RESEARCH ARTICLE

SOME NEW OXALATO AND SULFATO SNR3 (R=Me, Ph) AND SnR2Cl (R'=Ph, Bu) RESIDUES CONTAINING DERIVATIVES AND COMPLEXES: SYNTHESIS, INFRARED, NMR AND MÖSSBAUER STUDIES.

Waly Diallo1, Assane Touré2, Cheikh A. Khadir Diop1 and Mamadou Sidibe1.
1. Université Cheikh Anta Diop, Faculté des Sciences et Techniques, Département de Chimie, Laboratoire de Chimie Minérale et Analytique, Dakar, Sénégal.
2. Université Cheikh Anta Diop, Faculté des Sciences et Technologies de l’Éducation et de la Formation (FASTEF), Département de Physique-Chimie.

Manuscript History

Received: 11 December 2017
Final Accepted: 13 January 2018
Published: February 2018

Keywords:-
Oxalate and sulfato compounds; Monochelating and bidentate ligands; Trans trigonal bipyramidal or octahedral environment; Supramolecular architectures.

Abstract

Ten new oxalato and sulfato complexes and derivatives containing SnR3 or SnR2 (R=Ph, Me, Bu) have been synthetized and studied by infrared, NMR and Mossbauer spectroscopies. The suggested structures are discrete, infinite or oligomers. The environments around the tin centre are trigonal bipyramidal or octahedral, the oxalate and sulfate anions behave as monochelating and bidentate ligands. When cations are involved, supramolecular architectures are obtained.

Introduction:

The large field of applications (medicine, agriculture, wood preservation and PVC production) for many organotin (IV) molecules family is the pretext of the focus of several research groups in this field until nowadays (Davis and al., 1982; Davis and al., 1997; Evans, 1985; Xuan, 2016).

The coordination between oxyanions and organotin (IV) compounds has been studied since many years (Sougoule and al., 2015; Basu Baul and al., 2015; Yang and al., 2016).

Several structures in particular oxalate and sulfate adducts and complexes have been isolated (Smith and al., 2017; Grzeskowiak and al., 2017; Rathod and al., 2017; Döring and al., 2017).

In our laboratory, many X ray structures of complexes and derivatives containing oxalate or sulfate anions has been published (Gueye and al., 2014; Diop and al., 2015; Diallo and al., 2015).

1. The structure of bis(cyclohexylammonium) tetrachlorido(oxalato)stannate(IV) anion is a 3D supramolecular structure with a distorted octahedral coordination sphere around the Sn(IV) centre. Cations and anions are linked through N-H, O and N-H, Cl interactions into a layered arrangement parallel (Sarr and al., 2013).

2. The structure [(C6H5)3N][Sn2(CH3)2Cl(SO4)] is a polymer, the two independent Sn(IV) atoms are coordinated in a trigonal-bipyramidal geometry by three methyl groups in the equatorial plane and in the axial positions by either two O atoms of bridging SO4 2- anions or by a Cl atom and one O atom of a bridging SO4 2- anion, respectively (Diop and al., 2013).

Corresponding Author:- Waly Diallo.
Address:- Université Cheikh Anta Diop, Faculté des Sciences et Techniques, Département de Chimie, Laboratoire de Chimie Minérale et Analytique, Dakar, Sénégal.
In the framework of our research on the coordinating ability of oxyanions within organotin (IV) chemistry, we have synthesized and isolated ten new oxalate and sulfate complexes and derivatives. These compounds were characterized by infrared and NMR or Mossbauer spectroscopies and structures have been suggested.

Experimental section:

H$_2$C$_2$O$_4$ and H$_2$SO$_4$ (98%) were purchased from Merck Chemicals, Hohenbrunn bei München, Germany while CyNH$_2$, Cy$_2$NH, n-Bu$_2$NH, SnR$_2$Cl, SnR$_2$Cl$_2$ (R=Ph, Me, Bu), were acquired from Sigma-Aldrich Chemie GmbH, Steinheim, Germany and used without any further purification.

Infrared spectra were recorded on a Bruker Vector 22 spectrometer equipped with a Specac Golden Gate™ ATR device (Infrared data are given in cm$^{-1}$) [IR abbreviations: (vs) very strong, (s) strong, (m) medium, (w) weak, (vw) very weak].

119Sn NMR spectrum was recorded on a Bruker Avance 400 MHz spectrometer with a wide band sensor BBFO. Spectra are reported downfield from Me$_x$Sn, as the internal standard and chemical shifts (δ) are given in ppm.

119Sn Mössbauer spectra were collected at 80 K as reported in (Gueye and al, 1993).

Elemental analyses were performed at the “Institut de Chimie Moléculaire”, University of Burgundy, Dijon-France.

Procedure for synthesis of (CyNH$_2$)[C$_2$O$_4$SnMe$_3$]:

An ethanolic solution (25 ml) containing (0.987 mmol; 0.344 g) of (Bu$_2$NH)$_2$SnBu$_2$Cl was filtered, washed with hot methanol and dried in an oven at 60° C for more than two hours. Slow solvent evaporation gives white a powder after one week (A). The white powder thus formed was washed with hot ethanol and dried in.

Spectroscopic data:

1. IR data (cm$^{-1}$): v as COO$^-$ = (1619 vs, 583 vs); v s COO$^-$ = (1200 s, 1196 s); δNH$_2$ = (1981 m); v asSnC$_2$= 549 m, v s SnC$_2$ = 517 vw

2. 119Sn NMR data (CDCl$_3$): δ = -198 ppm

Elemental Analysis:

for C$_{11}$H$_{23}$NO$_4$Sn-% found (% calculated): C=37.48 (37.53) H=6.37 (6.59) N=4.01 (3.98); yield: 78.21%

Procedure for synthesis of (CyNH$_2$)[C$_2$O$_4$SnPh$_3$Cl]:

A methanolic solution (20 ml) containing (0.3 g; 3.027 mmol) of CyNH$_2$, (0.272 g; 3.027 mmol) of H$_2$C$_2$O$_4$ and (6.05 mmol; 2.082 g) of SnPh$_2$Cl$_2$ was stirred up at room temperature for more than two hours. The white precipitate thus formed (B) was filtered, washed with hot methanol and dried in an oven at 60° C.

Spectroscopic data:

1. IR data (cm$^{-1}$): v as COO$^-$ = (1619 vs, 580 vs); v s COO$^-$ = (1297 vs, 1270 s); uNH$_2$= (2931 vs-2857 vs), δNH$_2$=1504 s

2. 119Sn NMR data (CDCl$_3$): δ = -278 ppm

Elemental Analysis:

for C$_{26}$H$_{32}$ClNO$_4$Sn- % found (% calculated): C=48.21 (48.37) H=4.75 (4.87) N=3.04 (2.82) yield: 35.14%

Procedure for synthesis of (Bu$_2$NH$_2$)[C$_2$O$_4$SnBu$_2$Cl]:

An ethanolic solution (20 ml) containing (0.987 mmol; 0.344 g) of (Bu$_2$NH)$_2$C$_2$O$_4$ (obtained from an aqueous mixture of Bu$_2$NH and H$_2$C$_2$O$_4$ in 1:1 ratio) and (0.987 mmol; 0.3 g) of SnBu$_2$Cl$_2$ was stirred up at room temperature for more than two hours. Slow solvent evaporation gives white a powder after one week (C). The white powder thus formed was washed with hot ethanol and dried in an oven at 60° C.

Spectroscopic data:

IR data (cm$^{-1}$): uNH$_2$ = (2959 vs, 2877 vs); v as COO$^-$ = (1682 s, 1606 s); v s COO$^-$ = (1482 vs, 1462 s), uSnC$_2$ = 636 vs; v$_4$SnC$_2$ = 583 m

862
Elemental Analysis:-
for C_{18}H_{28}ClNO_{3}Sn : % found (%calculated): C=44.36 (44.42) H=8.02 (7.87) N= 2.75 (2.88) ; yield : 71.54%

Procedure for synthesis of HC_{2}O_{3}SnPh_{2}Cl:-
An ethanolic solution (20 ml) containing (0.987mmol; 0.284g) of (CyNH)_{2}C_{2}O_{4} (obtained from an aqueous mixture of CyNH_{2} and H_{2}C_{2}O_{4} in 1 : 1 ratio) and of (0.987mmol; 0.339g) SnPh_{2}Cl was stirred up at 60°C for more than two hours. The white precipitate thus formed (D) was filtered, washed with hot ethanol and dried in an oven at 60°C.

Spectroscopic data:-
1. IR data (cm\(^{-1}\)) : \nu asCOO = (3245, 3035, 2995)L; \nu NH_{3} = (3080, 2996, 2857)L; \delta NH_{3} = 1599m
2. \(^{119}\)Sn NMR data (CDCl\(_3\)) : \delta = -277 ppm;

Elemental Analysis:-
for C_{14}H_{18}ClO_{3}Sn- % found (% calculated) : C= 42.78 (42.31) H= 2.84 (2.79); yield: 58.47%

Procedure for synthesis of HC_{2}O_{3}SnBu_{2}Cl (E):-
An ethanolic solution (15 ml) containing (0.987mmol; 0.284g) of (CyNH)_{2}C_{2}O_{4} (obtained from an aqueous mixture of CyNH_{2} and H_{2}C_{2}O_{4} in 1 : 1 ratio) and (0.987mmol; 0.3g) of SnBu_{2}Cl was stirred up at 60°C for more than two hours. Slow solvent evaporation gives white a powder after one week (E). The white powder thus formed was washed with hot ethanol and dried in an oven at 60°C.

Spectroscopic data:-
1. IR data (cm\(^{-1}\)) : \nu asCOO = (1625vs, 1585vs); \nu COO= (1360s, 1270s) ; \nu OH=3720s; \delta OH=1590s
2. \(^{119}\)Sn NMR data (CDCl\(_3\)) : \delta = 260 ppm;

Elemental Analysis:-
for C_{16}H_{20}ClO_{3}Sn % found (% calculated) : C=33.39(33.60) H=5.36(5.96 %); yield : 54.65%

Procedure for synthesis of (CyNH)\(_2\)SO_{4}SnPh_{2}Cl (F):-
An ethanolic solution (20 ml) containing (8.723mmol; 0.256g) of (CyNH)\(_2\)SO_{4} (obtained from an aqueous mixture of CyNH_{2} and H_{2}SO_{4} in 1 : 2 ratio) and (8.723mmol; 0.3g) of SnPh_{2}Cl was stirred up at 60°C for more than two hours. The white precipitate thus formed (F) was filtered, washed with hot methanol and dried dried in an oven at 60°C.

Spectroscopic data:-
1. IR data (cm\(^{-1}\)) : \nu SO_{4} = (985s, 1025vs, 1041vs); \nu SO_{4} = (1143s, 1062s) ; \nu NH_{3} = (1599m)
2. \(^{119}\)Sn NMR data (CDCl\(_3\)): \delta = 183 ppm

Elemental Analysis:-
for C_{18}H_{28}ClNO_{3}Sn % found (% calculated) : C=42.84(42.84) H=4.79(4.79 %); yield : 71.54%

Procedure for synthesis of (CyNH)\(_2\)SO_{4}SnPh_{2}SnPh_{3}Cl (G):-
An ethanolic solution (20 ml) containing (0.388mmol; 0.115g) of (CyNH)\(_2\)SO_{4} (obtained from an aqueous mixture of CyNH_{2} and H_{2}SO_{4} in 1 : 2 ratio) and (0.777mmol; 0.3g) of SnPh_{2}Cl was stirred up at 60°C for more than two hours. The white precipitate thus formed (G) was filtered, washed with hot methanol and dried in an oven at 60°C.

Spectroscopic data:-
1. IR data (cm\(^{-1}\)) : \nu SO_{4} = (990s, 1035vs, 1052vs); \nu SO_{4} = (1147s, 1061vs) ; \nuNH_{3} = (3080, 2996, 2857)L; \delta NH_{3} = 1537m
2. \(^{119}\)Sn NMR data (CDCl\(_3\)) : \delta = -247 ppm and -260 ppm
Results and discussion:

The presence of strong bands at 1627 vs, 1556 cm\(^{-1}\) within structures. The apparition of υ\(_{\text{as}}\)SnMe\(_3\) and υ\(_{\text{s}}\)SnMe\(_3\) respectively, in the infrared spectrum of CyNH\(_2\)A indicates its involvement in the bonding within structures. The apparition of υ\(_{\text{as}}\)SnMe\(_3\) as a very weak band at 517 cm\(^{-1}\) is indicative of the presence of an almost planar SnMe\(_3\) residue allowing to consider the environment around the SnMe\(_3\) residue being as trans trigonal bipyramidal.

The value of the \(^{119}\text{Sn}\) chemical shift – 198 ppm (≈ 200 ppm) is consistent with the presence of a trans pentacoordinated SnMe\(_3\) residue (Wrackmeyer, 1999).
The shape of NH$_3$ group bands urges us to conclude to a presence of hydrogen bands of types NH----O. Indeed, this series of three bands can be explained by the resulting Fermi resonances between νNH and the overtones 2δNH and 2γNH (Diallo and al., 2014).

The suggested structure is similar of the crystallographic structure of (Cy$_2$NH$_2$)$_2$C$_2$O$_4$SnPh$_3$ reported by Ng and Rae. The structure is dimeric, the [C$_2$O$_4$SnMe$_3$]2- are linked by CyNH$_3^+$ via NH----O hydrogen bonds. The oxalate anion is monochelated and the SnMe$_3$ is cis coordinated (Ng and al., 2000) (Figure 1).

![Figure 1: dimeric structure of CyNH$_2$C$_2$O$_4$SnMe$_3$](image)

CyNH$_2$C$_2$O$_4$SnR$_2$Cl (R=Ph, Bu) complexes (B), (C)

The infrared spectra of B and C revealed in particular the presence of strong absorption bands (at 1619 and 1580 for B; 1616 and 1682 cm$^{-1}$ for C due to the splitting of νasCOO$^-$;1297 and 1270 cm$^{-1}$ for B ; 1482 and 1462 cm$^{-1}$ for C) due to the splitting of νsCOO$^-$ is showing that the oxalate anion is not centrosymmetry (Nakamoto, 1997).

In the IR spectrum of C, the presence of νsSnBu$_2$ as medium band shows that the SnBu$_2$ residu is slightly bend. This value of the 119Sn chemical shift in CDCl$_3$ (-278 ppm) shows a trans pentacoordinated tin (IV) central according to (Holecek and al., 1996-1990).

The suggested structure is discrete, the oxalate anion being bi-unidentate and the environment around the tin (IV) centre is trans trigonal bipyramidal (Figure 2).

When hydrogen bonds are involved by cations a supramolecular architecture may be obtained.
HC\textsubscript{2}O\textsubscript{4}Sn\textsubscript{2}Cl\textsubscript{(R=Ph, Bu)} derivatives (D), (E)

The infrared spectra of HC\textsubscript{2}O\textsubscript{4}SnPh\textsubscript{2}Cl \textbf{D} and HC\textsubscript{2}O\textsubscript{4}SnBu\textsubscript{2}Cl \textbf{E} exhibit characteristic absorptions of hydrogenoxxalate anion (at 1625 and 1585 cm-1 for \textbf{D}; 1681 and 1603 cm-1 for \textbf{E}; 1360 and 1270 cm-1 for \textbf{D}; 1348 and 1307 cm-1 for \textbf{E}). In the ir spectrum of \textbf{E}, appears \nu\textsubscript{SnC\textsubscript{2}} at 580 cm-1 as week band, showing that the SnBu\textsubscript{2} residu being not linear.

The values of the 119Sn chemical shift for \textbf{D} and \textbf{E} (-277 ppm and -260 ppm respectively) are consistent with a trans pentacoordinated tin (IV) central according to (Holecek and al., 1986 - 1990)

The suggested structure is consistent of a dimer of (HC\textsubscript{2}O\textsubscript{4})(SnR\textsubscript{2}Cl). The SnR\textsubscript{2}Cl residue is trans trigonal bipyramidal and the hydrogenooxxalate is bidentate (Figure 3).

CyNH\textsubscript{3}SO\textsubscript{4}SnPh\textsubscript{2}Cl complex (\textbf{F})

The infrared spectra CyNH\textsubscript{3}SO\textsubscript{4}SnPh\textsubscript{2}Cl (\textbf{F}) show strong characteristic bands of sulfate (at 985, 1025, 1041 cm-1 cm-1 and 1062, 1143 cm-1 dues to \nu\textsubscript{s} and \nu\textsubscript{as} respectively) shows that SO\textsubscript{4}2- anion is not Td symmetry (Nakamoto, 1997).

The very wide absorptio around 3000 cm-1 in the spectrum due to the cations involved through hydrogen bonds, and generated supramolecular structure.

The value of the 119Sn chemical shift -183 ppm for SnPh\textsubscript{2}Cl residue is consistent with the presence of a pentacoordinated tin (IV) centre according to (Holecek et al., 1990). The suggested structure is dimeric when [SO\textsubscript{4}SnPh\textsubscript{2}Cl] anion is considered, the monomers are linked via NH---O hydrogen bonds. The sulfate anions are monchelated and the environment around tin (IV) centre is trigonal bipyramidal (Figure 4).
CyNH$_3$SO$_4$SnPh$_3$Cl (G)

The infrared spectrum of G exhibits characteristic absorptions of sulfate anion bands at 990, 1035, 1052 cm$^{-1}$ and 1147, 1061 cm$^{-1}$ due to ν_s and ν_{as} respectively showing that sulfate anion is not Td (Nakamoto, 1997).

The 119Sn NMR in CDCl$_3$ shows two signals at -247 ppm et -260 ppm which consistent with a trans pentacoordinated tin (VI) centre (Bancroft and al., 1972; Parish and al., 1984).

The suggested structure is an infinite chain. The SnPh$_3$ residues are trans trigonal bipyramidal and the sulfate anion is bi-unidentate coordinated (Figure 5).

NB: When hydrogen bonds are considered, supramolecular architecture is obtained.
The infrared spectra of the complexes show characteristic bands of sulfate in valence areas. The ν_3 T_2 species splits into three components (A_1, B_1, and A_2 species) and the appearance of ν_1 (A_1 species) is consistent with a SO_4^{2-} anion C_{2v} symmetry (Nakamoto, 1997).

Intense absorptions bands, observed around 3000 cm$^{-1}$ and 1600 cm$^{-1}$ in many components indicate the presence of NH\ldotsO hydrogen bonds.

In the Cy$_2$NH$_2$SO$_4$SnMe$_3$ infrared spectrum, the presence of ν_5SnC$_3$ as a very weak band is indicative of the presence of an almost planar SnC$_3$ skeleton.

The Mossbauer data of Cy$_2$NH$_2$SO$_4$SnMe$_3$ show that one type of tin (IV) central. The value of quadrupole splitting 3.67 mm$^{-1}$ is consistent with a trans coordinated SnMe$_3$ residue (Bancroft and al., 1972; Parish and al., 1984). The suggested structures are similar with those reported by (Ma and al., 2004; Gielen and al., 1995). Two structures: an infinite chain and oligomer, the sulfate anion is bi-unidentate and SnMe$_3$ transcoordinated (Figure 6a and b).

Figure 6a: Infinite Chain Structure Of Cy$_2$NH$_2$SO$_4$SnR$_3$ (R=Me, Ph)

Figure 6b: Oligomer (arbitrary a tetramer) structure of Cy$_2$NH$_2$SO$_4$SnR$_3$ (R=Me, Ph)

NB: When hydrogen bonds are considered, supramolecular architecture is obtained.
SnBu$_2$(HSO$_4$)$_4$(Cy$_2$NH$_2$)$_2$ complex (J)

The forms of characteristic absorption bands in the infrared spectrum of SnBu$_2$(HSO$_4$)$_4$(Cy$_2$NH$_2$)$_2$ (J) between 2800 and 3000 cm$^{-1}$ (νNH), around 1600 cm$^{-1}$ are showing the presence of NH---O hydrogen bonds. The presence of vsSnC$_2$ at 590 cm$^{-1}$ as a medium band is showing that SnC$_2$ residu is slightly bend. The value of quadupole splitting of Mossbauer spectrum (3.82 mm$^{-1}$) is indication a slight distorted octahedral geometry around the tin (IV) centre (Bancroft and al., 1972; Parish and al., 1984).

The suggested structure is discrete with a trans hexacoordinated tin (IV) central, the SnC$_2$ residu are occupied the trans position. The hydrogenosulfate anions are monodenttate and are linked via NH---O hydrogen bonds (Figure 7).

![SnBu$_2$(HSO$_4$)$_4$(Cy$_2$NH$_2$)$_2$ complex](image)

Figure 7: Discrete Structure Of SnBu$_2$(HSO$_4$)$_4$(Cy$_2$NH$_2$)$_2$

Conclusion:

The studied di- and triorganotin (IV) residues containing derivatives and complexes have discrete and dimeric structures when they contains oxalate anion and infinite chain or an oligomeric structure when they contain sulfate anion. The environment around the tin (IV) centre being cis or trans trigonal bipyramidal, the oxalate and sulfate ligands are bidentate or monochelated.

In SnBu$_2$(HSO$_4$)$_4$(Cy$_2$NH$_2$)$_2$, the anion is a monodentate ligand, the SnBu$_2$ residue being slightly bend. The environment around the tin (IV) centre is octahedral.

When the cations involved in hydrogen bonding are considered, supramolecular architectures may be obtained.

Acknowledgment:

We thank Ph. D. L. Plasseraud (University of Burgundy-Dijon-France) for equipment support.

References:

3. Brainard R. L.; Denbeaux G., Steven Grzeskowiak; Amrit Narasimhan; Michael Murphy; Lee Napolitano; Daniel A. Freedman (2017) : ,Reactivity of metal-oxalate EUV resists as a function of the central metal, 10146, 1014605
25. Bioorganic & Medicinal Chemistry Letters, 26(2), 570-574