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Diabetes mellitus is a metabolic disorder known to cause retinopathy, neuropathy 

and nephropathy. Diabetic nephropathy is a persisting major microvascular 

complication of uncontrolled hyperglycemia that affects a large number of people 

worldwide. Recent studies suggest that numerous pathways are activated during 

the course of diabetes mellitus and these pathways individually or collectively 

play a role in the induction and progression of diabetic nephropathy. However, 

clinical approaches targeting these pathways to manage diabetic nephropathy 

remain inadequate, as the number of diabetic patients with nephropathy is 

increasing yearly. For the development of new and effective therapeutic options 

to prevent the induction and progression of diabetic nephropathy, an ample 

understanding of the molecular mechanisms involved in the pathogenesis of the 

disease is obligatory. Thus, the purpose of this paper is to discuss the underlying 

mechanisms and downstream pathways involved in the pathogenesis of diabetic 

nephropathy. 
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INTRODUCTION 
 

Diabetes Mellitus is a metabolic disorder characterized by chronic hyperglycemia with disturbances of carbohydrate, fat 

and protein metabolism resulting from defects in insulin secretion, insulin action, or both. Long term hyperglycemia 

often results in micro vascular and macro vascular complications such as nephropathy, neuropathy, retinopathy, cerebra 

vascular disease and peripheral vascular disease [1]. 

Diabetic nephropathy is a distinct phase clinical syndrome with partial or complete loss of kidney function. The 

structural changes in kidney including thickening of basement membrane, mesangial expansion, glomerular hypertrophy, 

fibroblast proliferation, matrix deposition glomerulosclerosis and tubular necrosis are generally observed in the patients 

of diabetic nephropathy (approx. in 30-40% of DM cases) [2].  Various functional abnormalities of kidney such as 

persistent elevated albuminuria, elevated arterial blood pressure, declined glomerular filtration rate (GFR) and fluid 

retention are also associated with diabetic nephropathy [3]. The down regulation of endothelial nitric oxide synthase 

(eNOS) [4], peroxisome proliferator-activated receptor- γ (PPAR-γ) has been noted to be involved in pathogenesis of 

diabetic nephropathy [5]. The elevated levels of several pathological substances such as vasoactive peptide like 

angiotensin-II [6] endothelin-1 and growth factors like vascular endothelial growth factor (VEGF), transforming growth 

factor- β1 (TGF-β) [7], advanced glycation end (AGE) products and lipid mediators such as 5-lipooxygenase derived 

substances like 12-hydroxyeicosatetraenoic acid (12-HETE) and 20-hydroxyeicosatetraenoic acid (20-HETE) [8] have 

been implicated in the pathogenesis of diabetic nephropathy. 

 

Molecular pathways involved in Diabetic Nephropathy 

 

1. Role of RAAS in DN: Renin angiotensin aldosterone system has a crucial role in homeostatic control of tissue 

perfusion, arterial pressure and extracellular volume. Along with hemodynamic effects, RAAS is also involved in renal 
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tissue cell infiltration and inflammation [9]. It is evident that renin and its receptor [(Pro) renin receptor (PRR)] play an 

important role in the development and progression of kidney disease during diabetes by increasing the renal production 

of inflammatory cytokines i.e. tumor necrosis factor- α (TNF-α) and interleukin-1β (IL-1β), independent of the actions 

of renal angiotensin II (Ang II) [10] and renin is also involved in the expression of TGF-β1 in mesangial cells thereby 

stimulating plasminogen activator inhibitor-1 (PAI-1), fibronectin and collagen I [11], type IV collagen and VEGF, each 

of which was suppressed by aliskiren, a renin inhibitor, determining the role of renin in the induction and development 

of diabetic nephropathy [12,13].  

Hyperglycemia increases renal aldosterone levels by inducing CYP11B2 expression [14] and found to be one of the key 

mediators in the pathogenesis of diabetic nephropathy. In the kidney, mesangial cells are recognized to produce 

aldosterone in response to Ang II, which leads to accumulation of extracellular matrix (ECM) [15]. In experimental 

diabetic nephropathy, treatment with spironolactone (an aldosterone receptor antagonist) has been proved to reduce 

albuminuria and alleviate glomerulosclerosis by downregulating the renal expression of matrix-regulating genes, such as 

TGF-β, matrix metalloproteinase (MMP), VEGF and insulin growth factor.[16] Further, spironolactone was illustrated in 

an experimental study to show renoprotective effects by decreasing oxidative stress and attenuating the overexpression 

of Monocyte Chemoattractant Protein-1 in patients with diabetic nephropathy [17]. Together, these studies demonstrate 

the direct detrimental role of RAAS in the pathogenesis of diabetic nephropathy. 

Over-activation of intrarenal Ang II causes hypertension and renal injury and results in decreased renal function and 

structural changes in the kidney [18]. Also, Ang II directly induces podocyte injury via the activation of Ang II receptor 

type 1 (AT1) receptors, independent of hemodynamic changes [19]. Moreover, Ang II interacts with various local 

autocrine and paracrine factors i.e.  NO, eicosanoids, adenosine, and superoxide, to affect the glomerular filtration rate 

[20]. It is important to note that glucose increases the expression of the angiotensinogen gene in proximal tubule cells 

and Ang II production in mesangial cells, suggesting that high glucose itself activates the renin–angiotensin system [21, 

22].  

Ang II and other elements of the RAAS have a vital role in the pathogenesis and succession of diabetic renal disease. A 

research in patients with type-1 diabetes and nephropathy proved that RAAS inhibition with ACE inhibitors was linked 

with a decreased risk of development to end-stage renal disease (ESRD) and mortality as compared to non-RAAS-

inhibiting drugs. ACE inhibitors can also put a stop to microalbuminuria in type-2 diabetic patients who are hypertensive 

and normoalbuminuric. ARBs show renoprotective effects in patients with type-2 diabetes and microalbuminuria. 

Studies have found the renoprotective activity of other RAAS inhibitors, e.g. aldosterone antagonists and renin 

inhibitors, given either alone or in combination with ARBs or ACE inhibitors. An imperative job for the future will be 

determining the combination of drugs which achieves the best renoprotective activity at the lowest cost. These findings 

will have major significance, mainly in settings where resources like money and facilities are limited [120]. 
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Fig.1. The 

signaling mechanism involved in RAAS-mediated initiation and development of diabetic nephropathy. 

 

2. Role of protein kinase C in Diabetic Nephropathy: PKC, a family of serine threonine kinases that consists of no less 

than 15 isoforms, including PKC-α, -β1, -β2, -δ and -ε, has been known to be activated in the glomeruli of diabetic rats 

and in mesangial cells exposed to high glucose [23,24,25]. Activated PKC regulates various vascular functions, such as 

contractility, cell proliferation and extracellular matrix protein synthesis [26, 27, 28]. The PKC-α isoform has been 

documented to be involved in the pathogenesis of diabetic nephropathy by upregulating VEGF expression [29]. Despite 

PKC-α, other isoforms of PKC, such as PKC-β and PKC-ε have also been implicated in mediating high glucose-induced 

VEGF expression in mesangial cells [30]. A study suggested that the diabetes-induced activated PKC-β isoform may 

induce renal fibrosis through the upregulation of TGF-β, type IV collagen, laminin and fibronectin in the glomeruli of 

diabetic rats resulting in the pathogenesis of diabetic nephropathy [31]. In a new study, the PKC-β isoform was found to 

be activated in the glomeruli of diabetic db/db mice, and treatment with a PKC-β-specific inhibitor i.e. ruboxistaurin 

mesylate inhibited glomerular PKC activation and ameliorated an increase in urinary albumin excretion. This treatment  

also helped to reduce the glomerular expression of TGF-β and ECM accumulation, thereby restoring the structural 

changes such as mesangial expansion [32]. Collectively, these studies express the mechanism involving these PKC 

isoforms in the induction and development of diabetic nephropathy.  

3. Role of AGE products in Diabetic Nephropathy: A number of studies have concentrated on the factors involved in 

the pathogenesis of diabetic complications; most looking for effective therapies, but none of them have successfully 

elucidated the exact cellular or molecular basis of these complications. Hyperglycemia is still regarded as the major 

cause of diabetes complications. Its harmful effects are determinable, along with other things, to the formation of sugar-

derived substances known as advanced glycation end products (AGEs). The formation of AGEs takes place at a constant 

but slow rate in the normal body, initiating in early embryonic development and accumulating with time. But their 

production is markedly increased in diabetes due to high glucose levels. AGEs are a heterogeneous group of molecules 

formed from the non-enzymatic reaction of reducing sugars with free amino groups of proteins, lipids (fatty material 
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etc.) and nucleic acids. The first product of this reaction is called a Schiff base, which suddenly rearranges itself into an 

Amadori product like in the case of the well-known hemoglobin A1c (A1C). These initial reactions are reversible 

depending on the concentration of the reactants. A lowered glucose concentration will detach the sugars from the amino 

groups to which they are attached; contrarily, high glucose concentrations will have the opposite effect, if persistent. As 

a result, a series of reactions, including successions of dehydration, oxidation-reduction reaction and other re-

arrangements lead to the formation of AGEs [33]. Intracellularly, AGEs are derived from various dicarbonyls, mainly 

methylglyoxal, which is synthesized from Glyceraldehyde-3-Phosphate (G-3-P) or dihydroxyacetone following catalysis 

by G-3-P dehydrogenase (GAPDH) [34]. These AGEs can alter various intracellular events i.e. the activation of PKC, 

Mitogen-activated Protein Kinase (MAPK) and transcription factors such as nuclear factor κB (NF-κB) [35, 36]. These 

events, subsequently, regulate the expression of diverse growth factors and cytokines such as TGF-β, which influence 

the synthesis of different ECM proteins. Extracellular AGEs are formed by irreversible cross-linking of glucose with 

ECM structural proteins that are type IV collagen, fibronectin, laminin and proteoglycans [36]. These modified proteins 

are less susceptible to enzymatic hydrolysis by matrix metalloproteinases (MMPs), which would let them to accumulate 

in the extracellular space [37]. In addition, glycation of sulfated proteoglycans decreases their electronegativity and thus 

changes the charge-selective filtration properties of the basement membrane, leading to microalbuminuria [38, 39]. 

Moreover, extracellular AGEs can modulate cellular functions by binding to their associated receptor, RAGE, or with 

binding proteins, specifically OST-48, galectin-3, 80 K-H and type II macrophage scavenger receptor, which may also 

alter cell and matrix functions [34, 35]. Such alterations may cause interference with cell-matrix interactions and 

changes in neurite growth, adhesiveness and the hyperpermeability of capillaries [40]. A study suggests that changed 

functions related to the vascular complications of diabetes mellitus can be partially reversed (a) by the administration of 

aminoguanidine (an AGE inhibitor) and AGE cross-link breaker, or (b) by blocking RAGE [36]. High concentrations of 

intra- or extracellular AGEs in high-glucose atmosphere alter some other cellular events including the generation of 

ROS and quenching of NO; both ROS and NO are known to modulate PKC and MAPK activities and to activate 

transcription factors such as NF-κB and activator protein 1 (AP-1), consequently increasing the expression of ECM 

proteins [34, 36]. Interestingly, AGEs themselves can also covalently bind with ECM or cellular proteins, which further 

show their harmful effects in various tissues [34, 36]. In this way, AGEs can play detrimental role in the pathogenesis of 

diabetic nephropathy and various other complications. 
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Fig.2. Sequence of events following AGE: RAGE (advanced glycation end products: receptor for advanced glycation 

end products) and activated protein kinase C (PKC), which modulate the expression of a wide variety of genes leading to 

increased vascular permeability, mesangial expansion, hyperfiltration, and proteinuria. Abbreviations: Ang II, 

angiotensin II; e-NOS, endothelial nitric oxide synthase; ET-1, endothelin 1; IP3, inositol trisphosphate; PAI-1, 

plasminogen activator inhibitor 1; PIP2, phosphatidylinositol 4,5-bisphosphate; ROS, reactive oxygen species; TGF-β, 

transforming growth factor β; VEGF, vascular endothelial growth factor. 

4. Role of ROS (Reactive Oxygen Species) in Diabetic Nephropathy: Many studies suggest that the activities of 

Advanced Glycation End Products , Protein Kinase C and Reactive Oxygen Species (ROS) are interrelated and that the 

ROS may serve as reciprocal inducers and amplifiers of the signaling cellular events that occur in high-glucose 

environment [41, 38, 42, 43, 44]. Usually, ROS are formed in small amounts that are essential to maintain cellular 

homeostasis, but in case of hyperglycemia, their concentrations rise significantly, damaging various target organs [42]. 

Superoxide anion O2
·−

, H2O2, hydroxyl radical, and peroxynitrite can induce renal injury [44]. Cytoplasmic CuZn 

superoxide dismutase (CuZnSOD), mitochondrial manganese superoxide dismutase (MnSOD), and heme oxygenase 1 

are the enzymes that can scavenge ROS [45, 46]. Intriguingly, the latter undergoes an incredible adaptive response (> 

10-15 fold increase) in case of hyperglycemia, apparently to reduce ROS mediated oxidant stress [46]. ROS are formed 

via two systems: (1) primarily via mitochondrial oxidative phosphorylation and (2) in minute amounts via the NADPH-
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oxidase system [47, 48, 49, 50]. ROS are the by-products of oxidative phosphorylation, in which electron donors e.g. 

NADH and FADH2 produce a high membrane potential by pumping H
+
 ions across the mitochondrial inner membrane 

[38, 51]. Consequently, electron transport is blocked, the half-life of free-radical intermediates of coenzyme Q increases, 

and molecular O2 is reduced to O2
·−

 with ensuing oxidant stress. 

High glucose concentrations enhance the expression of the NADPH oxidase subunits-p22phox and p47phox in 

mesangial cells in vitro and in vivo in a PKC-dependent manner [52, 53, 54]. Further, high glucose induces intracellular 

ROS in mesangial cells and tubular epithelial cells, which can be successfully blocked by the inhibition of NADPH 

oxidase; this suggests the crucial role of NADPH oxidase in high glucose-induced ROS generation [55, 56]. It is also to 

be noted that NADPH oxidase-mediated ROS further activates additional enzyme systems, e.g., ROS-dependent NOS 

uncoupling, predominantly of eNOS, whereby the enzyme no longer produces NO but rather becomes a source of 

superoxides [57, 58]. NADPH oxidase-mediated renal oxidative stress causes mesangial expansion and albuminuria by 

increasing the expression of fibronectin and collagen-1 in the kidney [59]. The harmful role of NADPH oxidase in the 

progression of diabetic nephropathy has been further confirmed by several studies in which treatment with NADPH 

oxidase inhibitors noticeably attenuated the progression of nephropathy by reducing the occurrence of albuminuria and 

preventing the development of glomerulosclerosis through a reduction of renal oxidative stress [36, 60, 61, 62]. All these 

key interactions between ROS, NADPH oxidase and the important pathways implicated in the progression of diabetic 

nephropathy are useful to understand the molecular basis of the complication.  

5. Role of Transforming Growth Factor β in Diabetic Nephropathy: TGF-β1 is extensively considered to be the most 

pertinent cytokine to the ECM glomerular pathology normally observed in patients with chronic progressive diabetic 

nephropathy.TGF-β1, a prototype of the TGF-β family, exerts pleotropic effects i.e. it inhibits proliferation in certain 

cells and apoptosis in others—but it induces hyperplasia and hypertrophy of mesangial cells [63, 64, 65, 66]. In the 

ECM, TGF-β1 occurs as an inactive, dormant form of propeptide complexed with TGF-β1-binding proteins and both are 

cross-linked with matrix proteins by transglutaminase [67, 68, 69, 70]. Plasmin, MMP-2 and −9 or thrombospondin 1 

cleave these complexes and generate an active form of TGF-β1. The activated TGF-β1 binds first to a type II 

serine/threonine kinase receptor, which transphosphorylates and activates a type I receptor consequently. Modulation of 

the downstream-signaling SMAD protein, MAPK, and perhaps Protein Kinase-A cellular pathways and various nuclear 

events take place after this process. The activated TGF-β1 receptor combines with SMAD2 and −3 to form a 

heterodimeric complex with common-mediator co- SMAD4, which translocates into the nucleus and regulates 

transcription of TGF-β1 target genes like collagen α1(I), PAI-1,Jun B, c-Jun, and fibronectin [67, 68, 69, 70]. In addition 

to SMADs, the extracellular signal-regulated kinases 1 and 2 (ERK1 and −2), the p44/p42 MAPKs, c-Jun N-terminal 

kinase/stress-activated protein kinase (JNK/SAPK), and p38 MAPK regulate the TGF-β1 signaling cascade in mesangial 

cells [63]. These kinases modulate the transcriptional regulation of proα1 (I) procollagen and fibronectin via AP-1 which 

is a heterodimer of the c-Fos and c-Jun family members as well [71]. TGF-β1 signaling is triggered by a number of 

mediators developed under high-glucose atmosphere, such as the AGEs, PKc, ROS, DAG, and the hexosamines; other 

mediators that accelerate renal injury include vasoactive substances, (such as endothelins, angiotensin II, and 

thromboxane etc.) as well as the physical cyclical stretching and relaxation of mesangial cells (which imitate 

intraglomerular hypertension) [73, 72]. The final effect is an elevated synthesis of various matrix proteins and 

accumulation of ECM [74, 75]. One study shows that in vivo studies justifies the in vitro effects of TGF-β1 in which 

upregulation of TGF-β messenger RNA (mRNA) and protein expression plus its type II receptor and TGF-β1 

bioactivity, were observed in the kidneys of different murine  of diabetes [76, 77]. The treatment with neutralizing anti-

TGF-β1 antibodies inhibits mesangial matrix expansion, renal hypertrophy, increase in α1 (IV) collagen and fibronectin 

expression, and failing in renal function in mice with STZ-induced diabetes suggests a potential role of TGF-β1 in the 

Pathogenesis of diabetic nephropathy 78. 
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Fig.3. Showing role of TGF-β in induction and development of diabetic nephropathy. JAK-2 indicates Janus kinase-

2; ERK indicates extracellular regulating kinase; p38 MAPK indicates mitogen-activated protein kinase; VEGF 

indicates vascular endothelial growth factor; CTGF indicates connective tissue growth factor; PAI-1 indicates 

plasminogen activator inhibitor-1; MMP-2 indicates matrix metalloproteinase-2; IL-8 indicates interleukin-8; GFR 

indicates glomerular filtration rate. 

6. Role of Tumor Necrosis Factor α in Diabetic Nephropathy:  TNF-α is a pleiotropic cytokine formed mainly in 

macrophages and monocytes and is implicated in systemic inflammation [79, 80]. TNF-α generates a local inflammatory 

response by triggering a cascade of cytokines and increasing vascular permeability, thus recruiting macrophage and 

neutrophils to the site of infection/inflammation [79, 80]. TNF-α stimulates NF-κB signaling mediating the transcription 

of different cytokines required for cell survival and multiplication, inflammatory effects and cell adhesion, and anti-

apoptotic factors [81-85]. Due to the cytotoxic activity of TNF-α to glomerular, mesangial, and epithelial cells, it can 

induce renal damage [86] and it has been reported to play a pathophysiological role in numerous experimental models of 

renal disease including crescentic glomerulonephritis, lupus nephritis, mesangial proliferative glomerulonephritis, 

hypertension, diabetes and the remnant kidney model of nephropathy [86-89]. 

Several studies have reported that there is a significant correlation between urinary albumin excretion and renal TNF-α 

level. Furthermore, urinary TNF-α excretion is also observed in Streptozotocin-induced rats. These findings suggest the 

role of TNF-α in Diabetic Nephropathy [90, 91]. Moreover, the elevated renal TNF-α level and excretion precede the 

increase in albuminuria in diabetes. Urinary TNF-α level are also high in type 2 diabetic patients and TNF-α levels 

continuously rise with the progression of diabetic nephropathy, suggesting that elevated TNF-α level lead to the 
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development of renal injury [91, 92]. TNF-α also is also responsible for sodium retention and renal hypertrophy (early 

characteristic signs of Streptozotocin-induced diabetic nephropathy) [93].  

The relationship between oxidative stress and TNF-α is complex. They have been shown to increase the levels of each 

other [94, 95, 96]. In the streptozotocin-induced diabetic rat kidney, rise in TNF-α level increase oxidative stress 

resulting in increased albumin permeability and urinary albumin excretion, a common indicator of renal injury [96]. 

Moreover, increased peroxynitrite levels are associated with elevated TNF-α levels and increased glomerular lesion in 

streptozotocin-induced diabetic rats [97]. This data propose that TNF-α is upstream of oxidative stress in diabetic 

nephropathy. In comparison, the treatment with SOD mimetic decreases renal TNF-α levels and albuminuria in type 2 

diabetic Zucker rats [98], and the antioxidant tocotrienol decreases oxidative stress and modulates TNF-α and TGF-β–

induced inflammation, thereby provides reno-protection to streptozotocin-induced diabetic rats [96]. These studies imply 

that oxidative stress is upstream of TNF-α activation in diabetic nephropathy and they have potential role in the 

pathogenesis of DN. 

 
Fig.4. Schematic diagram showing the role of tumor necrosis factor-α (due to hyperglycemia), oxidative stress and 

inflammatory cytokines in the pathogenesis of diabetic nephropathy. ROS, reactive oxygen species; TNF-α, tumor 

necrosis factor-α; NFκB, nuclear factor kappa B; MCP-1, monocyte chemoattractant protein-1; CAMs, cellular 

adhesion molecules; NO, nitric oxide; ONOO–, peroxinitrite; TGF-ß, transforming growth factor-ß; CTGF, 

connective tissue growth factor; ILs, interleukins. 
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7. Role of cannabinoid receptors in diabetic nephropathy:  Two types of cannabinoid receptors are known i.e. CB1 

and CB2, which are coupled to G-proteins and play a vital role in controlling the peripheral energy metabolism. 

Although these receptors are expressed mainly in the central nervous system but mRNA for both CB1 and CB2 

receptors have also been found in mesangial cells [99]. Increased levels of renal CB1 receptors were observed to be 

involved in renal injury by the initiation of renal hypertrophy, together with glomerular and tubulointerstitial lesions, 

finally resulting in increased proteinuria, plasma creatinine, and urea nitrogen levels in obesity-induced nephropathy 

[100]. The potential role of CB1 receptors in renal injury was further verified in another study, which showed that 

the inhibition of CB1 receptors with AM281/SR141716, CB1 receptor antagonists, inhibits cisplatin-induced 

increased p38 MAPK activation, oxidative or nitrosative stress, cell destruction and interrelated inflammatory cell 

infiltration in the kidney, ensuing decreased renal tubular cell death and a prominent improvement in renal function 

[101, 102]. Furthermore, inhibiting CB1 receptor with AM251, a selective CB1 receptor antagonist, was noted to 

improve albuminuria by repressing the downregulation of nephrin and podocin in diabetic mice; this confirms the 

harmful role of CB1 receptor activation in the pathogenesis of diabetic nephropathy [103]. On the other hand, 

activated CB2 receptor minimizes the inflammation and inter-related oxidative/nitrosative stress, cell death linked to 

cisplatin-induced nephropathy [101]. These studies help to understand the detrimental role of cannabinoid receptors 

in the pathogenesis of diabetic nephropathy. 

 

8. Role of GTP Binding Proteins and cell cycle proteins in Diabetic Nephropathy: So far, some reports in the 

literature have illustrated the role of GTP-binding proteins in the pathogenesis of diabetic nephropathy. The main 

GTPases studied until now are the Ras, Ras-related, and Rho families of GTP-binding monomeric proteins, which 

vary from 20 to 40 kDa in size [104]. They alter a variety of cellular processes, such as cell hypertrophy, 

morphogenesis (development of shape by an organism), motility, axonal guidance, cytokinesis, and intracellular 

trafficking [105,104,106]. They serve as molecular switches in these processes; they change from inactive (GDP-

bound) to active (GTP-bound) states [104,106]. In the members of GTPase family, the Ras, Ras-proximate 1 (Rap1), 

and Rho families are significant because they are essential for many transduction pathways. For example, in the 

Ras/Raf/MEK (MAPK/ERK) signaling pathway, Ras acts as an intermediary between the activated/phosphorylated 

growth factor receptor and MEK (Mitogen Activated Protein Kinase), moreover the JNK/SAPK and P38/MAPK 

pathways may be directly activated by Rho and Rho-related Rac, respectively [108, 105, 107]. Activation of the 

Rap1/Raf/MAPK pathway can occur through PKC and ROS that are generated following AGE: RAGE interaction 

[104, 106]. These signaling pathways have been elucidated both in vitro and in vivo through the upregulation of 

Rap1b in high-glucose atmosphere, which consequently increased ECM-fibronectin synthesis [109, 110]. Recent 

studies also suggest that the Rho GTPases play an important role in the pathobiology of ECM proteins, such as 

fibronectin, that are regulated by TGF-β-induced upregulation of CTGF, a powerful profibrogenic cytokine 

expressed in renal glomerular and tubulointerstitial cells [111, 112]. Likewise, Rho-dependent pathways are 

stimulated in the kidney by other profibrogenic molecules, including angiotensin II, platelet-derived growth factor, 

and endothelin 1 [111, 113]. These factors alter the expression of various ECM proteins and therefore are implicated 

in the pathogenesis of diabetic nephropathy.  

9. Role of other novel targets in diabetic nephropathy:  Some studies have found that reduced expression of lipoic 

acid synthase accelerate diabetic nephropathy by increasing microalbuminuria, glomerular basement thickening, and 

the mesangial matrix in diabetic mice [114], suggesting the direct renoprotective effect of lipoic acid synthase 

during diabetic conditions. 

 Osteopontin (OPN) is a phosphoprotein produced by the kidney that regulates cell adhesion and migration. OPN 

has been found to play a significant role in the development of interstitial fibrosis by the recruitment and activation 

of interstitial fibroblasts in the kidney [115]. Moreover, OPN was found to be a promoter of aldosterone-induced 

inflammation, interstitial fibrosis and oxidative stress in the kidney [116]. It is of interest that renal mRNA 

expression of OPN was elevated in diabetic conditions and has been shown to initiate interstitial fibrosis in the 

diabetic kidney, signifying a potential role for OPN in the pathogenesis of diabetic nephropathy [117].  

Urotensin II (UII), an 11–amino acid vasoactive peptide that has been recognized as the ligand for a novel G 

protein-coupled receptor. Despite its basic vasoconstrictive actions, UII also shows profibrotic properties. 

Intriguingly, UII and its receptors are known to be over-expressed in the kidneys of diabetic patients, telling a role 

for UII and its receptor in the pathogenesis of diabetic nephropathy [118]. The mammalian target of the rapamycin 

(mTOR) signaling cascade, a chief component of two multiprotein complexes known as mTOR complex 1 

(mTORC1) and mTOR complex 2 (mTORC2), regulates cellular growth, survival and metabolism. Some studies 

reported that there is increased p- Akt and mTOR expression in Diabetic conditions [119] and this over-activation of 

mTOR signaling has been linked to increased levels of renal mRNA expression of the proliferating cell nuclear 
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antigens TGF-β1, VEGF, and MCP-1. This involvement resulted in noticeable renal structural and functional 

alterations, including increased albuminuria, glomerular hypertrophy, and glomerular basement membrane 

thickening [119]. 

 

Conclusion: In this article, we have concluded that the activation of different cellular pathways in pathological 

conditions are responsible for the generation of reactive oxygen species. Excessive formation of ROS leading to 

increased lipid peroxidation oxidative damage of DNA, inhibition of mitochondrial electron transport chain,  

glutathione (GSH) depletion, enhanced superoxide activity and subsequent cellular apoptosis. This leads to the 

diabetic nephropathic manifestations of renomegaly, Kimmelstiel-Wilson lesions, mesangial matrix expansion, 

podocytopenia, TBM thickening, GBM thickening, interstitial fibrosis, and arteriolar hyalinization. However, these 

conditions characterize only a fraction of the complexities of the renal cellular machinery. Therefore, this cannot be 

regarded as complete explanations of the cause of diabetic nephropathy further studies are needed to explore the 

pathogenesis of diabetic nephropathy. Research goals for the future may include the finding of new links between 

the metabolic and hemodynamic events and the elucidation of how all these numerous events interact to produce the 

clinical features of proteinuria, hypertension, and chronic kidney failure. More research on the potential targets and 

molecular mechanisms of diabetic nephropathy is being done to discover effective therapy for it. 
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