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The main objective of this paper is to develop a step by step procedure 

to discover the influential commodities in stochastic Laspayres 

regression model when the errors are assumed to be serially correlated 

with autoregressive process of order p. The two familiar methods of 

finding unusual observations the ‘Hat matrix’ and difference in 

parameter vector beta i.e. ‘DFBETA’ are considered in this algorithm. 

This algorithm facilitates the researcher to carry out their research in 

convenient way. 
 

                 Copy Right, IJAR, 2019,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
The index number is one of the monetary measures that help us to understand the average change in price level over 

the two periods. Index number is of more reliable estimate if the relative importance to commodities is given instead 

of providing equal importance to each commodity in consumer basket. For example, basic food items like wheat, 

rice, and milk will always be more essential commodities in consumer’s budget than the entertainment or education. 

Unequal importance of each consumer items as shown by its corresponding weights. For instance, food items are 

certainly given more weights as opposed to the entertainment and recreation. Similarly, wheat, rice, and other basic 

food items are undoubtedly offered greater weights as compare to non-basic food items such as soft drinks, coffee, 

milo, vinegar etc. 

 

The prices corresponding to basic items should seem to be kept as low as possible and remain unchanged over the 

periods so that each individual in an economy could not be highly affected to fulfill their basic needs. For such 

reason, government have to pay attention not to change the price level with great margin via tight monetary policy 

and other fiscal measurements. They must carry some essential and critical steps to prevent the prices goes higher by 

the retailers on their own and intervene to overcome such a situation prevalent within a country. The price level 

could also be taken under control using the actions taken in the light of correct picture depicted by the price analysis 

and other fiscal measures. 

 

The problem arises here is that among various consumer items, which one is more important to estimate price index 

numbers and thus price inflation. In other words, which commodities are more sensitive or influential to regression 

parameter estimates of index number model. For this purpose, we use the two methods Hat matrix, and DFBETA 

measures to find such items in the basket. Both detecting methods suggest to compare with calibration point in order 

to decide whether a particular commodity fall in influence zone. 
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Basically, the detecting methods have been proposed to find leverages and influential observations in regression 

analysis with one regressor and more than one regressors. The detailed description on unusual observations are 

given by Barnett and Lewis (1994). Belsley et al. (1980), and Chatterjee and Hadi (1986) classified the types of such 

abnormal observations with respect to regression analysis of two variables X and Y, via the help of graphical tools 

on two dimensional plots. The role of hat matrix (H) with reference to both regression analysis and analysis of 

variance (ANOVA), using a calibration point 2p/N is given by Hoaglin and Welsch (1978). They found the diagonal 

elements iih , a very worthwhile diagnostic towards detecting leverages in multiple regression. The properties of hat 

matrix are described and used by many authors like Hoaglin and Welsch (1978), Cook and Weisberg (1982), and 

Draper and Smith (1998). The chief role of hat matrix is in finding the leverages in simple regression as well as 

multiple regression analysis, Hoaglin and Welsch (1978) found hat values as a good indicator to detect the 

leverages. The larger the value of
iih , the more significant value of regressor to estimate y value. We use the hat 

values in order to find the significant commodities in Laspeyres index numbers. 

 

One useful measure of change is difference in regression coefficients   (DFBETA), when calculated on the basis of 

full sample and reduced sample. Thus, defined as )(
ˆˆ

i   (see Miller (1974) for the derivation of DFBETA 

formula). A scaled version of DFBETA is proposed by Welsch and Kuh (1977), which is obtained by dividing 

)(
ˆˆ

i  to the standard error of  ̂. The values of DFBETAs are compared to the size of sample N and if these are 

greater than   √ , the corresponding observations are considered as unusual. Özkale and Açar (2015) used these 

influence measures to find unusual observations in linear regression model with more than one regressors. Maqsood 

and Burney (2014) and Burney and Maqsood (2014) used the technique of hat matrix and DFBETA measure to find 

the influential commodities in Laspeyres index number model with autocorrelated errors. 

 

The organization of the paper is as follows. Section 2 provides the stochastic Laspeyres regression model with brief 

description of how the Laspeyres index number estimators are obtained. The formulae of hat values and DFBETA 

values are also recalled in this section. An algorithm to find significant commodities is presented in section 3 and 

well displayed by flow chart. Lastly, section 4 gives the conclusion. 

 

Stochasic Laspeyres Regression Model 

The stochastic simple model of Laspeyres price index number is defined as follows; 

 

itt

o

itP    i=1, . . ., n, and t=1, . . ., T     (1) 

Where

io

ito

it
p

p
P   , ratio of current period price to the base period price for ith commodity, t  common trend in the 

prices of all commodities at time t, and it  is the random component. The errors it  are assumed to be serially 

correlated and thus generated from an autoregressive process of order p. 

itptiptitiit u  ,2,21,1 ....      (2) 

Assuming  

0)( ituE and  (      )  
  

  
              (3) 

Where            are the parameters of autoregeressive process,    are the weights of ith commodity and     is 

kronecker delta which takes the value one for i=j, and zero otherwise. For an stationary autoregressive process the 

roots of autoregressive polynomial must lie outside the unit circle. 

The matrix formulation of model (1) is given as 

             (4) 

Where both         are respectively        vectors of the observed Laspeyres index number and the error terms. 

The parameter vector  consist of Laspeyres index number t  so with the order      , and the design matrix X 

with order       . Assuming VE 2' )E(  and , 0)(   , where V is symmetric and positive definite in 

nature. The inverse of square matrix V can be decomposed using choleski decomposition to get QQV '1 
, 
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where Q  is a lower triangular matrix. Under these assumptions, the best linear unbiased estimator (BLUE) of   in 

model (4) can be obtained using the method of generalized least square (GLS) as given below 

   oPVXXVX 111ˆ          

The transformed model is obtained by multiplying both sides of equation (4) by Q , and then we apply the simple 

ordinary least square (OLS) estimator to the transformed data to obtain estimated generalized least square (EGLS). 

We have  








 







 



**

1

**ˆ oPXXX      (5) 

Where XQX ˆ* 


, and Oo PQP ˆ*

 . The transformation matrix Q  is obtained by Burney and Maqsood (2014) 

when the errors are generated from autoregressive process of order p with p=1, and by Maqsood and Burney (2014) 

for p=2. With these assumptions Maqsood and Burney (2014) obtained the estimator of  , the familiar Laspeyres 

index number, written as 

 

TtPw
n

i

o

itit ,.....,2,1for     ˆ
1




     (6) 

 

The order of autoregressive process does not have an impact on estimator of Laspeyres price index number. We 

have confirmed for p=1 and p=2 and get the same formula for Laspeyres as given in equation (6). The standard 

errors of estimated Laspeyres index numbers are derived by Maqsood and Burney (2017). 

To find the influential observations and its impact on Laspeyres regression model we consider the two familiar 

influence measures hat matrix and difference in parameter vector beta (DFBETA). For this purpose, we find the hat 

matrix for transformed data using the equation given below 

XXXXH  1)(               (7) 

We get 

niwh iitit ,...,1 , ,                              (8) 

 

We use the subscript of hat values ‘it,it’ due to a matrix of order nTnT, where nT=N are the total number of 

observations. The diagonal elements of matrix i.e. niwh iitit ,...,1 , ,  clearly show that the weights of 

commodities determine how much the important of particular commodity is in order to find the Laspeyres index 

number. They are not affected by the parameter of autoregressive process. The greater the value of weight, the more 

influential the commodity is, irrespective of the time period. They are not affected by the parameter of 

autoregressive process. 

 

Another measure to determine the influential observations is DFBETA, given by the following formula 

itit

ii
iitjitj

h

exXX
DDFBETA

,

**1**

)(
1

)(ˆˆ







     (9) 

We use D for DFBETA for the sake of convenience and subscript ‘ itj ’ is used to describe ‘i’ for commodities, ‘t’ 

for time period, and ‘j’ for parameters. DFBETA depends on the order of autoregressive process and a different 

estimator is obtained for p=1 and p=2. The DFBETA estimator is obtained by Burney and Maqsood (2014) for 

AR(1) error process and by Maqsood and Burney (2014) for AR(2) process. Burney and Maqsood (2014) derived 

the DFBETA estimator for Divisia index number which is same as we get for Laspeyres index number. The 

estimators and their explanations are given in these references. 

 

Algorithm to Find Significant Commodities 

To achieve our objective, we must pursue a step by step procedure to discover the influential commodities in 

Laspeyres index number. For the sake of convenience, we convince the reader to carry out an algorithm for 

employing the methods described in sections 2.  
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Figure 1 displays the algorithm using flow chart, in which the two phases are recommended to accomplish. Firstly, 

the first phase includes the parameter estimation of Laspeyres regression model, finding error series, verifying the 

stationary scenario of series, and fitting of an AR(p) model to error series. Then the second phase certainly 

comprises of utilizing methods to extract the influential commodities. The influential commodities in the sense, that 

it disturbs the regression estimates of index numbers and its related aspects. We use here the two widely used 

methods the hat matrix, and the DFBETA matrix, and the decision is made on calibration point that have been 

described in flow chart. 

 

The hat values alone can not provide the accurate picture of the pattern that commodities in the consumer basket 

reflect. It may mislead the analyst to wrong and incorrect situation. Because the commodities, for which we are 

computing the higher hat values, do not necessarily have a big DFBETA value too. To clear that, we must start to 

establish the following hypothesis; 

Ho:   

ith commodity is not influential to estimate the underlying index number 

 

HA:  

ith commodity is influential to estimate the underlying index number 

 

To test this hypothesis, we work on hat values and DFBETA measures and take decision according to the figure 2. 

There are two possibilities based on the values of N, the total number of observations in analysis, and p, the number 

of parameters. We show these using two horizontal scales, which represents either Np  , or Np  .The first 

portion is acceptance zone, where both itith ,  and itjD are less than their respective threshold values, and we do not 

reject null hypothesis. The middle part is called the suspicious region where one of these two detecting methods 

exceeds its critical value and other does not. We, therefore recommend confirming the decision by computing other 

detecting value. On the contrary, the last portion is the rejection region, where we have strong evidence against null 

hypothesis in favor of alternative hypothesis. We also show these situations by the table 1. 

The first inner cell of table 1 represents the situation shown by the first portion in figure 2, where both criteria take 

values less than calibration point and hence not influential case. The next two cells show the middle part of figure 2 

i.e. suspicious zone. Similarly, the last cell confirms about the significant influence of respective commodity falling 

in rejection region. The analysis done by Maqsood and Burney (2014) is actually an example of determining 

influential commodities in Laspeyres index model using this algorithm. The first phase of computation requires the 

estimation of parameter vector based on observed price data. While in the second phase the hat values and DFBETA 

values are computed using the formulae given in equations (7) and (9). The results on Laspeyres index estimates and 

estimates of influential measures are presented in Maqsood and Burney (2014).  

 

Table 1:-Decision Criteria for Hat Values and DFBETA Measures 

 Hat Values
 

Nph itit /2,                       Nph itit /2,   

 

DFBETA values 

                                   

NDitj /2  

NDitj /2  

Not Influential Suspecting Influential 

Suspecting Influential Influential 
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Figure 1:-Flow Chart to Find Significant Commodities in Stochastic Laspeyre Price Model 

 

 
Figure 2:-Different Zones with Respect to Values of Hat Matrix and DFBETA Matrix 

 

Conclusion:- 
In this paper, we considered the general form of hat matrix and DFBETA measure to detect the influential 

commodities in estimating the stochastic Laspeyres index number when the errors are serially correlated with AR(p) 

process. For this purpose, we defined a step by step procedure consisting of two phases. The first phase computes 

the estimates of Laspeyres index numbers. The second phase helps to determine the influential commodities using 

hat values and DFBETA values. These two phases are well explained by flow chart. A hypothesis is generated for a 

specific commodity whether has significant impact on estimated index number in section 3. To check this hypothesis 

a figure representing the three zones of acceptance, suspicious, and critical is shown. The decision is made using the 

given calibration points for both hat values and DFBETA measures. One can reach a decision easily by looking the 

Do not reject Ho 

Do not have influential  

observations 

Acceptance Zone 

Do not take decision only on that 

quantity  

Need to be confirmed through 

other influential measures 

Suspicious Zone 

 

Reject Ho 

Strong evidence towards 

influential cases 

Critical Zone 

ND
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itj

itit

/2
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different scenarios in table 1 for acceptance or rejection of the null hypothesis. This proposed algorithm is useful for 

the researchers working on influential commodities using these measures. 
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