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Introduction:-

In this paper, we study a nonlinear mathematical model in population
with variable size. Size N(t) at time t, is divided into eight sub classes,
with N(t) = S(t) + I(t) +1,()+1L,(0)+13(0)+1,(t)+ Q(t)+ R(t); where S(t),
I(t), and Q(t) denote the sizes of the population susceptible to disease,
and infectious members, quarantine members with the possibility of
infection through temporary immunity, respectively. The stability of a
disease-free status equilibrium and the existence of endemic
equilibrium can be determined by the ratio called the basic reproductive
number. This paper study the equilibrium, local stability and and the
stochastic stability of the free disease equilibrium under certain

conditions .
Copy Right, 1JAR, 2018,. All rights reserved.

This paper considers the following epidemic model with temporary immunity:

: 1t S(H)I(t ,
S =1+n- (pn+ d)su)+%- a%+98(t)l(t— tyeHet
1(t) = 2SI _ si@) (m, + d + b)I (1),

N(t)

1, = byit) - (m +d+ g,)1,(0).
1) = byl(t) - (m + d + g,)1,(1),
1, = bai(t) - (my + d + g3)15(1),
1. = bty - (my +d + g,) (0,
Q) = gyl (1) + gyl (1) + galy(t) + gl () - (my + d + d)Q ),

R@) = dO () - (ne + d)R@®) - gS(OI(t - t)e™e

Consider a population of size N(t) at time t, this population is divided into for sub-classes, with N(t) = S(t) + I(t)

(O () s+ + QM)+ R().

Where S(t), 1(t), 11(t), 1o(t), 13(t), 14(t), Q(t) and R(t) denote the sizes of the population susceptible to disease,
infectious members, quarantine members with the possibility of infection through temporary immunity, and who
were removed from the possibility of infection respectively. The positive constants pi, po, ps, u4, p5 and pé
represent the death rates of susceptible, infectious, quarantine and removed. Biologically, It is natural to assume that

}’LS min {MO’ M1, U2, U3, W4, Us, MG}
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The positive constant d is natural mortality rate. The positive constant f = p1+p2+p3+p4 is the average numbers of
contacts. The positive constants A represent the incidence rate of the population. The positive constants y1,y2, ¥3, and
v4 is the numbers of transfer or conversion of infected people quarantined. d the number of transfer or conversion of
Q to R. v the positive constant is the parameter of immigration. a the positive constant is the parameter of emigration
The term ¢S (t )I(t-t ye™s' indicates that an individual has quarantined in a pool recovery before becoming

susceptible again, where 7 is the length of immunity period.
The initial condition of (1) is given as:

S = F (), 1(h) = F,(h),
Q(h) = Fi(h),R((h) = F _(h),
B B R B B _ B-88% MEe H
where, =( 1, 2 3 ) Csuch that:

S()=10)= 10 01()==()= 20 0 Q()= 3()=3(0) OR()E ()= 4(0) O
Let C denote the Banach space C ([- , 0JgR} of gontinuus functions mapping the interval [- , 0] into R*. With a
biological meaning, we further assume that:

i()= i) 0fori=1,2,34.

With the initial condition in (2) which becomes:-

S(h) = F;(h), 1(h) = F,(h),
Q(h) = Fz(h),R() = F_ (h),
-t £ h £ O.
Where,
10 0, 0 0, 3(00 0, 40 o,- 0.
Theregion  J(S 1)L E) 1) 1) 1L EOQMRM)T 1 5. I is positively invariant.

(SO0 OO O LO O RO N T

Hence system (1) can be rewritten as

. _ _ s _ =1491169] _ Cpgt
Sty =1-+n (n + d)s+ N a NTES) + gS(t)I(t t )e Met |

Lty = a SOOI s
N(t) N(t)

1,() = bi(t) - (m + d + g3 )1,(t),

(my + d + b))l (1),

1,@) = b,I(t) - (m, + d + g, )I,(t),
1.(t) = boi(t) - (my + d + g5 )51,
1, = b ity - (m, + d + g, )I,(t),

Q) = gyl (t) + gol,(t) + gala(t) + g,l () - (my + d + d)Q (@),

Fi(t) = d @) - (ng + dIR(@®) - gS(OHI(t - tHeHs"

Equilibrium Points:-
An equilibrium point of system (4)
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Il +n- (n+ d)s+ﬂ- aﬂ+gSI(t— t)eHst = 0,
N N
SI sl
a—- —- + d+ b))l = 0,
N N (M )

b,t- (m +d+ g;)I,=0
satisfies: bl - (m, +d+ g,)1,=0,
byl - (my + d + g3)I;=0,
b, - (m +d+ g,)1,=0,
g, l; + g,l, + gzl + gyl, - (my +d+ d)Q= 0
Q- (ug + d)R - gSI(t- t)e™s = 0

We calculate the points of equilibrium in the absence and presence of infection.
In the absence of infection, the system (5) has a disease-free equilibrium Eg:

E,= (é*? EUELAL |ﬁ‘¢‘k‘) ':n+d,o,o,o,o,o,o,0)ﬁ

The eigenvalues can be determined by solving the characteristic equation of the linearization of (4) near E, .
So, the eigenvalues are:

A= - (urda)A—a - oo (ug +d + b)),
Az= - (p+d+g;).A= - (n +d+ g;)
As= - (g +d + g3).A«— - (n, +d+ g,)
A= - (ng +d + gg).Ag= - (ne+d)

In order to A, will be negative, then we define the basic reproduction number of the infection R, as follows:
a(l +n)
* T s(med)+ (I +n)(m +d+b)

In the presence of infection, substituting in the system, Q also contains a unique positive, endemic equilibrium

T
* * * * * * * * *
E, = (St’lt’llt’IZt’|3t’|4t’Qt’Rt)

* * * *T wo-
= (S{1;.Q..R) ."i=1234
Where:-
* 1’
si=1g- (”b+d+b)'\' 4
* m + u
I, = m+ d
t ge ﬁbtg ) g
I, = b' 1= 1,2 3,4,
it m+d+gl =
. 1 §°4 g.b u
Q= +o|+o|ga P u
g=1M 9 g
. ¢ x 4 b o . 3]
Rt = 1 g d é g|| E (m+d)St+I +UB
g + dgug +d+dgi-,m +d+ g5 b4
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Proposition

Let
FL(S. 1112015, 1,Q R ihe solution of the system (4) is defined in (©-==1 and

; H+A
LimsupN (t)<
t—o0 p ( ) #+d
Proof
We have N =v+A-uS — ol —uuly— )y — 5l 5 — 1,1, — 1Q — R —dN ,

N <v+A—(u+d)

By integration,

N (t)gu(l—e’(”*d)t te (0,7 ]
u+d , for every

N (t)<2. 472
u+d

(0T ]
The solutions of sub-populations are bounded in the interval

v+ A _
1—g (urd)t t E(0,00]
#+d ( ),forevery
U+ A

Finally Lim supN (t) ===+

Thenwe have N (1) =

The local stability of the free-disease equilibrium :-

Theorem 1:-
The disease-free equilibrium E, is locally asymptotically stable if and only if
o(v+A4
Proof:- Let
v+ A4 .
X =S — =1y, =1,,1=1234,
u+d
+A
z=Q,u=R,w=N—V .
u+d

With the changement, the system (4) becomes

X— — 4 X + ol + —HT __ O{(,Ll+d)
[ (ura)] LHN (o W(Md%(wﬁ)]s}y,

[ ua ]

w + N

yi =By —(,ui +d +y, )yi Vi =12,3,4,
z =7/1y1+7/2y2+73y3+74y4_(/—‘5+d +5)Z,
u :[_ye—ysrsJy +6z2 — (s +d )u.
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With the linearized of system (7) at the point (0,0,0,0,0,0,0,0) , we obtain the eigenvalues,

A =—(g +d +7,),Vi =1,2,3,4,
Ag =—(,u+d )’

loa
Ag :Ol_N__(/“oer +p),

A, =—(us+d +5),
Ag=—(u+d).

The eigenvalues have a negative real part, so;

E, is locally asymptotically stable if and only if ,, M_(ﬂ +d + )
w+d ° .

Stochastic stability of the free-disease equilibrium:-
We limit ourselves here to perturbing only the contact rate so we replace k by a + a b(t), where Db(t) is white
noise (Brownian motion). The system (4) is transformed to the following Itd stochastic differential equations:

ds = §+n- (n+ d)S+%+ ge et SI(t - t)- a%;udt- asl db,

Sosb (my +d+ b)gvdt+aSI db,

N N
di, = &1 - (m +d+ gl)lluudt,

dl =

0Bgoan

di, = &,1- (m +d+ g;)l, idt,

dig = &1 - (m; +d + g;)l; idt,

di, = &,1- (m +d+ g,)l,{dt,

dQ = @1'1 + gyl, + ggly + gul, - (m +d + d)Q @t,
dR = ép- (ne + d)R - ge™e' SI(t - t)ﬂdt

Theorem 2:- If Ry<1, I(t) and R(t) are exponentially almost surely stable.

Proof:-
o(u+d oa(u+d A1+
Let w such thatM+(,u0+d + ) - M—Wye'“ﬁf 27V 00
A+v A+v u+d
Withe It6’s formula, we obtain
(Nﬁ —w 7e’“6’)8|
1 o asl
dlog(l +wR) = TR _(W+(ﬂ°+d +,B)]I +w S5Q dt+I “WR
a’ (SI)2
R\ )
" (He+dl) 2(1 +wR)
- .
[(Z+V)Wd;/e j_a+0'(;1+d) |
— + +v
dIog(I+wR)s(|+—V%lR) “ # dt + asl db
| +(4, +d + B3) I +wR

+(W (1e+d))R
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We suppose that
_ (A+v)w yes o(u+d)
M =min -_— |t + +d + W +d
{ Li+d j Atv (4 B) (Uzs )
Then

asl

d log(I +wR ) <-Mdt + db
I +wR

With integration , we obtain

log (I +wWR ) <-Mdt +al(l(sv(;l+)—vlvF({V(3/))db v)-

We have
[ S(v)I(v) ]
(1 v)+WR (V) ) s hounded. Then

t—oo

Lim ‘I[(' SV (v) db(v)=0 almost surely.

(vV)+wWR (v))

The following form from Doob’s martingale inequality combined with 1t6 isometry see [17].

Lim supilog(l +WR)<—-M
t—ee t almost surely

Then we have
Lim suptl logl <—M

t—oo

, S0 | is almost surely

Lim supt}log R <—M

to= , S0 R is almost surely.
Theorem 3.
. I +n
-2
If ga I(m++nd)_ geet % a(m+d)< o S(t) converge exponentially almost surely to o
[=] 1
Proof:

APPIYING 145 formula to the first equation in system (8), we obtain

dlog|S -

+d_

|
AD>DDDID>DMDD>D>D>D>D>D>D>D
e
~—~
3
+
o
N
-J-|-|O¢
[= o e el &CCC&‘ (e
—
1
QD
o
o
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&
&
& @ (m+d o}
dlogS-|+n£g(u+d) g ( )- gete' =
m+d ¢ I +n 5 I +n
¢ S -
&
We suppose that
@a (m+ d 0
F(x)= (p+d)- E ( ) ge™s' 3x - SN X
I +n 5 .
, With
I +n Si
dlog|S - = F(x)dt- a———db,
J m+d ( ) S+
m+ d

If the determinant of the equation is negative, then for all x

We have
dlogls - Mg Bygr.a St g
m+ d a? S. Il +n
m+d

With integration , we obtain

]
log|S - L+nle Dy ag () (v) —2 =2 db(v)
m+dl - a? os() _—
m+d
Since

1, S()I(v)

Lim = ¢ db(v) = Oalmost surely
t®Y¥ t OS(V)- I +n
m+ d
+
L|msup IogS- |+ 0 £ R.
+d a2
Conclusion:-

Sl db,
I +n

m+ d

+
>

@
STARERRARNRNTY
=
h::
1
QD

3
+
o

In this paper, the epidemic model has a disease free equilibrium E, witch is locally asymptotically stable if and only

if , .o(v+4)
w+d

— (44 +d + ) and the endemic equilibrium Et*_

We proof I(t) and R(t) are exponentially almost surely stable if If R,<1, Finally S(t) converge exponentially almost

|f@(m+ d)

I +n
surely to ot
m+ E a0 9

SH/0k,

- 2(m+d)< o’
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