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1. Introduction: 

 The Sun which is a big star is assumed to be in thermal equilibrium and hydrostatic equilibrium. To 

describe a model, we consider it is a spherical symmetric, self-gravitating non-rotating. The features of its are mass, 

luminosity, diameter, effective surface temperature, central temperature and density. The assumptions of thermal 

equilibrium and hydrostatic equilibrium imply that there is no time dependence in the equations describing the 

internal structure of the star like sun (Clayton [2] and Perdang [17]). Energy in such stars being produced by the 

process of chemical reactions. 

 

 Consider an arbitrary reaction characterized by a time dependent quantity 𝑁 =  𝑁(𝑡). The rate of change 

dN/dt is equal to the destruction rate d and the production rate p of N, that is 
𝑑𝑁

𝑑𝑡
=  −𝑑 + 𝑝. Normally, destruction 

and production depend on the quantity N itself: 𝑑 =  𝑑(𝑁) 𝑜𝑟 𝑝 =  𝑝(𝑁). This dependence is very difficult because 

the destruction or production at time t depends not only on N(t) but also on the past history N(τ ), τ < t, of the 

variable N. 

 

From  (Haubold and Mathai [7]) 

 

𝑑𝑁 /𝑑𝑡 =  −𝑑 (𝑁𝑡 )  +  𝑝(𝑁𝑡),                                                                                                                                (1) 

where 𝑁𝑡 denotes the function defined by 𝑁𝑡(𝑡 ∗)  =  𝑁(𝑡 − 𝑡 ∗), 𝑡 ∗ >  0. 
 

Haubold and Mathai [7] studied a special case of this equation, when spatial fluctuations or inhomogenities in 

quantity 𝑁(𝑡) are neglected, is given by the equation 
𝑑𝑁𝑖

𝑑𝑡
= −𝑐𝑖𝑁𝑖 𝑡                                                                              (2) 

with the initial condition that 𝑁𝑖 (𝑡 =  0)  =  𝑁0 is the number density of species i at time 𝑡 =  0; constant 𝑐i  >  0, 

called as standard kinetic equation. 

Thus, the solution of the equation (2) is given by 

𝑁𝑖(𝑡)  = 𝑁0 𝑒−𝑐𝑖𝑡                                                                  (3) 
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An alternative form of the same equation can be obtained on integration: 

𝑁(𝑡)  −  𝑁0  =  𝑐 𝐷0
0

𝑡
−1 𝑁(𝑡)                                                                       (4) 

where 𝐷0
0

𝑡
−1 is the standard integral operator. Haubold and Mathai [7] have given the fractional generalization of the 

standard kinetic equation (2) as 

𝑁 𝑡 –  𝑁0  =  𝑐𝑣 𝐷0
0

𝑡
−𝑣  𝑁 𝑡                                                                        5  

where 𝐷0
0

𝑡
−𝑣  is the well known Riemann-Liouville fractional integral operator (Oldham and Spanier [16]) given by 

𝐷0
0

𝑡
−𝑣𝑁 𝑡 =

1

𝛤(𝜈)
 (𝑡 −  𝑢)𝑣−1𝑓 𝑢 𝑑𝑢,     𝑅 𝑣 > 0,                                          (6)

𝑡

0

 

 
The solution of the fractional kinetic equation (6) is given by (see Haubold and Mathai [7]) 

𝑁 𝑡 = 𝑁0  
(−1)𝑣𝑘

Γ 𝑣𝑘 + 1 
(𝑐𝑡)𝑣𝑘

∞

𝑘=0

                                                                   (7) 

Also, Saxena, Mathai and Haubold [20] studied the generalizations of the fractional kinetic equation in terms of the 

Mittag-Leffler functions which extension of the work of Haubold and Mathai [7].  

 

In the present work, we establish the generalized fractional kinetic equation. The fractional kinetic equation and its 

solution, discussed in terms of the Wright function, are written in compact form. 

 

2. The Wright function: 

This function introduced by the authors is defined as follows: 

𝑊  𝑡;  𝛼, 𝛽 =  
𝑡𝑘

 𝑛! Γ 𝛼𝑘 + 𝛽 

∞

𝑘=𝑜

                                                    (8) 

Here, 𝛼, 𝛽𝜖𝐶, 𝑅 𝛼 > 0 and  𝑅 𝛽 > 0. 
And Laplace transform of (8), we have 

𝐿 𝑊  𝑡;  𝛼, 𝛽; 𝑠  =  
1

 Γ 𝛼𝑘 + 𝛽 

1

𝑠𝑘+1

∞

𝑘=𝑜

 

Or 

𝐿 𝑊  𝑡;  𝛼, 𝛽; 𝑠  = 𝑠−1𝐸𝛼 ,𝛽(𝑠−1) 

This is Mittag-Leffler function. 

 

3. Generalized Fractional Kinetic Equations: 

 In this section we investigate the solution of generalized fractional kinetic equations. The results are 

obtained in a compact form in terms of Wright function and are suitable for computation. The results are presented 

in the form of two theorems as follows: 

 

Theorem 1: 

  If 𝜈 >  0, 𝑐 >  0, 𝑑 >  0, 𝜇 >  0,  𝑅𝑒(𝑠)  >  |𝑑|𝜈/𝛼  , 𝑐 ≠ 𝑑 then for the solution of the generalized 

fractional kinetic equation 

 

𝑁 𝑡 –  𝑁0𝑡
𝜇−1𝑊 (−𝑑𝑣𝑡𝑣;  𝑣 , 𝜇)  =  −𝑐𝑣 𝐷0

0
𝑡
−𝑣 𝑁 𝑡                                         9  

 

there holds the formula 

𝑁 𝑡 =  𝑁0𝑡
𝜇−1   (−1)𝑘(𝑐𝑡)𝑣𝑘  

∞

𝑘=𝑜

𝑊 (−𝑑𝑣𝑡𝑣;  𝑣 , 𝑣𝑘 + 𝜇)                                   10  

Proof.  Applying the Laplace transform both the sides of equation (9), we get 

 

𝐿{𝑁 𝑡 }– 𝐿{ 𝑁0𝑡
𝜇−1𝑊 (−𝑑𝑣𝑡𝑣;  𝑣 , 𝜇)} = 𝐿{ −𝑐𝑣 𝐷0

0
𝑡
−𝑣  𝑁 𝑡 } 
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𝑁 𝑠 − 𝑁0  
(−𝑑𝑣)𝑘

𝑘!  𝑠𝑣𝑘+𝜇

∞

𝑘=𝑜

= −𝑐𝑣
𝑁 𝑠 

𝑠𝑣
                                                                           (11) 

Solving for𝑁 𝑠 , it gives 

𝑁 𝑠 =
𝑁0

(1 + 𝑐𝑣𝑠−𝑣)
 

(−𝑑𝑣)𝑘

𝑘! 𝑠𝑣𝑘+𝜇
                                                               (12)

∞

𝑘=𝑜

 

Now, taking inverse Laplace transform both the sides of (12), we get 

𝐿−1 𝑁 𝑠  = 𝐿−1  
𝑁0

(1 + 𝑐𝑣𝑠−𝑣)
 

(−𝑑𝑣)𝑘

𝑘! 𝑠𝑣𝑘+𝜇
 

∞

𝑘=𝑜

                                                   (13) 

 

𝑁 𝑡 = 𝐿−1  𝑁0  
(−1)𝑘(𝑐𝑣𝑠−𝑣)𝑘(1)𝑘

𝑘!
 

∞

𝑘=𝑜

 
(−𝑑𝑣)𝑘

𝑘! 𝑠𝑣𝑘+𝜇
 

∞

𝑘=𝑜

                                      (14) 

 

𝑁 𝑡 = 𝑁0  (−1)𝑘(𝑐𝑣)𝑘  

∞

𝑘=𝑜

 (−𝑑𝑣)𝑘
𝑡𝑣𝑘+𝑣𝑘+𝜇−1

𝑘! Γ 𝑣𝑘 + 𝑣𝑘 + 𝜇 
 

∞

𝑘=𝑜

                                                          (15) 

 

𝑁 𝑡 = 𝑁0𝑡
𝜇−1  (−1)𝑘(𝑐𝑡)𝑣𝑘  

∞

𝑘=𝑜

 (−𝑑𝑣)𝑘
𝑡𝑣𝑘

𝑘! Γ 𝑣𝑘 + 𝑣𝑘 + 𝜇 
 

∞

𝑘=𝑜

                                                   (16) 

Or 

𝑁 𝑡 =  𝑁0𝑡
𝜇−1   (−1)𝑘(𝑐𝑡)𝑣𝑘  

∞

𝑘=𝑜

𝑊 (−𝑑𝑣𝑡𝑣;  𝑣 , 𝑣𝑘 + 𝜇)                                     (17) 

This is complete proof of the statement (9). 

 

When 𝜇 = −𝑣𝑘 + 1, theorem reduces to 

 

Corollary: If 𝜈 >  0, 𝑐 >  0, 𝑑 >  0, 𝜇 >  0,  𝑅𝑒(𝑠)  >  |𝑑|𝜈/𝛼  , 𝑐 ≠ 𝑑 then for the solution of the generalized 

fractional kinetic equation 

𝑁 𝑡 –  𝑁0𝑡
−𝑣𝑘𝑊 (−𝑑𝑣𝑡𝑣;  𝑣 , −𝑣𝑘 + 1)  =  −𝑐𝑣 𝐷0

0
𝑡
−𝑣  𝑁 𝑡                                         18  

 

there holds the formula 

𝑁 𝑡 =  𝑁0𝑡
−𝑣𝑘   (−1)𝑘(𝑐𝑡)𝑣𝑘  

∞

𝑘=𝑜

𝑊 (−𝑑𝑣𝑡𝑣;  𝑣 , 𝑣𝑘 + 𝜇)                                   19  

When 𝑑 = 1 in (9), we get 

 Corollary: If 𝜈 >  0, 𝑐 >  0, 𝑑 >  0, 𝜇 >  0,  𝑅𝑒(𝑠)  >  |𝑑|𝜈/𝛼  , 𝑐 ≠ 𝑑 then for the solution of the generalized 

fractional kinetic equation 

𝑁 𝑡 –  𝑁0𝑡
𝜇−1𝑊 (−𝑡𝑣;  𝑣 , 𝜇)  =  −𝑐𝑣 𝐷0

0
𝑡
−𝑣  𝑁 𝑡                                         20  

 

there holds the formula 

𝑁 𝑡 =  𝑁0𝑡
𝜇−1   (−1)𝑘(𝑐𝑡)𝑣𝑘  

∞

𝑘=𝑜

𝑊 (−𝑡𝑣;  𝑣 , 𝑣𝑘 + 𝜇)                                   21  

When 𝜇 = 𝑣 + 1, then the solution of  

𝑁 𝑡 –  𝑁0𝑡
𝑣𝑊 (−𝑡𝑣;  𝑣 , 𝑣 + 1) =  −𝑐𝑣 𝐷0

0
𝑡
−𝑣  𝑁 𝑡                                         22  
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There holds the result 

𝑁 𝑡 =  𝑁0𝑡
𝑣   (−1)𝑘(𝑐𝑡)𝑣𝑘  

∞

𝑘=𝑜

𝑊 (−𝑡𝑣;  𝑣 , (𝑘 + 1)𝑣 + 1)                                   23  

Theorem 2: 

  If 𝜈 >  0, 𝑐 >  0, 𝑑 >  0, 𝜇 >  0,  𝑅𝑒(𝑠)  >  |𝑑|𝜈/𝛼  , 𝑐 = 𝑑 then for the solution of the generalized 

fractional kinetic equation 

 

𝑁 𝑡 –  𝑁0𝑡
𝜇−1𝑊 (−𝑑𝑣𝑡𝑣;  𝑣 , 𝜇)  =  −𝑑𝑣 𝐷0

0
𝑡
−𝑣  𝑁 𝑡                                         24  

 

there holds the formula 

𝑁 𝑡 =  𝑁0𝑡
𝜇−1   (−1)𝑘(−1)𝑣𝑘  

∞

𝑘=𝑜

𝑊 (𝑑2𝑣𝑡𝑣;  𝑣 , 𝑣𝑘 + 𝜇)                                 25  

Proof.  We solve similarly to previous theorem (1) and taking the Laplace transforms both the sides of equation 

(24), we get 

𝐿{𝑁 𝑡 }– 𝐿{ 𝑁0𝑡
𝜇−1𝑊 (−𝑑𝑣𝑡𝑣;  𝑣 , 𝜇)} = 𝐿{ −𝑑𝑣 𝐷0

0
𝑡
−𝑣  𝑁 𝑡 } 

 

𝑁 𝑠 − 𝑁0  
(−𝑑𝑣)𝑘

k! 𝑠𝑣𝑘+𝜇

∞

𝑘=𝑜

= −𝑑𝑣
𝑁 𝑠 

𝑠𝑣
                                                                            

Solving for𝑁 𝑠 , it gives 

𝑁 𝑠 =
𝑁0

(1 + 𝑑𝑣𝑠−𝑣)
 

(−𝑑𝑣)𝑘

k! 𝑠𝑣𝑘+𝜇
                                                               

∞

𝑘=𝑜

 

 

Now, taking inverse Laplace transform both the sides of (26), we get 

 

𝐿−1 𝑁 𝑠  = 𝐿−1  
𝑁0

(1 + 𝑑𝑣𝑠−𝑣)
 

(−𝑑𝑣)𝑘

𝑘! 𝑠𝑣𝑘+𝜇
 

∞

𝑘=𝑜

                                                    

 

𝑁 𝑡 = 𝐿−1  𝑁0  
(−1)𝑘(𝑑𝑣𝑠−𝑣)𝑘(1)𝑘

𝑘!
 

∞

𝑘=𝑜

 
(−𝑑𝑣)𝑘

𝑘! 𝑠𝑣𝑘+𝜇
 

∞

𝑘=𝑜

                                                      

 

𝑁 𝑡 = 𝑁0  (−1)𝑘(𝑑𝑣)𝑘

∞

𝑘=𝑜

 (−𝑑𝑣)𝑘
𝑡𝑣𝑘+𝑣𝑘+𝜇−1

𝑘! 𝛤 𝑣𝑘 + 𝑣𝑘 + 𝜇 
 

∞

𝑘=𝑜

                                                         

 

𝑁 𝑡 = 𝑁0𝑡
𝜇−1  (−1)𝑘(𝑑𝑡)𝑣𝑘  

∞

𝑘=𝑜

 (−𝑑𝑣)𝑘
𝑡𝑣𝑘

𝑘! 𝛤 𝑣𝑘 + 𝑣𝑘 + 𝜇 
 

∞

𝑘=𝑜

                                                    

 

Or 

𝑁 𝑡 =  𝑁0𝑡
𝜇−1   (−1)𝑘(−1)𝑣𝑘  

∞

𝑘=𝑜

𝑊 (𝑑2𝑣𝑡𝑣;  𝑣 , 𝑣𝑘 + 𝜇)                                      

This is complete proof of the theorem (2). 
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4. Conclusion: 

 In this paper we have introduced an extended fractional generalization of the standard kinetic equation and 

established solution for the same. Fractional kinetic equation can be used to compute the particle reaction rate and 

describes the statistical mechanics associated with the particle distribution function. The generalized fractional 

kinetic equation discussed in this paper involving Wright function. 
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