then transferred to a ceramic crucible. The crucible was then placed in the oven (Thermolyne Model F21125) and heated in air to 1000°C for 72 h. After the heating period, the oven was cooled slowly (approximately 5°C/min) to room temperature. At this temperature the sample was removed from the oven. A yellow crystal was cleaved from the bulk sample and analysed by single crystal diffraction. It was found to belong to the triclinic crystalline system. An X-ray powder diffraction analysis indicated the bulk sample to be the pure triclinic form [10].

BaMP₂O₇ (M = Ni, Co, Cu, Cd, Zn, Mg)

Rioueta[11] described the syntheses of two mixed diphosphates, $BaNiP_2O_7$ and $BaCoP_2O_7$, prepared from powders at 900 °C and 1100 °C respectively. The two compounds are isotypic. The reported atomic arrangement of the cobalt salt showed the existence of a layered structure. Some discrepancies in the thermal coefficients indicate that additional work is needed to confirm the proposed atomic arrangement. Incommensurability phenomena appear for the nickel salt. The chemical preparation and crystal structure of $BaCuP_2O_7$ were recently reported by Moqine et al. [12]. The crystal structures of $BaCdP_2O_7$ and $BaZnP_2O_7$ were performed by Murashova et al. [13]. In addition the authors reported crystal data for $BaCoP_2O_7$ and $BaNiP_2O_7$. Crystal structure determinations for $BaMgP_2O_7$ and $PbZnP_2O_7$ were performed by Murashova et al. [14]

BaLi₂P₂O₇

Liebertz and Stahr[15] described the chemical preparation of $BaLi_2P_2O_7$. By using the Czochralski method, they prepared crystals up to 30 mm long. This salt melts congruently at about 1100 °C.

The Czochralski process is a method of crystal growth used to obtain single crystals of semiconductors (e.g. silicon, germanium and gallium arsenide), metals (e.g. palladium, platinum, silver, gold), salts and synthetic gemstones. The process is named after Polish scientist Jan Czochralski,[16]

$Ti_2Ba(P_2O_7)_2$, $Mo_2Ba(P_2O_7)_2$ and $V_2Ba(P_2O_7)_2$

Wang and Hwu[17] prepared the titanium derivative by heating a mixture of P_2O_5 , Ti and Ba_2TiO_4 in a molar ratio 2:1:4, at 900 °C for 72 h in an evacuated silica tube. This calcination is followed by a slow cooling (5°/h) to room temperature. The crystals obtained are gemlike navy blue. A crystal structure determination for this compound was reported by the authorsthe corresponding molybdenum and vanadium compounds were prepared and described by

Leclaire et al. [18] and Benhamada et al. [19] respectively. In both cases, the atomic arrangements are refined. The crystallographic data for the diphosphates associated to bariumis given in Table 3.

Formula	a(Å)	b(Å)	c(Å)	S.G.	Z
	α°	β°	γ°		
α -Ba ₂ P ₂ O ₇	9.2842	5.6113	13.796	Pnma	4
$BaMnP_2O_7$ (monoclinic)	12.825	8.633	5.5537	$P2_1/n$	2
		90.08			
BaMnP ₂ O ₇ (triclinic)	5.473	7.593	7.166	P-1	2
	102.10	86.03	89.29		
BaMgP ₂ O ₇	5.483	8.251	12.74	$P2_1/n$	4
		90.03			
BaNiP ₂ O ₇	5.323	7.58	7.117	P-1	2
	101.22	84.19	89.32		
BaCdP ₂ O ₇	5.641	7.038	7.624	P-1	2
	78.55	89.83	86.79		
BaZnP ₂ O ₇	5.316	7.309	77.579	P-1	2
	102.06	72.13	94.08		
BaCuP ₂ O ₇	7.353	7.578	5.231	P-1	2
	90.83	95.58	103.00		
BaCoP ₂ O ₇	5.370	7.58	7.151	P-1	2
	102.06	85.31	88.99		
BaLi ₂ P ₂ O ₇	7.078	12.164	13.856	Cmcm	8
$BaTi_2(P_2O_7)_2$	10.680	10.564	9.834	C2/c	4
	102.88				
$BaTi_2(P_2O_7)_2$	10.814	10.64	9.821	C2/c	4
	103.63				
BaTi ₂ (P ₂ O ₇) ₂	10.621	10.468	9.706	C2/c	4
	103.71				

Table 3:-Main Crystallographic Data for the diphosphates associated to barium.

Characterization of $P_2O_7^{4-}$ in BaMnP₂O₇ by IR vibration spectrometry.

IR absorption spectra of various compounds are recorded in the interval 1500-350 cm⁻¹ absorption field of the ions contained in condensed phosphates. As for the Raman scattering spectra, they are derived from 25 to 1500 cm⁻¹, including the field of external modes of cations and anions. Table 4 contains the main stretching and bending vibrations of $P_2O_7^{4-}$ anions [20]. The IR absorption spectrum of BaMnP₂O₇ is reported in Fig 2 and the nature of the vibration corresponding to the different observed bands of BaMnP₂O₇ is given in Table 5.

Table 4:-IR Frequency characteristics (in cm⁻¹) for $P_2O_7^{4-}$ anions

Vibrations	Frequencies
v_{as} (PO ₃)	$1115 - 1250 \text{ cm}^{-1}$
$v_s(PO_3)$	$1110 - 990 \text{ cm}^{-1}$
v _{as} (POP)	960- 720 cm ⁻¹
δ_{as} (PO ₃)	$660-529 \text{ cm}^{-1}$
$\delta_{s}(PO_{3})$	$529-300 \text{ cm}^{-1}$

Wave number (cm⁻¹)

Figure 2:-IR spectra of the phosphate $BaMnP_2O_7$ **Table 5:**-Frequencies (cm⁻¹) of IR absorption bands for $BaMnP_2O_7$

Frequencies (cm ⁻¹)	Vibrations
1116	v_{as} (PO ₃)
996	$v_{s}(PO_{3})$
920	$v_{as}(POP)$
735	
572	δ_{as} (PO ₃)
485	δ_{s} (PO ₃)

$P_{3}O_{10}^{5}, P_{4}O_{13}^{6}, P_{5}O_{16}^{7}$

Till now, there are no oligophosphates associated to barium for such anions.

Cyclophosphates $(P_nO_{3n})^{n-1}$ $P_3O_9^{3-1}$ Bas (P_nO_3) -:4H-O

$\mathbf{Ba}_3 (\mathbf{P}_3\mathbf{O}_9)_2 \cdot \mathbf{4H}_2\mathbf{O}$

Chemical preparation of pure $Ba_3(P_3O_9)_2 \cdot 4H_2O$ is difficult to optimize. Large crystals of cyclotriphosphatetetrahydrate of barium, $Ba_3(P_3O_9)_2 \cdot 4H_2O$, were prepared by mixing 30 g of $BaCl_2 \cdot 2H_2O$ and 6 g of $Na_3P_3O_9$ (Ba/Na = 2) in 50 ml of water without stirring for 5 h, as shown in the following chemical reaction : $3BaCl_2 \cdot 2H_2O + 2Na_3P_3O_9 \longrightarrow Ba_3(P_3O_9)_2 \cdot 4H_2O + 6NaCl + 2H_2O.$ $Ba_3(P_3O_9)_2 \cdot 4H_2O$ is stable until its melting point at 870°C.

Ba₃(P₃O₉)₂·6H₂O

Chemical preparation of polycrystalline samples of the title compound, $Ba_3(P_3O_9)_2.6H_2O$ [21],were prepared by adding slowly dilute cyclotriphosphoric acid to an aqueous solution of barium carbonate, according to the following chemical reaction :

 $2H_3P_3O_9 + 3BaCO_3 \longrightarrow Ba_3(P_3O_9)_2.6H_2O + 3CO_2$

The so-obtained solution was then slowly evaporated at room temperature until polycrystalline samples of $Ba_3(P_3O_9)_2.6H_2O$ were obtained. The cyclotriphosphoric acid used in this reaction was prepared from an aqueous solution of $Na_3P_3O_9$ passed through an ion-exchange resin "Amberlite IR 120"⁹ [20].

ZnBa₂(P₃O₉)₂.10H₂O and MnBa₂(P₃O₉)₂.6H₂O

Up to now there is only one cyclotriphosphate containing two divalent cations with a general formula $M^{II}M'^{II}2(P_3O_9)_2.nH_2O$. It's the cyclotriphosphatedecahydrate of barium and zinc, $ZnBa_2(P_3O_9)_2.10H_2O$, which was prepared by Durif et al. [22] using Boullé's process [23]. This salt is the only mixed-divalent cationcyclotriphosphate that has been reported in the chemical literature. So, the second example of such cyclotriphosphates is $MnBa_2(P_3O_9)_2.6H_2O$ [24-25]. This last cyclotriphosphate is isotypic of $Ba_3(P_3O_9)_2.6H_2O$ which was originally prepared through the use of Boullé's process [23] by Grenier and Martin [26] and its detailed structural characterization was later reported by Masse et al. [27].

Single crystals of $MnBa_2(P_3O_9)_2.6H_2O$ have been prepared by adding slowly dilutecyclotriphosphoric acid to an aqueous solution of barium carbonate and manganese carbonate with a stoichiometric ratio Ba/Mn = 2, according to the following chemical reaction :

 $2H_3P_3O_9 + 2BaCO_3 + MnCO_3 \longrightarrow MnBa_2(P_3O_9)_2.6H_2O + 3 CO_2$ The so-obtained solution is then slowly evaporated at room temperature until large rectangular prisms of $MnBa_2(P_3O_9)_2.6H_2O$ are obtained. The crystals are stable in air for many months under normal conditions of temperature and hygrometry.

BaCsP₃O₉.2H₂O

Single crystals of $BaCsP_3O_9.2H_2O$ [20,28], were prepared by slowlyadding dilute cyclotriphosphoric acid, $H_3P_3O_9$, to an aqueoussolution of barium carbonate, $BaCO_3$, and cesium carbonate, Cs_2CO_3 , with a stoichiometric ratio Ba/Cs = 1, according to the following chemical reaction:

 $H_3P_3O_9 + BaCO_3 + 1/2Cs_2CO_3 + 1/2H_2O \longrightarrow BaCsP_3O_9 + 2H_2O + 3/2CO_2$

BaNH₄P₃O₉·2H₂O

 $BaNH_4P_3O_9 \cdot 2H_2O$ was prepared from a new elaboration process [29]. Crystals of the title compound were prepared by adding slowly dilute cyclotriphosphoric acid to an aqueous solution of barium carbonate and ammonium carbonate with a stoichiometric ratio Ba/NH₄=1, according to the following chemical reaction:

 $H_3P_3O_9+BaCO_3+1/2(NH_4)2CO_3 \rightarrow BaNH_4P_3O_9.2H_2O+3/2CO_2$

The so-obtained solution is then slowly evaporated at room temperature until large rectangular prisms of $BaNH_4P_3O_9 \cdot 2H_2O$ are obtained. The crystals are stable in air for many months under normal conditions of temperature and hygrometry.

BaTlP₃O₉·2H₂O

Single crystals of the title compound, $BaTlP_3O_9 \cdot 2H_2O$ [29], were prepared by slowly adding dilute cyclotriphosphoric acid to an aqueous suspension of barium carbonate and thallium carbonate with a stoichiometric ratio $Ba/Tl = \frac{1}{4}$, according to the following chemical reaction:

$H_3P_3O_9 + BaCO_3 + 1/2 Tl_2CO_3 + 3/2 H_2O \longrightarrow BaTlP_3O_9 \cdot 2H_2O + 3/2 CO_2$

The so-obtained solution was then slowly evaporated at room temperature until large rectangular prisms of $BaTIP_3O_9 \cdot 2H_2O$ were obtained. The crystals are stable in air for many months under normal conditions of temperature and hygrometry.

BaTlP₃O₉

Polycrystalline samples of $BaTIP_3O_9$ were prepared by total dehydration of $BaTIP_3O_9 \cdot 2H_2O$ under atmospheric pressure between 300 and 500°C according to the following chemical reaction:

 $BaTlP_{3}O_{9} \cdot 2H_{2}O \longrightarrow BaTlP_{3}O_{9} + 2H_{2}O$

BaTlP₃O₉ was found to be stable until its melting point at 560°C [29].

BaNaP₃O₉.3H₂O

The title compound was obtained by adding $Ba(NO_3)_2 \cdot 2H_2O$ to a saturated aqueous solution of $Na_3P_3O_9$ (15ml) in the stoichiometric ratio, according to the following chemical reaction:

 $Na_3P_3O_9+Ba(NO_3)_2H_2O \longrightarrow BaNaP_3O_9.3H_2O + 2NaNO_3+H_2O$

The resulting mixture was left to stand at room temperature for two weeks, after while pink crystals $BaNaP_3O_9.3H_2O$ appeared on the bottom of the beaker [30].

BaNaP₃O₉·4H₂O

The cyclotriphosphatetetrahydrate of barium and sodium BaNaP₃O₉·4H₂O was first reported by Heitmann and Henneberg. Its chemical preparation and crystallographic data were reported by Martin and Durif [31], it's isotypic with the corresponding silver-barium, BaAgP₃O₉.4H₂O, described below. The trihydrate was obtained by

crystallization of an aqueous solution of the tetrahydrate at 60 °C. Averbuch-Pouchot and Durif [32] reported a complete description of its atomic arrangement.

BaNaP₃O₉

Barium trimetaphosphate was demonstrated in the study of the Ba(PO₃)₂-NaPO₃ system (Martin &Durif, 1972) [33].

BaAgP₃O₉.4H₂O

This hydrate, prepared by Boulle's process [23], was described by Durif and Averbuch-Pouchot[34] and its crystal structure was determined by Seethanen et al. [35].

BaAgP₃O₉

Crystal data for this salt, prepared by heating the corresponding tetrahydrate, described below, at 350 °C, were reported by Durif and Averbuch-Pouchot. [34] who identified it as an isotype of BaNaP₃O₉.

BaKP₃O₉.H₂O

This salt was first characterized by Martin. [36] and its atomic arrangement was subsequently determined by Seethanen and Durif [37].

$BaNa_4(P_3O_9)_2$

The main crystallographic features of $BaNa_4(P_3O_9)_2$ and its chemical preparation were reported by Averbuch-Pouchot and Durif [38] who identified this salt as an isotype of $PbNa_4(P_3O_9)_2$.

The crystallographic data for the cyclotriphosphates associated to bariumis given in Table 6.

 Table 6:-Main Crystallographic Data for the cyclotriphosphates associated to barium

Formula	a(Å) α°	b(Å) β°	c(Å) v°	S.G.	Z
$Ba_3(P_3O_9)_2 \cdot 4H_2O$	16.090	8.368 95.380	7.717	C2/m	2
$Ba_3(P_3O_9)_2.6H_2O$	7.547 108.58	11.975 100.35	13.068 95.54	P-1	2
$Ba_2Mn(P_3O_9)_2.6H_2O$	7.534 107.93	11.898 100.36	13.053 95.78	P-1	2
$Ba_2Zn(P_3O_9)_2.10H_2O$	26.52	7.625 100.93	12.92	C2/c	4
BaNaP ₃ O ₉ .4H ₂ O	21.33	7.01 122.18	18.26	C2/c	8
BaAgP ₃ O ₉ .4H ₂ O	21.35	7.163 121.72	18.35	C2/c	8
$BaNaP_3O_9.3H_2O$	7.0350 116.551	9.0470 95.932	9.88 74.088	P-1	2
BaCsP ₃ O ₉ .2H ₂ O	7.699	12.323 100.92	11.802	P2 ₁ /n	4
$BaTIP_3O_9.2H_2O$	7.546	12.105 100.34	11.649	P2 ₁ /n	4
$BaNH_4P_3O_9.2H_2O$	7.547	12.065 101.111	11.697	P2 ₁ /n	4
BaKP ₃ O ₉ .H ₂ O	7.34	17.77 95.24	7.18	P2 ₁ /n	4
BaNa ₄ (P ₃ O ₉) ₂	7.313 121.52	8.151 102.66	7.865 72.23	P-1	1

BaTIP ₃ O ₉	11.086	12.283	5.786	P2 ₁ 2 ₁ 2 ₁	4
BaNaP ₃ O ₉	11.055	12.278	5.785	P2 ₁ 2 ₁ 2 ₁	4

Characterization of P₃O₉³⁻ in Ba₃(P₃O₉)₂.6H₂Oby IR vibration spectrometry

The IR absorption spectrum of Ba₃(P₃O₉)₂.6H₂O [21], is reported in (Fig 3). In the domain 4000-1600 cm⁻¹, the spectrum (Fig 3) shows two bands at 3416 and 1616 cm⁻¹. The band at 3416 cm⁻¹ is attributed to the stretching vibrations of water molecules (v OH). The band at 1616 cm⁻¹ represents the bending vibration of water molecules (δ HOH). Between 1340 and 660 cm⁻¹, the spectrum (Fig 3) shows valency vibration bands characteristic of phosphates with ring anions P₃O₉³⁻[39]. Among these bands can be distinguished:

- 1. The vibration bands of the (OPO) end groups at high frequencies: $1180 < v_{as}$ OPO < 1340 cm⁻¹ and 1060 $< v_{s}$ OPO < 1180 cm⁻¹;
- 2. the valency vibrations of the (P-O-P) ring groups at : $960 < v_{as}$ POP < 1060 cm⁻¹ and $660 < v_{s}$ POP < 960 cm⁻¹;

The valency vibrations of the (POP) ring groups are represented in the spectrum (Fig 3) by a very strong band at about 983 cm⁻¹ which can be attributed to the v_{as} POP antisymmetric vibrations and by a strong band between 700 and 800 cm⁻¹ (at 744 cm⁻¹) which can be related to the v_s POP symmetric vibrations. The strong band at 744 cm⁻¹ characterize with no ambiguity the structure of a cyclotriphosphate $P_3O_9^{3-}$. Between 660 and 400 cm⁻¹ the spectrum (Fig 3) shows bending vibration bands characteristic of phosphates with ring anions. The nature of the vibration corresponding to the different observed bands is given in Table 7.

Figure 3:-IR spectra of the phosphate Ba₃(P₃O₉)₂.6H₂O

Frequencies (cm ⁻¹)	Vibrations
3416	v OH
1616	δНОН
1307	v _{as} OPO
1271	
	v _s OPO
1159	
1120	
1103	
	v _{as} POP
983	
871	
	v _s POP
744	
688	
	δΟΡΟ
645	+
635	ρΟΡΟ
526	

Table 7:-Frequencies (cm⁻¹) of IR absorption bands for Ba₃(P₃O₉)₂.6H₂O

$P_4O_{12}^{4}Ba_2P_4O_{12}\cdot 4H_2O.$

This hydrate was characterized by Nariai et al. [40]. The investigation, both in a dry and in a humid atmosphere, of its thermal behavior shows that crystallization water is released at about 150 °C. At 510 °C, the long-chain polyphosphate is observed after an intermediate step corresponding to an amorphous phase containing mainly oligophosphates. No crystal data exist for this compound.

Characterization of $P_4O_{12}^{4-}$ by IR vibration spectrometry

Fourakoye et al. [41] studied by IR absorption spectroscopy and Raman scattering, many cyclotetraphosphates with structures determined by X-ray diffraction and adopted the same approach as that of K. Sbai [42] for a cycle of order 3. The IR absorption spectrum of $Ba_2P_4O_{12} \cdot 4H_2O$ is reported in Fig 4.

The det	ailed exa	mination	of th	ne IR s	spectra of a	a series of cy	clotetraphospl	nates of	different sym	metries : S	$S_4, C_{2v}, C_i,$
C _{2h} and	C_{2h} and C_1 , allowed Fournakoye et al. [41] to identify a general pattern characterized by five distinct areas namely :										
-	from	1330		to	1180	cm^{-1} :	antisymme	tric	vibrations	v_{as}	OPO
−from	11	80	to		1080	cm^{-1} :	symmetrica	1	vibrations	ν_{s}	OPO
-	106	0-960		cm	⁻¹ :	antisymn	netric	vibrat	ions	δ_{as}	POP.
-	850	0-660		cm	i ⁻¹ :	symmetr	rical	vibrati	ons	δ_{s}	POP.
\neg 660-500 cm ⁻¹ : cycle bending, translations and rotations.											

The nature of the vibration corresponding to the different observed bands is given in Table 8.

Figure 4:-IR spectra of the phosphate $Ba_2P_4O_{12}$ ·4H₂O

Table 8:-Frequencies (cm⁻¹) of IR absorption bands for Ba₂P₄O₁₂·4H₂O

Frequencies (cm ⁻¹)	Vibrations
1328 ጊ	v _{as} OPO ⁻
1281 ^J	
1224 2	v _s OPO ⁻
1136 ^J	
1120	v _{as} POP
1087	
803	v _s POP
733	
581	δ ΡΟΡ
539 >	+
527 J	δ ΟΡΟ

P₆O₁₈⁶⁻Ba₃P₆O₁₈·9H₂O and Ba₃P₆O₁₈·8H₂O.

Thilo and Schülke [43] and Lazarevski and al. [44] obtained $Ba_3P_6O_{18}$ ·9H₂O as a white crystalline substance from the reaction between aqueous solution of $BaCl_2$ and $Na_6P_6O_{18}$. Recently, Rzaigui et al. [45] described the chemical preparation of the octahydrate and determined its crystal structure.

Ba₃P₆O₁₈·8H₂O crystallizes in the monoclinic system C2/c and the unit-cell parameters, a = 2098(2) Å, b = 7.227(3) Å, c = 17.44 (3) Å; Z = 4 and $\beta = 119.56$ (5).

Characterization of P₆O₁₈⁶⁻ in Ba₃P₆O₁₈.8H₂O by IR vibration spectrometry

The IR absorption spectrum of $Ba_3P_6O_{18}$.8H₂O is reported in (Fig 5).The most outstanding features noted in the IR spectra of cyclohexaphosphates were specified by G. Foumakoy and al. [41] and K. Sbai [42].

-	•			•	•				
7	Between	1300	and	1210	cm^{-1} :	antisymmetric	vibration	v_{as}	OPO ⁻ .
7	Between	1200	and11	10	cm^{-1} :	symmetric	vibration	ν_{s}	OPO ⁻ .
7	Between	1100	and	940	cm^{-1} :	antisymmetric	vibration	v_{as}	POP.
-	Between	890	and	650	cm^{-1} :	symmetric	vibrations	ν_{s}	POP.
7	Between	640	and 500	cm^{-1} :	angular	deformation	vibrations	δ	OPO-
- Bet	ween 450 and	300 cm ⁻¹ :	angular defor	mation vil	brations δ PC	OP			

The nature of the vibration corresponding to the different observed bands is given in Table 9.

Figure 5:-IR spectra of the phosphate $Ba_3P_6O_{18}.8H_2O$

Frequencies (cm ⁻⁺)	Vibrations
3453	v (О-Н)
1637	δ (Η-Ο-Η)
1381	
1273	
1142	v _s OPO ⁻
980	v _{as} POP
795	
751	v _s POP
512	δ ΟΡΟ
436	δΡΟΡ

Table 9: Frequencies (cm^{-1}) of IR absorption bands for $Ba_3P_6O_{18}.8H_2O$

$P_{10}O_{30}^{10}Ba_2Zn_3P_{10}O_{30}$

The preparation of single crystals of $Ba_2Zn_3P_{10}O_{30}$ by the use of a flux method was first reported by Bagieu-Beucher et al. [46]. These authors dissolved $BaCO_3$ and $ZnCO_3$ in stoichiometric amounts in an excess of H_3PO_4 and heated the mixture for several days at 400 °C. Polycrystalline samples were obtained by heating a stoichiometric mixture of $BaCO_3$, $ZnCO_3$, and $(NH_4)_2HPO_4$ for several days at 600-650 °C. Recently, Schülke [47] considerably improved these procedures. When a mixture of $BaCO_3$, $ZnCO_3$, and H_3PO_4 in the stoichiometric ratio was seeded with a few crystals of $Ba_2Zn_3P_{10}O_{30}$ and heated at 500 °C in a platinum crucible for 2h, $Ba_2Zn_3P_{10}O_{30}$ was obtained in 100% yield. Crystals used as seeds in this procedure are prepared by melting a stoichiometric mixture of $BaCO_3$, $ZnCO_3$, and H_3PO_4 at 750 °C for 10 min. The melt is then tempered at 400 °C for 12 h. This procedure is sometimes unsuccessful and leads to a mixture of various condensed phosphates.

 $Ba_2Zn_3P_{10}O_{30}$ crystallizes in the monoclinic system P2/n and the unit-cell parameters, a = 21.738(1) Å, b = 5.356(2) Å, c = 10.748 (4) Å; Z = 2 and $\beta = 99.65$ (3).

Characterization of P₃O₁₀⁵ by IR vibration spectrometry

Till now there is no triphosphate, P_3O_{10} , combined with barium cation. But we can afford for lecturers a detailed description for the calculated IR frequencies for the $P_3O_{10}^{5-}$ anions and the movements for each vibration.

The $P_3O_{10}^{5-}$ anion was studied in the range 4000 – 400 cm⁻¹. Band assignments for the fundamental modes, of valence and bending, of $P_3O_{10}^{5-}$ anions are presented in Table 10. The frequencies of the $P_3O_{10}^{5-}$ anion are assigned on the basis of the characteristic vibrations of the P–O–P Bridge, PO₂ and PO₃ groups. As the P–O bond in the PO₂ and PO₃ group is weaker than that in the P–O–P Bridge, the vibrational frequencies of PO₂ and PO₃ are expected to be higher than those for P–O–P. The bands due to the symmetric and antisymmetric stretching frequencies of PO₂ and PO₃ in $P_3O_{10}^{5-}$ are generally observed in the region 1190–1010 cm⁻¹[48]. The bands observed in the domain 970–840 cm⁻¹ are attributed to the antisymmetric and symmetric POP stretching modes. The bands due to δ (OPO), δ (PO₂), δ (PO₃) and δ (POP) are also identified in Table 10.

Calculated IR frequencies (cm ⁻¹)	Vibrations
1319	vP=O
1253	v _{as} PO ₂
1249	
1245	
1170	v _{aa} PO ₃
1081	v _s PO ₂
1059	v _a PO ₃
962	
891	v _{as} POP
724	

Table 10:-Calculated IR Frequencies of the $P_3O_{10}^{5-}$ anions by IR vibration spectrometry

671	v _s POP
605	δPO ₂
560	δPO ₃

$IP_5O_{15}^{5}, P_8O_{24}^{8}, P_{12}O_{36}^{12}$

Till now, there are no cyclophosphates associated to barium for such anions.

Long chain polyphosphates $(PO_3)_n$

β -Ba(PO₃)₂ and γ -Ba(PO₃)₂

Thilo and Grunze[49] identified Ba(PO₃)₂ during the study of the thermal dehydration of Ba(H₂PO₄)₂. This polyphosphate is polymorphic. Grenier and Martin [50], reported the existence of three forms of Ba(PO₃)₂. The normal β form already described, a high-temperature form called α and a third form (γ) accidentally produced during their investigations. According to these authors.

$$\gamma - \text{Ba}(\text{PO}_3)_2 \xrightarrow{978 \text{ K}} \beta - \text{Ba}(\text{PO}_3)_2$$
$$\beta - \text{Ba}(\text{PO}_3)_2 \xrightarrow{1058 \text{ K}} \alpha - \text{Ba}(\text{PO}_3)_2$$

BaMn(PO₃)₄, BaCd(PO₃)₄, BaCa(PO₃)₄ and BaHg(PO₃)₄.

The Ba(PO₃)₂-Cd(PO₃)₂ and Ba(PO₃)₂-Ca(PO₃)₂ phase equilibrium diagrams were elaborated by Bukhalova et al. [51]. BaCd(PO₃)₄ and BaCa(PO₃)₄, both congruent-melting long-chain polyphosphates (815 °C for Cd and 880 °C for Ca), were observed in these systems. The existence of these two isotypic salts was confirmed by Averbuch-Pouchot[52] who reported their main crystallographic features as well as those of two other isotypic compounds, BaMn(PO₃)₄ and BaHg(PO₃)₄. The atomic arrangement of this series of compounds was determined by Averbuch-Pouchot et al. [53] using the cadmium salt. An IR spectroscopic investigation of BaCa(PO₃)₄ and BaCd(PO₃)₄ was reported by Tokman and Poletaev[54].

Ba₂K(PO₃)₅.

Crystals of $Ba_2K(PO_3)_5$ wereobtained by heating at 480°C for 24 hours 1 gram of barium carbonate, 5 grams of potassium carbonate and 10 cm³ of orthophosphoric acid 85%. The crystals obtained are thick platelet hexagonal contours [55].

$Ba_2Cs(PO_3)_5$.

Itsatomic arrangement was determined by Masse and Averbuch-Pouchot [56]. $Ba_2Cs(PO_3)_5$ is an incongruent melting compound decomposing at 720 °C. The crystal data reported by the authors showed this polyphosphate to be isotypic with $Ba_2K(PO_3)_5$

Ba₂NH₄(PO₃)₅

 $Ba_2NH_4(PO_3)_5$ is isostructural with $Ba_2K(PO_3)_5$ and $Ba_2Cs(PO_3)_5$ [57]. The optimal conditions for preparation of the compound are 300°C and the molar ratio BaO: $NH_4PO_3 = 1:3$. An increase of temperature and reaction time causes the step-by-step crystallization of the following compounds in the system:

 $Ba(NH_4)_4(PO_3)_6 \rightarrow Ba_2NH_4(PO_3)_5 \rightarrow Ba(PO_3)_2.$

Ba(NH₄)₄(PO₃)₆

A mixture of BaO and NH_4PO_3 in the molar ratio 1:8 was placed in a wide silica crucible and kept under atmospheric conditions at 300 °C in a laboratory furnance[58].

BaCs₄(PO₃)₆

The final product of total thermal dehydration of $BaCsP_3O_9.2H_2O$, between 500 and 600°C is the long chain polyphosphate of barium and cesium $BaCs_4(PO_3)_6$ [28].

Ba₂Cu(PO₃)₆ and Ba₂Zn(PO₃)₆

 $Pb(PO_3)_2$ - $Cu_2P_4O_{12}$, $Sr(PO_3)_2$ - $Cu_2P_4O_{12}$ and $Ba(PO_3)$ - $Cu_2P_4O_{12}$ phase-equilibrium diagrams were elaborated by Laiigt[59]. The first two diagrams are of the eutectic type 650 °C, 20% Pb(PO_3)_2 and 780 °C, 40% Sr(PO_3)_2], but the

third one shows the existence of $Ba_2Cu(PO_3)_6$, a congruent melting (830°C) long-chain polyphosphate. The atomic arrangement of $Ba_2Cu(PO_3)_6$ was later determined by Laiigt[59].

Ba₂Li₃(PO₃)₇

Owing to a lack of accuracy in the determination of the $LiPO_3$ -Ba(PO_3)₂ phase-equilibrium diagram by Martin [36], the only compound reported in this study was originally thought to correspond to BaLi(PO_3)₃. A re-examination of this diagram by El-Horr[60] showed that the correct formula is Ba₂Li₃(PO₃)₇. The crystal structure determination performed by N. El-Horr et al. [61] confirmed this formula.

Formula	a(A)	b(A)	c(A)	S.G.	Z	
	α°	β°	γ°			
β -Ba(PO ₃) ₂	4,51	13,44	8.360	P2 ₁ 2 ₁ 2 ₁	4	
γ-Ba(PO ₃) ₂	9.692	6.894	7.512	P2 ₁ /n	4	
		94.77				
BaMn(PO ₃) ₄	14.69	9.147	7.201	P2 ₁ /n	4	
		90.57				
BaCd(PO ₃) ₄	14.94	9.192	7.219	P2 ₁ /n	4	
		90.79				
BaCa(PO ₃) ₄	15.24	9.173	7.231	P2 ₁ /n	4	
		90.96				
BaHg(PO ₃) ₄	15.05	9.236	7.239	P2 ₁ /n	4	
		90.62				
Ba ₂ K(PO ₃) ₅	8.646	7.329	13.884	Рс	2	
		129.17				
Ba ₂ Cs(PO ₃) ₅	8.444	7.509	13.976	Рс	2	
		125.31				
$Ba_2NH_4(PO_3)_5$	8.649	7.312	13.873	Рс	2	
		128.14				
$Ba(NH_4)_4(PO_3)_6$	11.1911	11.1911	8.9375	P3 ₁ c	2	
BaCs ₄ (PO ₃) ₆	11.541	11.541	9.112	P31c	2	
Ba ₂ Cu(PO ₃) ₆	21.382	7.286	9.520	P2 ₁ /a	4	
		97.96				
Ba ₂ Zn(PO ₃) ₆	21.52	7.278	9.534	P2 ₁ /a	4	
		97.83				
Ba ₂ Li ₃ (PO ₃) ₇	18.0148	8.535	11.584	P2 ₁ /a	4	
		104.48				

 Table 11:-Main Crystallographic Data for the polyphosphates associated to barium

Characterization of PO₃ in β [Ba(PO₃)₂]by IR vibration spectrometry

Characterization of β [Ba(PO₃)₂] by IR vibration spectrometry. The IR absorption spectrum of β [Ba(PO₃)₂] is reported in Fig 6. Between 1300 and 650 cm⁻¹ the spectrum Fig 6, shows valency vibration bands characteristic of long-chain polyphosphates PO₃⁻. Among these bands can be distinguished:

- 1. The vibration bands of the (OPO) end groups at high frequencies: $1200 < v_{as}$ OPO < 1300 cm⁻¹ and $1100 < v_{s}$ OPO < 1170 cm⁻¹;
- 2. The valency vibrations of the (P-O-P) chain groups at: 850 $<v_{as}$ POP < 1050 cm⁻¹ and $650 < v_s$ POP < 800 cm⁻¹;

The valency vibrations of the (POP) chain groups are represented in the spectrum Fig 6, by a strong band at about 865 cm⁻¹ which can be attributed to the v_{as} POP antisymmetric vibrations. This strong band which is situated

generally between 850 cm⁻¹ and 940 cm⁻¹ (in this case at 865 cm⁻¹) characterize with no ambiguity the structure of a long-chain polyphosphate PO_3^- . The strong band which is situated at 865 cm⁻¹ and corresponding to the v_{as} POP antisymmetric vibration, characterize with no ambiguity the structure of a long-chain polyphosphate PO_3^- . By the examination of the position, the profile and the intensity of this band which doesn't appear in the IR spectra of the cyclotriphosphates $P_3O_9^{3-}$ and which is located generally between 850 cm⁻¹ and 940 cm⁻¹, it is then possible to distinguish between cyclotriphosphate $P_3O_9^{3-}$ and long-chain polyphosphate PO_3^- . Between 600 and 400 cm⁻¹ the spectrum Fig 3, shows bending vibration bands characteristic of long-chain polyphosphates. The nature of the vibration corresponding to the different observed bands is given in Table 12.

Figure 6:-IR spectra of the phosphate β -Ba(PO₃

Frequencies (cm ⁻¹)	Vibrations
1305	
1158	v _{as} OPO ⁻
1086	v _{as} OPO ⁻
1023 865	v _{as} POP
772 686	v _s POP
636 563 510 431	δ ΟΡΟ ⁻ + ρ ΟΡΟ ⁻

Table 12: Frequencies (cm ⁻¹	¹) of IR absorption bands for β -Ba(PO ₃) ₂
---	--

Ultraphosphates $[P_{(2+n)}O_{(5+3n)}]^{n-1}$

Till now, there are no cyclophosphates associated to barium for such anions.

Conclusion:-

We have collected crystallographic data for condensed phosphates and monophosphates associated to barium with known structures. Various condensed phosphates and monophosphates, especially there anions, were characterized by infrared vibration spectrometry. Different methods of preparations of condensed phosphates were cited here (Boulle's process, classical methods, thermal methods as dehydration, flux methods, ion-exchange resins and non-conventional methods). Till now there are no condensed phosphates with the following anions: cyclophosphates

 $P_nO_{3n}^{n-}$ (3 type of anions : $P_5O_{15}^{5-}$, $P_8O_{24}^{8-}$, $P_{12}O_{36}^{-12-}$) and oligophosphates $(P_nO_{3n+1})^{(n+2)-}$ (3 type of anions : $P_3O_{10}^{5-}$, $P_4O_{13}^{6-}$, $P_5O_{16}^{7-}$). In no way we have extrapolated these ideas to design possible but not yet existing compounds. It is certainly a pleasant game for rainy days to play with the infinite possibilities of tetrahedron linkage geometry, but it remains a game. For instance, it is rather evident that branched polyphosphates or cyclophosphates will one day be characterized. We understand perfectly well that such ideas may become the objects of controversies but we just want to open a field of discussions among the scientists involved in the more and more complex problems of phosphate chemistry.

References:-

- 1. H. A. Hoppe, M. D. O. Oeckler, Solid State Sciences. 11, 1484-1488 (2009).
- 2. R. Masse and A. Durif, journal of solid state chemistry. 71,574-576 (1987).
- 3. K. Sugiyama and M. Tokonami. Mineralogical journal, vol 15; No 4 pp. 141-146 (1990).
- 4. Z. Btrcsak and William T. A. Harrison, ActaCryst. C54, 1554-1556 (1998).
- 5. A. Moqine, A. Boukhari and J. Darriet, journal of solid state chemistry 107,362-367 (1993).
- 6. Calculated from ICSD using POWD-12++ (1997)
- 7. D. Peter Battle, journal of solid state chemistry, Volume 62, Issue 1, 16-25 (1986)
- 8. P. D. Battle, T. C. Gibb, and S. Nixon, journal of solid state chemistry 75, 21-29 (1988).
- 9. C. Heyward, M. Mann and J. Kolis. ActaCrystallographica Section E, ISSN 1600-5368, (2010).
- 10. R. D. Adams and R. Layland, Polyhedron Vol. 14, No, 23 24. pp. 3473 3480 (1995)
- 11. D. Riou, P. Labbe, and M. Goreaud, C. R. Acad. Sci., Ser. 2 307, 903-907 (1988).
- 12. A. Moqine, A. Boukhari, and E. M. Holt, ActaCrystallogr., Sect. C 47, 2294-2297 (1991).
- 13. E. V. Murashova. Yu. A. Velikodnyi, and V. K. Trunov, Russ. J. Jnorg. Chern. 36,479-481 (1991).
- 14. E.V. Murashova, Yu. A. Velikodnyi, and V. K. Trunov, Russ. J. Jnorg. Chern. 36,481- 483 (1991).
- 15. J.Liebertz and S.Stahr, Z. Kristallogr. 162, 313-314 (1983).
- 16. P. Tomaszewski, J. Czochralski i jegometoda. ang.JanCzochralski and his method), OficynaWydawniczaATUT, Wrocław–Kcynia (2003).
- 17. S. Wang and S. J. Hwu, J. Solid State Chern. 90, 31-41 (1991).
- 18. A. Leclaire, J.Chardon, M. M.Borel, A. Grandin, and B.Raveau, Z. anorg. allg. Chern. 617, 127-130 (1992).
- 19. L. Benhamada, A. Grandin, M. M. Borel, A. Leclaire, and B. Raveau, ActaCrystallogr. C47,2437-2438 (1991).
- 20. Belhabra, M.; Zerraf, S.; Kheireddine, A.; Altomare, A.; Tridane, M.; Ouasri, A.; Radida, M and Belaaouad, S. Chemical Data Collections. 13, 73-83 (2018).
- 21. S. Belaaouad, Y. Lahrir, S. Sarhane and M. Tridane, Phosphorus Research Bulletin Vol. 23, 67-75, (2009).
- 22. A. Jouini and A. Durif., C. R. Acad. Sci., 297 (II),573 (1983).
- 23. A. Boulle, C. R. Acad. Sci., 206, 517 (1938)
- 24. Malika Tridane. Doctorat national. Faculté des sciences ben M'sik Casablanca (2006).
- 25. M. Tridane, S. Belaaouad, K. Sbai. Solid State Sciences. 701-704 (2000)
- 26. J. C. Grenier and C. Martin, Bull. Soc. Fr. Minéral. Cristallogr., 98, 107 (1975).
- 27. R. Masse, J. C. Guitel and A. Durif, ActaCrystallogr., B 32, 1892-1894 (1976).
- M. Belhabra, A. Kheireddine, H. Moutaabbid, B. Benoit, R. Lamsatfi, I. Fahim, M. Tridane, M. Moutaabbid and S. Belaaouad, International Journal of Recent Scientific Research Vol. 6, Issue, 12, 7832-7836, (2015).
- 29. A. Kheïreddine, M. Tridane, and S. Belaaouad. Powder Diffraction Vol 27, Issue 01, page 32-35(2012).
- M. Ezzaafrani, F. Capitelli, A. Ennaciri, M. Harcharras. Phosphorus, Sulfur, and Silicon, 189:1841–1850, (2014).
- 31. T. Yamada and H. Koizumi, J. Cryst. Growth 64, 558-562 (1983).
- 32. A. Larbot, J. Durand, and A. Norbert, Rev. Chirn. Miner. 17, 548-554 (1980).
- 33. M.Claude., A. Mitschler, Acta Cryst. B 28, 2348-2352, (1972).
- 34. A.Durif and M.T.Averbuch-Pouchot, J.Appl. Crystallogr.9,247-248 (1976).
- 35. D.Seethanen, A.Durif, and J.C.Guitel, ActaCrystallogr, Sect.B32, 2716-2719 (1977)
- 36. C.Martin, Dissertation, University of Grenoble, Grenoble France (1972).
- 37. D. Seethanen and A.Durif, ActaCrystallogr, Sect B 34, 1091-1093 (1978).
- 38. M. T. Averbuch-Pouchot, Acta Crystallogr. 1978, B34, 20 (1978)
- 39. Zerraf, S.; Belhabra, M.; Kheireddine, A.;Lamsatfi, R; Tridane, M.;Moutaabbid, M.;Baptiste, B.; Moutaabbid, M and Belaaouad, S.;Phosphorus, Sulfur, and Silicon and the Related Elements..192(12),1286-1293(2017).
- 40. H. Nariai, I. Motooka, Y. Kanaji, and M. Tsuhako, Bull. Chern. Soc. Jpn. 64, 2912-2917 (1991).

- 41. E. Thilo and U. Schiilke, Z. Anorg. Allg. Chem. 341, 293-307 (1965).
- 42. K .SBAI. Thése d'état. Dijon (1984).
- 43. G.Foumakoye ,R.Rulmont and P.Tarte, Spectrochim. Acta Part A 46(8) 1245 (1990).
- 44. E. V. Lazarevski, L. V. Kubasova, N. N. Chudinova, and I. V. Tananaev, /zv. Aknd.
- 45. Nauk SSSR, Neorg. Mater.17,486-491 (1981).
- 46. M. Rzaigui, M. T. Averbuch-Pouchot, and A. Durif, Acta Crystal/ogr., Sect. C 48, 241-
- 47. 243 (1992).
- 48. A. Atibi, K. El Kababi, M. Belhabra, S. Zerraf, M. Tridane & S. Belaaouad. "Journal of Coordination Chemistry, 1-11(2018).
- 49. M.Bagieu-Beucher, A. Durif, and J.C. Guitel, J. Solid State Chern. 40, 248 (1981).
- 50. U. Schülke, M. T. Averbuch-Pouchot, and A. Durif, Z. anorg. allg. Chern. 612, 107- 112.(1992).
- 51. E. Thilo and I. Grunze, Z. anorg. Chern. 290, 223-237 (1957).
- 52. J. C. Grenier and C. Martin, Bull. Soc.fr. Mineral. Cristallogr. 98, 107-110 (1975).
- 53. G. A. Bukhalova, I. A. Tokman, and V. M. Shpakova, Russ. J. 1norg. Chern. 15, 865-866 (1970).
- 54. M.T. Averbuch-Pouchot, J. Appl. Crystal/ogr. 8, 389-390 (1975).
- 55. I. A. Tokman and E.V. Poletaev, 1zv. Akad. Nauk SSSR, Neorg. Mater. 12, 735-737 (1976).
- 56. C. Martin, I. Tordjmax et A. Durif, Zeitschrift fur Kristallographie, Bd. 141, S. 403-411,(1975)
- 57. R Masse M Averbuch Pouchot .Materials Research Bulletin 12(1):13-16
- 58. Ludmila S. Ivashkevich, Anatoly F. Selevich, Anatoly I. Lesnikovich and Alexander S. Lyakhov. ActaCrystallographica Section E. ISSN 1600-5368, (2006).
- 59. M. Laiigt and J. C. Guitel, ActaCrystallogr., Sect. B 31, 1148-1153 (1975).
- 60. N.EI-Horr, Dissertation, University of Grenoble, Grenoble France (1988).
- 61. N. EI-Horr, M. Bagieu, J.C.Guitel, and I.Tordjman, Z. Kristallogr. J69, 73-82 (1984).