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Aluminum toxicity is one of most distributed plant abiotic stress in the 

world, causing root inhibition and therefore crop losses. Plants 

continuously adapt its defense to abiotic stresses through different 

mechanisms including DNA methylation. The methylome variation is 

influenced by external cues from environment or by hormonal signals. 

Salicylic acid is one of the most important hormones in plants, 

directing growth and defense. Its application is seen having the capacity 

to elicit plant defense mechanisms. In this study, the effects of 

aluminum toxicity and salicylic acid on DNA methylation were carried 

out in pearl millet using MSAP epigenotyping and ELISA test. The 

methylation analysis revealed aluminum treatment increased the global 

and CCGG methylation level whereas application of salicylic acid had 

reverse effects. Moreover, most of the methylation or demethylation 

due respectively to aluminum and salicylic acid, occurred at the 

external cytosine. This finding reveals that salicylic acid could 

overcome the negative effects of aluminum toxicity through DNA 

demethylation pathways. 
               Copy Right, IJAR, 2018,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
Aluminum (Al) is the most abundant metal in the earth’s crust, comprising about 7% of its mass. They are widely 

distributed in tropical and subtropical regions, constituting approximately 30% of the total area of the planet and 

50% of the arable lands in the world, as well as providing between 25 and 80% of vegetable production (Sade et al., 

2016). It becomes phytotoxic when the soil pH drops below 4 and therefore limits plant production by reducing root 

growth (Kopittke et al., 2015). The root apex including root cap, meristem, and elongation zone, accumulates more 

Al and attracts greater physical damage than the mature root tissues (Bennet & Breen, 1991; Ryan et al., 1993). It is 

implicated in oxidative stress (Zheng & Yang, 2005), and has effects on cell wall, plasma membrane and nutrient 

unbalances (Schmohl & Horst, 2000), induction of callose (Budikova & Durcekova, 2004), and disturbance of 

cytoplasmic Ca
2+

 homeostasis (Rengel & Zhang, 2003). Additionally, Al toxicity mostly affects the plasma 

membrane H
+
-ATPase by downregulating its expression (Shen et al., 2005; Chen et al., 2013; Guo et al., 2013; 

Zhang et al., 2017).  
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However, although A1 toxicity has been identified as a problem of acid soils for over 70 years, its effects on 

epigenetic regulations, especially genomic methylation, remain largely speculative. Auxin, important hormone of 

root growth is seen as the activator of the plasma membrane H
+
-ATPase by phosphorylation during hypocotyl 

elongation in Arabidopsis (Takahashi et al., 2012). Recent study suggested that auxin could be influenced by a 

salicylic acid-repressing pathway through DNA demethylation mechanism at seedling development (Ngom et al., 

2017). Furthermore, application of aluminum increased the methylated loci in Zea mays seedlings (Taspinar et al., 

2018), whereas application of salicylic acid on Pennisetum glaucum seedlings caused DNA demethylation (Ngom et 

al., 2017). 

 

In this study, the effects of aluminum toxicity and salicylic acid were carried on pearl millet (P. glaucum) 

methylome using methylation-sensitive amplified polymorphism epigenotyping.  

 

Materials and methods:- 
Plant materials:- 

Four genotypes of pearl millet were used in the study: Souna 3 (PMS3), IBV 8004 (PMI8), Gawane (PMG), and 

Thialack 2 (PMT2). These are early-flowering photosensitive varieties with a growth cycle of 85–95 days. The seeds 

were obtained from the Senegalese Agricultural Research Institute of Bambey (Senegal). Seeds were disinfected 

using 1% of calcium hypochlorite Ca(ClO)2 for 10min and then washed five times with sterile deionized water to 

remove any remaining chlorine.   

 

Plant growth conditions:- 

Murashige and Skoog was used as a medium to sow the pearl millet seeds. The media were supplemented with 

0.5mM of salicylic acid and 400µM of aluminum (Table 1). After preparation, the media pH was adjusted to 4 and 

autoclaved with 121°C for 20min. After autoclaving, the media were cooled down in room temperature during 48hrs 

to check any traces of contamination. The contaminated media were discarded. 

 

Table 1:-Combined treatments of aluminum and salicylic acid 

 Aluminum and salicylic acid applications 

Control Al Al+SA 

Aluminum chloride 0 µM 400 µM 400 µM 

Salicylic acid 0 mM 0 mM 0.5 mM 

 

15 seeds were sown per medium and for each treatment with three replicates. The seeds were incubated in darkness 

for 48hrs. The germinated seedlings were kept in a growth chamber set at 8 hrs. of darkness and a 16 hrs. of light 

and a temperature of 25°C during ten days of development for methylation analysis. 

MSAP epigenotyping:- 

The DNA from roots were extracted using ZR plant/seed DNA minipreps (Cat No. D6020) following the company 

extraction. The eluted DNA was subjected to genomic DNA methylation analysis. The extracted DNA was 

subjected to a Methylation-Sensitive Amplified Polymorphism (MSAP) analysis using two isoschizomers MspI and 

HpaII targeting the CCGG motifs, and EcoRI targeting GAATTC sites (Al-Lawati et al., 2016). This method is 

based primarily on Amplified Fragments Length Polymorphism (AFLP) analysis. It uses two different reactions with 

MspI/EcoRI, and HpaII/EcoRI. The isoschizomers recognize the same DNA site 5’-CCGG-3’ with different 

sensitivity to methylation (Table 2).  

 

Table 2:- Sensitivity of the isoschizomers HpaII and MspI to methylation of CCGG sites 

HpaII pattern MspI pattern Epigenetic status Motifs 

1 1 Unmethylation CCGG 

1 0 Methylation of external cytosine mCCGG 

0 1 Methylation of internal cytosine CmCGG 

0 0 Mutation/Non-target - 
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100 ng DNA samples were digested with NEB EcoRI-10 U at 37°C for 2 hrs., before deactivation by heating at 

65°C for 20 min. Then, the digested DNA fragments were subjected to NEB HpaII-10 U and NEB MspI-10 U 

digestion into two separated series at 37°C overnight. The restriction enzymes were deactivated by heating at 80°C 

for 15 min. Then, each MSAP series was subjected to ligation reactions (NEB T4 DNA ligase-10 U) with EcoRI 

adaptors (10 mM) and MspI/HpaII adaptor (10 mM) (Table 3). The ligation mix was incubated overnight at room 

temperature. Pre-selective amplification was performed in a 50 mL reaction volume with EcoRI primer (10 mM), 

and MspI/HpaII primer (10 mM) (Table 3), diluted restriction-ligation DNA and One Taq standard buffer.  

 

The pre-selective amplification was realized with the following temperature cycling conditions: one cycle at 94C for 

30 s; 30 cycles at 94C for 30 s, 51C for 30 s, and 72C for 60 s, and finally one cycle at 72C for 2 min. A 10-mL 

aliquot of the pre-selective amplification products was run on a 1.5% agarose gel with a 1 kb DNA ladder to validate 

the pre-amplification step. Finally, a second amplification was done by selectively amplifying methylated DNA 

fragments using different primer combinations (Table 3) to generate an MSAP fingerprint. The PCR conditions were 

as follows: 94°C for 30 s, 12 cycles at 94°C for 30 s, 65°C for 30 s, and 72°C for 60 s, 23 cycles at 94°C for 30 s, 

51°C for 30 s and 72°C for 60 s, and finally one cycle at 72°C for 60 s. The PCR products were then run on a gel, 

and the MSAP profile was used for data scoring. 

 

Table 3:-Primers and adaptors of MSAP epigenotyping 

Epigenotyping steps Adaptors and Primers Sequences (5’-3’) 

Ligation EcoRI adaptors CTCGTAGACTGCGTACC 

AATTGGTACGCAGTCTAC 

MspI/HpaII adaptor CGAGCAGGACTCATGA 

Pre-selective amplification EcoRI primer GACTGCGTACCAATTC 

MspI/HpaII primer ATCATGAGTCCTGCTCGG 

Selective amplification EcoRI selective primers GACTGCGTACCAATTC-AAC 

GACTGCGTACCAATTC-ACC 

GACTGCGTACCAATTC-ACA 

GACTGCGTACCAATTC-AAG 

MspI selective primer ATCATGAGTCCTGCTCGGTCCA 

HpaII selective primer ATCATGAGTCCTGCTCGGTCAA 

 

The MSAP profile was then transformed into a binary matrix, with 1 as a presence of loci and 0 the absence of loci 

(Table 2). Only 50-bp or longer PCR products were considered for analysis. The internal cytosine methylation and 

the external cytosine methylation (hemimethylation) were considered in this study. The absence of both bands (0, 0) 

is considered as mutation or non-target regions. 

 

The raw data from the MSAP profile were analyzed using RMSAP 1.1.8 for classification of methylation-

susceptible locus or non-methylated locus. The outputs generated by the software were the percentage of methylated 

and unmethylated fragments and the types of methylation (Perez-Figueroa, 2013). 

 

Global methylation estimation:- 

To estimate the relative global cytosine DNA methylation, the enzyme-linked immunosorbent assay technique using 

an Imprint® Methylated DNA Quantification Kit (MDQ1, Sigma) was used with equal amount of DNA (100ng) 

following the company instructions.  

 

Nei epigenetic distance:-  

Following aluminum and salicylic acid treatments, the Nei genetic distance was determined using DNA methylation 

data and GenAlex version 6.5 (Peakall & Smouse, 2012) for all pearl millet varieties.  
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Statistical analysis:- 

All statistical analysis was performed using R 3.2.5. Each data set was tested for normality and homogeneity of the 

variance. The data was analyzed using ANOVA to compare methylation level difference and LSD for mean 

separation. 

 

Results:- 
CCGG DNA methylation level:- 

The methylation analysis was carried following aluminum and salicylic acid treatments. The results showed a 

significant difference between the treatments for all varieties (P<0.05). The control plants (without aluminum and 

salicylic acid) had lowest methylation level with plants treated with combined aluminum and salicylic acid. The 

highest methylation level was found during aluminum treatment while adding of salicylic acid diminished it (Figure 

1). 

 

 
Figure 1:- Methylation level after aluminum and salicylic acid treatments. Highest methylation level found during 

aluminum application. Al: aluminum, SA: salicylic acid, control: without SA and Al. CCGG: non-methylation, 

mCCGG: hemimethylation, CmCGG: internal cytosine methylation. a: PMS3; b: PMG; c: PMI8; d: PMT2 

 

CCGG methylation mapping:- 

The type and the occurrence of methylation have been determined. The percentage of unmethylated cytosine 

(CCGG) was very low in all varieties without aluminum and salicylic acid treatments (controls). However, it 

increased with aluminum and salicylic acid applications.  Furthermore, most of the methylation occurred at the 

external cytosine while the level of methylation was low at the internal cytosine. The hemimethylation was higher 

during aluminum treatment and decreased a bit after combination of aluminum and salicylic acid (Figure 2).  
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Figure 2:-Types and occurrence of methylation following aluminum and salicylic acid applications. Most of the 

methylation occurred at external cytosine. Four varieties: a PMS3, b PMG, c PMI8, and d PMT2. Al: aluminum, 

SA: salicylic acid, control: without Al and SA. CCGG: non-methylation, mCCGG: external cytosine methylation 

(hemimethylation), and CmCGG: internal cytosine methylation 

 

Global Cytosine DNA methylation:- 

The global cytosine DNA methylation was measured after salicylic acid and aluminum application during seedling 

development. The results showed that aluminum treatment increased the global DNA methylation for all varieties 

compared to the controls. However, the combination aluminum-salicylic acid decreased the level of DNA 

methylation even though the changes depended on the variety, PMG being less sensitive to salicylic acid (Figure 3).  

 

 
Figure 3:-Global cytosine DNA methylation changes after Al and SA treatments. Aluminum increased the 

methylation level while SA had reverse effects. Al: aluminum, SA: salicylic acid. 
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Epigenetic diversity:-  

The epigenetic diversity induced by aluminum and salicylic acid treatments was determined with Nei epigenetic 

distance using GenAlex version 5.3. The results showed the Nei epigenetic distance rate was lower between the 

control (0mM aluminum) and treated (400µM aluminum) plants. In contrast, the application of salicylic acid 

(0.5mM) increased the epigenetic variation in all varieties (Figure 4). 

 

 
Figure:- Nei epigenetic distance following aluminum stress and application of salicylic acid. Salicylic acid increases 

the epigenetic variation 

 

Discussion:- 
The effects of aluminum toxicity on epigenome were carried out on four pearl millet varieties. The results revealed a 

significant difference (P<0.05) between the controls (without stress) and the plants treated with aluminum and 

salicylic acid. Indeed, aluminum stress increased the DNA methylation level. Many studies reported similar results 

in maize (Kimatu et al., 2013; Taspinar et al., 2018) whereas Bednarek et al., (2017) reported contradictory results 

in Triticale with demethylation occurred during aluminum treatments in CG context. 

 

The application of salicylic acid decreased the genomic methylation level, even though there was genotype-

dependence. It seems that salicylic acid plays important role in the pearl millet tolerance to aluminum toxicity 

through demethylation pathway. Plants usually use two mechanisms to tolerate aluminum exposure. Some exclude 

aluminum from the root apex and others accumulate them in the root and shoot symplasm (Panda et al., 2009). 

Moreover, many studies revealed the strong evidence of aluminum tolerant genotypes of wheat, corn, sunflower, 

soybean and common bean excluding aluminum from root by exertion of organic acids that chelate aluminum 

(López-Bucio et al., 2000; Watanabe & Osaki, 2002). However, recent studies showed improvement of aluminum 

tolerance by salicylic acid through the modulation of the reactive oxygen species (Liu et al., 2017). This is 

accompanied by higher activities of superoxide dismutase, peroxidase, and ascorbate peroxidase, and lower catalase 

activity, indicating alleviation of aluminum toxicity. 

 

During both aluminum and salicylic acid treatments, the external cytosine methylation varied more compared to the 

internal cytosine methylation. The external cytosine methylation (hemimethylation) was higher during aluminum, 

indicating a functional role of the external cytosine. This high occurrence of the hemimethylation during stress could 

reveal important role of the external cytosine in plant tolerance. In contrast to aluminum, external cytosine 

demethylation occurred after salicylic acid application, therefore confirming its importance. It could be a key player 

for identification of de novo methylation events, following changes in the environment or threats. This 

hemimethylation is very unstable and mainly due to external cues (aluminum and salicylic acid) affecting the 

methylome pattern. However, the cellular external cytosine DNA methylation and demethylation is far from being 

explained. Aluminum and salicylic acid could influence the expression of the DOMAINS REARRANGED 

METHYLTRANSFERASE 2 and DEMETER or Repressor of Silencing 1, respectively.  



ISSN: 2320-5407                                                                                      Int. J. Adv. Res. 6(4), 517-524 

523 

 

Furthermore, the Nei genetic analysis revealed an increase of epigenetic distance following salicylic acid and 

aluminum treatment. This was more noticed in aluminum and salicylic acid combination than aluminum alone. In 

fact, the diversity of the epigenetic loci seems to be lowered during stress and normal times in all pearl millet 

varieties. The epigenetic variation is a mechanism of defense and salicylic acid could confer to the plants more 

diversity by generating epialleles based-stress. This is used today for crop improvement (Zhang & Hsieh, 2013), 

plant biomass increases and stability in ecosystem (Latzel et al., 2013). 

 

This finding revealed the importance of salicylic acid in plant defense, especially on the methylome variation during 

stress. This research showed that the key player regulating that variation could be the external cytosine of the CCGG 

motifs. 
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