RESEARCH ARTICLE

AN EXPERIMENTAL AND SIMULATION ANALYSIS OF VOLTAGE REGULATOR USING THE MULTISIM.

*C. M. Arunkumar¹ and P. C. Mukesh Kumar².
1. University College of Engineering, Pattukkottai.
2. University College of Engineering, Dindigul.

Manuscript Info

Received: 20 October 2016
Final Accepted: 22 November 2016
Published: December 2016

Key words: Multisim, LM7805, Thermistor, Ultiboard

Abstract

Voltage regulators have been widely used in many electronic devices such as charger, CPU and TV, etc. Hence analysis the performance is very important to improve life time, less power consumption and to reduce heat dissipation also. Thermal management of high heat fluxes is a serious issue in a higher performance of electronic devices. In this paper, the performance of voltage regulator was analyzed experimentally and then the simulation was carried out by Multisim Software. Multisim is an electronic circuit design program for schematic capture and simulation. The PCB layout design of linear voltage regulator circuit are designed using Ultiboard and the simulated output and waveform are obtained through Multisim. Multisim is the flexibility to design various complex circuits and pre-test the circuit is possible before implementation.

Introduction:

Multisim was developed by the Electronics Workbench Group in the company of National Instruments, and it’s a software for simulating and designing electric circuits based on the Microsoft operating system. Both the analog and digital circuit design are possible. It can simulate real electric /electronics circuit experimental platform by using graphical operation interfaces. Multisim software was widely used for simulating, analyzing and designing of electric circuits. It promotes many editions, according to their designer need to perform the choices. This software reduces the modelling errors and also reduce the time of the development. It also significantly reduces the hardware and circuit debugging time massively. By using the Multisim simulation software, one cannot only know clearly the work status of the electric circuit, but can also measure is performance’s indexes, providing a very convenient mean for understanding the design of electric circuits [1]–[5].

Voltage regulators are used to provide a stable power supply to the microprocessor. Voltage regulators are found nearly in all electronic systems. They are essential for delivering power from an energy source to integrated circuits at their respective and desired voltage levels. Now a day, there is a demand for smaller portable devices, so the size of voltage regulator also scaled down. Moreover, continues scaling need better power management for microprocessor design. Multisim is used to optimize circuit designs, minimize errors, and reduce prototyping iteration. This can improve the performance of designs by taking advantage of powerful simulation to identify errors earlier in the design flow and reduce costly prototype iterations [6].

Corresponding Author: C. M. Arunkumar.
Address: University College of Engineering, Pattukkottai.
Voltage Regulator:
The Input voltage range for Voltage regulator is 7V-35V, output current up to 1A and operating Temperature 0-+125°C these are the features of voltage regulator.

![IC7805 Voltage Regulator](image)

Fig 1: IC7805 Voltage Regulator
The three pin are input GND, output as shown in fig 1. The electrical characteristics shown in table 1[7]

Table 1: Electrical characteristics of LM7805.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Coefficient</th>
<th>LM7805</th>
<th>LM7803</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage</td>
<td>VO</td>
<td>min=5V</td>
<td>5.3V</td>
<td>5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>max=1.3V</td>
<td>1.3V</td>
<td>1.3V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typ=1.2V</td>
<td>1.2V</td>
<td>1.2V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min=0V</td>
<td>0V</td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max=0V</td>
<td>0V</td>
<td>0V</td>
</tr>
<tr>
<td>Line Regulation (Input)</td>
<td>Li</td>
<td>min=0V</td>
<td>0V</td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>max=0V</td>
<td>0V</td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typ=0V</td>
<td>0V</td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min=0V</td>
<td>0V</td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max=0V</td>
<td>0V</td>
<td>0V</td>
</tr>
<tr>
<td>Load Regulation (Output)</td>
<td>Lo</td>
<td>min=0V</td>
<td>0V</td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>max=0V</td>
<td>0V</td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Typ=0V</td>
<td>0V</td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min=0V</td>
<td>0V</td>
<td>0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max=0V</td>
<td>0V</td>
<td>0V</td>
</tr>
</tbody>
</table>

Line Regulation:
Line regulation is a measure of the ability of the power supply to maintain its output voltage given changes in the input line voltage. Line regulation is expressed as percent of change in the output voltage relative to the change in the input line voltage.

\[
\text{Line regulation} = \frac{\Delta V_O}{\Delta V_i}
\]

Load Regulation:
Load regulation is the capability to maintain a constant voltage (or current) level on the output channel of a power supply despite changes in the supply's load (such as a change in resistance value connected across the supply output).

\[
\text{Load regulation} = \frac{\Delta V_O}{\Delta I_o}
\]

Quiescent Current:
The quiescent current \(I_q\) is the difference between the input current \(I_{in}\) and the output current. This current denotes the current drawn from the power supply when there is no load.

\[
I_q = I_i - I_o
\]
Multisim:-
NI Multisim is an electronic schematic capture and simulation program. With Multisim, the parameter optimization and simulation analysis for the electronic circuit design can be achieved [8].

Simulation design of Voltage regulator:-
More than 16,000 components are available to design the complex circuits.

The circuit consists of capacitor $C_1=300\text{nF}$, $C_2=100\text{nF}$ and series resistor $R_1=1\text{k}\Omega,R_2=220\text{\Omega}$ are shown in fig 2.

Results and Discussion:-
According to the optimum circuit parameters of the above simulation, the actual circuit was designed.

The quiescent current values are obtained by using simulation software shown in fig 3.

As shown in fig 4, the DC Transfer characteristic output also obtained using simulation software.
Fig 5: 3D view of PCB Layout using ULTIBoard

The PCB layout diagram was obtained for the simulated output using ULTI Board as shown in fig 5.

Conclusion:
The Voltage regulator analysis method based on Multisim is practical and effective. This analysis results can provide some reference for circuit optimization for both Analog and digital circuit designers.

References: