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This paper studies the test of persistence change 

under the circumstance that the innovations have 

time-varying variances. We consider processes both 

shifting from a stationary to a unit root and the 

contrary change direction, the innovations of which 

have time-varying variances. The statistics applied in 

this paper is derived by S. Leybourne, R. Taylor and 

T. H. Kim[2007]. The limiting distributions are given 

under the null hypothesizes that have only variance 

change but persistence change and numerical 

simulation shows that there are severe size distortion 

and the power loss cannot be ignored either. 
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Introduction:- 

Since the paper of Page[1955], a vast amount of relevant articles dealing with parameter breaks have appeared in the 

literature and the problem of testing for and estimating of change points have attracted more and more attention 

among many researchers. 

 

In recent years, a change in the persistence of a time series, which means a change in the order of integration, has 

come more and more into the focus of empirical and theoretical researchers. Examples of time series having change 

in persistence are found in De Long and Summers(1988), real output series of the U.S. and the European countries. 

They conjectured that these series shifted from stationarity to a unit root after WWⅡ. They performed informal tests 

to find the evidence in favor of their conjecture. Beginning with Banerjee et al.(1992), several authors proposed tests 

for a change in persistence in the classical framework. A popular stationarity test against a break in persistence was 

introduced by Kim(2000). He has developed the residual-based ratio test against changes in persistence in a time 

series, focusing on the case of a shift from stochastic stationarity to difference stationarity, at some point in the 

sample. But Kim’s test has the disadvantage to reject the null if the data generating process is constantly   during the 

whole sample what is theoretically correct but not desirable. Leybourne et al.(2007) suggest a CUSUM-squares 

based test to solve this problem. Sibbertsen and Kruse(2009) generalized this test to the long memory framework by 

allowing for fractional degrees of integration. 

 

Variance change, as what we understand intuitively, means the variance of a time series remains unchanged at a 

level until the change point, at which the variance changes to another level. In linear processes, a variance change in 
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the observations implies a change in one of the errors and the converse is also true. Thus the test for a variance 

change can be performed based on the errors rather than the observations themselves. Furthermore, the test based on 

the errors outperforms the one based on observations since the latter is subject to serious power losses when the data 

is highly correlated. Thus, if the time series under investigation is stationary and invertible(see Brockwell and 

Davis(1991), for the definition), then the former is naturally preferred(cf. Park et al.(2000)). In fact, the ease of 

application of the CUSUM of squares test lies in the fact that the limiting distribution of the test statistic is the sup of 

a standard Brownian bridge. For more historical accounts of change-of-variance analysis, we refer to Gombay, 

Horvath and Huskova(1996), Inclan and Tiao(1994) and the references therein. 

 

Naturally, we may think that since the CUSUM based statistics can be applied on both persistence change test and 

variance change test, is there any influence if the variance shift occurs in the innovations of a series which has a 

persistence change. In other words, we want to make it clear that whether the variance shift brings some disturbance 

when we test the persistence change and how the relationship is. 

 

Our paper is organized as follows. In section 2, we give the models and assumptions that used in later theorems. 

Section 3 first provides a brief review of persistence change test by Kim and Leybourne et al and then gives the 

theoretical results under both the null hypothesizes and alternative hypothesizes. In section 4, Monte Carlo 

simulation methods are used to show the size distortion and power loss. Section 5 concludes. All proofs are given in 

the Appendix. 

 

Models and assumptions:- 

Among our paper, let  

                      ,  -               (1) 

                      ,  -               (2) 

 

Like many other papers,    ,   - and , - is the integer part of   . More specifically, in order to taking variance 

change into consideration, the innovation series   *  +  is defined as:          , where       (   )  and the 

component,   , is defined in the following two ways according to the different variance change types: 

           *  ,  -+      *  ,  -+ for the abrupt variance change; 

Ⅱ         (     )     {
  ,  -

  ,  -
  } for the time-varying change. 

 

In both the two types,  * + is the indicator function and   ,   - is the variance break point.    and    are set to be 

constants. 

 

Assumption 1:- The variance term  *  + satisfies the relation: 

 (,  -)   ( ) 
where  ( ) is a non-stochastic function with a finite number of points of discontinuity; more over,  ( )    and 

satisfied a (uniform) first-order Lipschiz condition except at the points of discontinuity. 

 

Assumption 2:- The process  *  + satisfies the following conditions: 

 

1.   (  )    

2.   | |      for some      

3.  *  + is           with mixing coefficients     satisfies∑   
      

      

4.  The long-run variance    ∑  [      ]
 
    is strictly positive and finite 

 

According to Giuseppe[2004], the Assumption 1 means that the variance function  ( ) is square-integrable and 

bounded, i.e., ∫  ( )   
 

 
  ; moreover, it can have up to a finite number of jumps. For instance, the function 

 ( )     (     ) *  ,  -+ corresponds to the single break model with a variance shift at time ,  -. 

 

Assumption 2 has been used by Phillips[1987], Phillips and Perron[1988] and Phillips and Solo[1992] to derive 

limiting behavior of a stochastic process and allow for a broad class of weakly dependent time series. 
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The null hypothesizes in our paper is as follows:    is a unit root process throughout the sample period, denoted 

as    . The two corresponding alternative hypothesizes are:    maintains stationarity of constant persistence until 

some period, after which it becomes a unit root process, denoted by     .    is a unit root process until  ,  -, after 

which it becomes a constant persistence series, denoted by     . In all the cases we explain above, the two types of 

variance change have always exists. 

 

Now we write these hypothesizes below: 

            

            

            

 

Theoretical results:- 

Before giving the limiting distributions under the null hypothesizes, we first briefly introduce the statistics that 

derived by Leybourne et al[2006] used to test change in persistence. In their paper, 

  ( )  
,  -  ∑   ̃   

 ,  -
   

 ̂ 
 ( )

 

  ( )  
(  ,  -)  ∑   ̃   

  
  ,  -  

 ̂ 
 ( )

 

 

The denominator of the above two statistics are estimators of the long-run variance and defined as followed: 

 ̂ 
 ( )   ̂   ∑     ̂ 

 

   

          ̂  ,  -
  ∑  ̃   

,  -

   

  ̃      

  ̂ 
 ( )   ̌   ∑     ̌ 

 

   

          ̌  ,  -
  ∑   ̃   

 

  ,  -  

  ̃      

         
   

 

Due to the true break point is usually unknown, the consider the two-tailed test which rejects for large or small 

values of the statistic formed from the minimized CUSUMs of squared sub-sample OLS residuals obtained from the 

forward and backward realizations of the process; i.e. 

  
       

 ( )

        ( )
 

 

For the test statistic above,    is a compact subset of (0, 1). 

 

Theorem 3.1:- Suppose that Assumption 1 and 2 are true, then under the null hypothesis    , it is true that 

  
   ∫   ( )

   
 

 
    (∫   ( )  

 

 
)
 

(   )  ∫   ( )
   

 

 
 (   )  .∫   ( )  

 

 
/
  

Where,    ( )   ̅
  ∫  ( )  ( )

 

 
  ̅  ∫  ( )   

 

 
. 

 

Theorem 3.2 Suppose that Assumption 1 and 2 are true, then under the hypothesizes     and    , it is true that 

1. Under     ,       (   ) 

2. Under     ,       (   ) 
 

Simulation studies on size and power:- 

The simulation results in this section are based on sample size 100, 200 and 500 with 20,000 replications. Like what 

we discuss above, both the two types of null hypothesizes are considered and first we give their DGPs 

 

First let’s consider the case that     under null    , we consider an    ( ) process: 

         
Where 
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        (   ) ,        and        ,      equals to      before   ,  -  and      after   ,  - . The ratio of variance 

change takes the values from 2, 3, 1/2 and 1/3. The size simulation results of an abrupt variance and time-varying 

variance change are provided in Table 1 and 2 separately. 

 

For a convenient discussion, we introduce the following definition: we say the variance change in a positive 

direction, which means      ⁄    and the negative direction is     ⁄   . 

 

Table 1:- Size With       Under Unit Root Null With An Abrupt Variance Change 

  
21 /  

   1 2 3 1/2 1/3 

T=100 0.3 0.048 0.187 0.414 0.143 0.213 

0.5 0.051 0.222 0.487 0.166 0.314 

0.7 0.049 0.203 0.452 0.174 0.319 

T=200 0.3 0.050 0.182 0.460 0.160 0.295 

0.5 0.050 0.230 0.522 0.175 0.368 

0.7 0.051 0.203 0.452 0.173 0.353 

T=500 0.3 0.049 0.196 0.479 0.158 0.326 

0.5 0.049 0.235 0.567 0.180 0.374 

0.7 0.052 0.230 0.527 0.169 0.342 

 

Table 2:- Size With       Under Unit Root Null With A Time-Varying Variance Change 

  
21 /  

   1 2 3 1/2 1/3 

T=100 0.3 0.049 0.0104 0.0046 0.1216 0.1878 

0.5 0.050 0.0080 0.0042 0.1266 0.1884 

0.7 0.052 0.0114 0.0084 0.1050 0.1306 

T=200 0.3 0.051 0.0122 0.0048 0.1382 0.1858 

0.5 0.051 0.0116 0.0048 0.1336 0.1934 

0.7 0.048 0.0126 0.0082 0.1112 0.1370 

T=500 0.3 0.049 0.0110 0.0046 0.1288 0.1916 

0.5 0.049 0.0114 0.0050 0.1254 0.1922 

0.7 0.051 0.0178 0.0066 0.1136 0.1296 

 

From Table 1 we can conclude that: when there is an abrupt variance break occurs at some point among the series, 

severe size distortion can be observed. Besides, size value has positive correlation with variance change range. In 

other words, no matter the change direction of variance is positive or negative, the larger of the extent of variance 

shift, the more serious of size distortion. While things seem to be different when a time-varying variance change 

occurs. From table 2 we can easily see that in negative change direction cases, the size values are less than empirical 

size, which means the existence of negative time-varying variance changes will help to recognize if there is a 

persistence change. In the positive change cases, however, the trend of size values is just like that in abrupt cases in 

Table 1 and the only difference is the vary-time cases have lower extent. 

 

Now we turn to the test power. Table 3, 4, 5 and 6 give the power of      and     with abrupt and time-varying 

variance changes, separately. In our simulation,   is set to take value from 0.7, 0.8, 0.9 and 0.95.    is the persistence 

change point position and equals to 0.5. From Table 3, first we can easily get that the test power decreases as    

tends to 1, no matter the variance change’s direction is positive or negative. This phenomenon isn’t difficult to 

understand: a larger    means our series is more similar to a unit root process and it is certainly hard for the test 

statistics to distinguish  *  + from a stationary series. Second, for all the change directions, test power will decrease 

as     . Besides, when the change direction is negative, the test power has positive correlation with the change 

extent of variance. While for the positive change direction, things seem to be complex. When      , power has 

the same change trend with negative cases; but when      , power has negative correlation with change extent of 

variance. From Table 4, the power values under a    that is not so close to 1 are larger than those in the same 

position in Table 3 generally, which isn’t hard to understand: the influence brought by a time-varying variance 
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change is more gentle than by an abrupt variance change. A special attention should be paid that power values in 

positive change direction and       , still stay different with other cases. 

 

Next we turn to Table 5 and 6. First we can conclude in Table 5 the test power will increase as the growth of sample 

size, especially for the positive change direction. The influence brought by the variance change extent looks less 

significant compared with Table 3 and 4. For the positive change direction, power values have a significant growth 

as    , while it is negligible for the negative change cases. But we should pay special attention to the fact that the 

power values in Table 6 when change direction is negative have an opposite change direction. That is to say, power 

value has negative correlation with    when there is an abrupt variance change under    . 

 

Table 3:- Power under     with a time-varying variance change 

    
  

0.7   0.8   0.9   0.95 

    ⁄    T
 

100 200 500  100 200 500  100 200 500  100 200 500 

2 0.

3 

 0.59

2  

0.80

3  

0.96

0  

 0.45

6  

0.69

7  

0.93

1  

 0.13

4  

0.26

4  

0.67

1  

 0.02

0  

0.12

4  

0.38

7  

0.

5 

 0.36

1  

0.69

2  

0.96

4  

 0.17

9  

0.43

3  

0.87

7  

 0.03

4  

0.08

0  

0.34

5  

 0.00

3  

0.01

2  

0.10

6  

0.

7 

 0.07

3  

0.28

7  

0.80

0  

 0.01

7  

0.09

5  

0.52

4  

 0.00

5  

0.00

9  

0.07

6  

 0.00

1  

0.00

2  

0.00

6  

                  

3 0.

3 

 0.62

2  

0.83

3  

0.96

2  

 0.49

0  

0.71

2  

0.94

2  

 0.15

2  

0.27

2  

0.65

7  

 0.02

0  

0.13

8  

0.42

7  

0.

5 

 0.39

9  

0.69

5  

0.97

2  

 0.20

1  

0.48

1  

0.88

4  

 0.03

9  

0.08

2  

0.31

2  

 0.00

3  

0.01

1  

0.13

8  

0.

7 

 0.07

9  

0.31

9  

0.81

9  

 0.01

5  

0.10

5  

0.56

6  

 0.00

4  

0.00

8  

0.05

1  

 0.00

3  

0.00

1  

0.00

8  

                  

4 0.

3 

 0.61

4  

0.83

0  

0.96

4  

 0.50

0  

0.72

7  

0.94

4  

 0.15

7  

0.28

2  

0.63

1  

 0.01

7  

0.14

7  

0.44

8  

0.

5 

 0.41

5  

0.71

3  

0.97

1  

 0.23

2  

0.51

3  

0.89

7  

 0.04

2  

0.08

3  

0.31

8  

 0.00

4  

0.01

4  

0.15

6  

0.

7 

 0.07

9  

0.34

1  

0.82

2  

 0.01

6  

0.11

5  

0.58

1  

 0.00

3  

0.00

6  

0.03

0  

 0.00

1  

0.00

2  

0.00

4  

                  

1/2 0.

3 

 0.47

0  

0.68

5  

0.88

4  

 0.34

2  

0.58

8  

0.88

4  

 0.19

5  

0.37

2  

0.78

2  

 0.05

9  

0.08

3  

0.26

1  

0.

5 

 0.23

7  

0.51

7  

0.90

1  

 0.11

8  

0.31

8  

0.80

1  

 0.02

6  

0.11

1  

0.46

9  

 0.00

5  

0.02

2  

0.06

3  

0.

7 

 0.05

8  

0.20

3  

0.70

0  

 0.02

0  

0.07

6  

0.41

0  

 0.00

2  

0.00

7  

0.11

0  

 0.00

2  

0.00

2  

0.01

3  

                  

1/3 0.

3 

 0.39

2  

0.61

2  

0.79

4  

 0.31

6  

0.54

3  

0.80

7  

 0.22

1  

0.42

7  

0.79

1  

 0.06

9  

0.09

8  

0.26

4  

0.

5 

 0.21

4  

0.46

2  

0.81

5  

 0.12

8  

0.30

7  

0.72

9  

 0.02

2  

0.13

9  

0.51

0  

 0.01

3  

0.02

6  

0.07

9  

0.

7 

 0.04

6  

0.16

7  

0.63

5  

 0.01

8  

0.05

4  

0.32

7  

 0.00

4  

0.00

7  

0.11

4  

 0.00

2  

0.00

2  

0.00

5  

                  

1/4 0.

3 

 0.31

5  

0.49

0  

0.70

2  

 0.29

6  

0.49

6  

0.74

8  

 0.23

1  

0.44

3  

0.79

9  

 0.07

9  

0.10

7  

0.27

6  

0.

5 

 0.19

2  

0.39

7  

0.72

6  

 0.12

1  

0.27

9  

0.66

8  

 0.02

0  

0.15

8  

0.54

1  

 0.01

8  

0.02

9  

0.07

6  



ISSN: 2320-5407                                                                                  Int. J. Adv. Res. 5(11), 795-807 

801 

 

0.

7 

  0.03

2  

0.12

4  

0.53

7  

 0.01

0  

0.03

9  

0.26

0  

 0.00

4  

0.00

8  

0.11

6  

 0.00

2  

0.00

2  

0.00

5  

 

Table 4:- Power under     with an abrupt variance change 

    
  

0.7   0.8   0.9   0.95 

    ⁄    T
 

100 200 500  100 200 500  100 200 500  100 200 500 

2 0.

3 

 0.69

3  

0.86

5  

0.97

4  

 0.68

2  

0.86

6  

0.97

6  

 0.17

4  

0.49

5  

0.85

7  

 0.01

4  

0.08

6  

0.52

4  

0.

5 

 0.29

5  

0.64

5  

0.96

9  

 0.29

6  

0.62

8  

0.97

1  

 0.01

2  

0.07

0  

0.37

3  

 0.00

3  

0.00

5  

0.06

5  

0.

7 

 0.05

0  

0.25

2  

0.77

2  

 0.05

9  

0.25

3  

0.77

0  

 0.00

4  

0.00

6  

0.07

9  

 0.00

2  

0.00

2  

0.00

6  

                  

3 0.

3 

 0.73

8  

0.89

7  

0.98

4  

 0.72

6  

0.90

1  

0.98

5  

 0.16

9  

0.58

8  

0.90

0  

 0.01

4  

0.07

7  

0.63

2  

0.

5 

 0.28

8  

0.64

4  

0.96

8  

 0.28

4  

0.63

1  

0.96

8  

 0.01

0  

0.06

3  

0.35

4  

 0.00

5  

0.00

6  

0.05

8  

0.

7 

 0.04

4  

0.25

5  

0.75

7  

 0.04

8  

0.24

7  

0.76

9  

 0.00

7  

0.00

7  

0.06

8  

 0.00

4  

0.00

3  

0.00

3  

                  

4 0.

3 

 0.75

6  

0.91

4  

0.98

5  

 0.74

9  

0.90

1  

0.98

8  

 0.17

2  

0.61

8  

0.92

1  

 0.02

1  

0.07

4  

0.68

0  

0.

5 

 0.27

7  

0.63

5  

0.97

0  

 0.30

4  

0.63

1  

0.97

0  

 0.01

5  

0.05

0  

0.34

7  

 0.00

5  

0.00

6  

0.05

4  

0.

7 

 0.03

8  

0.24

6  

0.75

9  

 0.03

6  

0.24

2  

0.77

4  

 0.00

6  

0.00

7  

0.04

8  

 0.00

4  

0.00

2  

0.00

3  

                  

1/2 0.

3 

 0.32

4  

0.50

5  

0.72

4  

 0.26

6  

0.46

6  

0.76

4  

 0.13

6  

0.23

2  

0.60

1  

 0.06

7  

0.09

7  

0.21

6  

0.

5 

 0.16

0  

0.38

7  

0.74

1  

 0.09

9  

0.26

0  

0.67

3  

 0.02

7  

0.07

0  

0.31

0  

 0.00

8  

0.01

8  

0.06

7  

0.

7 

 0.02

6  

0.11

9  

0.53

9  

 0.00

6  

0.02

8  

0.27

8  

 0.00

0  

0.00

5  

0.03

7  

 0.00

0  

0.00

0  

0.00

3  

                  

1/3 0.

3 

 0.08

2  

0.20

6  

0.42

0  

 0.13

8  

0.26

9  

0.54

8  

 0.11

7  

0.18

9  

0.49

9  

 0.07

6  

0.09

8  

0.20

6  

0.

5 

 0.04

1  

0.15

4  

0.42

1  

 0.03

2  

0.10

7  

0.42

3  

 0.01

2  

0.02

9  

0.15

3  

 0.00

2  

0.00

8  

0.02

8  

0.

7 

 0.00

6  

0.03

0  

0.23

5  

 0.00

2  

0.00

7  

0.09

3  

 0.00

0  

0.00

0  

0.00

9  

 0.00

0  

0.00

0  

0.00

0  

                  

1/4 0.

3 

 0.00

9  

0.03

5  

0.15

1  

 0.03

8  

0.09

2  

0.27

5  

 0.07

3  

0.12

7  

0.37

1  

 0.06

7  

0.07

4  

0.17

2  

0.

5 

 0.00

7  

0.02

4  

0.16

1  

 0.00

5  

0.02

6  

0.19
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1  
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6  
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0  

0.02

5  

 0.00

0  

0.00

0  

0.00

2  

 0.00

0  

0.00

0  

0.00

0  

 

Table 5:- Power under     with a time-varying variance change 
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Table 6:- Power under     with an abrupt variance change 
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Conclusions:- 
In this paper we have discussed the test results of persistence change in presence of either a sudden or a time-

varying variance break. Among our article we set the null hypothesis a unit root process with a variance shift occurs 

at some unknown point and the alternative hypothesizes are dented as       and     . We use the statistics that 

derived by S. Leybourne, R. Taylor and T. H. Kim[2007]. The limiting distribution and divergence rate are given 

under both the null and alternative hypothesizes, separately. Moreover, simulation results show that there is serious 

size distortion and the power loss cannot be ignored either if the original statistics are applied without taking any 

measures.   

 

Appendix:- 

Proof of theorem 3.1:- 

 

If assumption 1 and 2 holds and  *  + is a unit root process, easily we have: 

 ̅  ,  -
  (          ,  -)  ,  -

  ∑ ∑   
 

   

,  -

   
 

According to the Lemma 1 of Giuseppe[2004], it is true that: 
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Similarly, we can get: 
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For the numerator of    ( ), we have: 
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By the Lemma 4 of Giuseppe[2004], we have: 

  
 ( )   ̅   

  

 

Thus, for    ( ), we have: 
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For    ( ), a similar way can be applied and we only give the result here: 
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So,  
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Where,    ( )   ̅
  ∫  ( )  ( )

 

 
  ̅  ∫  ( )   

 

 
. 

 

Proof of theorem 3.2:- 

We first consider 1 of the theorem for the results under     . When     , all   ̃    are   ( ). Hence we have 

  ,  -  ∑   ̃   
 

,  -

   
     ,  -  ∑  (    ̅ )

 
,  -

   
 

Moreover 
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,  -  ∑    
 

,  -

   
  ̅  

 

According to the Lemma 1 of Giuseppe[2004], it is intuitively that 
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   ,  -  ∑   

,  -

   
     ̅    ( ) 
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As to consider the behavior of the variance estimator, basing on the proof of Theorem 2 of Leybourne[2007], we 

know it clearly that  

   ̂ 
 ( )    

 

And the probability limit    is finite and positive. 

Combining the above results, we therefore have for      
      ( )          

  

 

Now consider the case where     . We decompose the numerator of    ( ) into its constituent   ( ) and  ( ) part. 

Basing on the discussion above, we know that the   ( ) part is asymptotically negligible.  

,  -  ∑   ̃   
 

,  -

   
       ∑    
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    ∫   ( )
   

 

 

    (∫   ( )  
 

 

)

 

 

 

Next turn to the behavior of   ̂ 
 ( ), observe that the s   estimated autocovariance,    ̂ , can be expressed as a 

weighted average of   ( ) and  ( ) components as follows: 

 ̂  
 

 
 ̂    (  

 

 
)  ̂    

 

Where   ̂    is the sth estimated autocovariance when     is  ( ); i.e. 

 ̂    ,  -
  ∑   ̂    

,  -

   
 ̂      

 

And    ̂    is the sth estimated autocovariance when     is  ( ); i.e. 

 ̂    (,  -  ,  -)
  ∑   ̂    

,  -

  ,  -  
 ̂      

 

Therefore,   ̂ 
 ( ) can be decomposed commensurately as  

 ̂ 
 ( )  

 

 
( ̂     ∑      ̂   

 

   
)  (  

 

 
) ( ̂     ∑      ̂   

 

   
) 

 

When     is  ( ),      has an MA unit root so that 

 ̂     ∑      ̂   
 

   
   

On the other hand, when     is  ( ),     is stationary so that 

 ̂     ∑      ̂   
 

   
  ̅  

 

Hence we have 

 ̂ 
 ( )  (  

 

 
)  ̅  

 

Which means 

 ̂ 
 ( )    ( ) 

 

Then for     ,    ( )    ( ). To summarize, we obtain the limit function of        ( ) is given by          
  

 *    +     *    +, which is therefore minimized at   . Then we have  
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Thus,   ( )    (   ). 

Next we consider the behavior of    ( ). For the case     , we can write the denominator as 
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A similar discussion like above, it can be shown that the variance estimator,    ̂ 
 ( ) is of    ( ). For the case 

when     , all the     are   ( ). Hence the limit of the denominator of    ( ) is given by 

(  ,  -)  ∑    
 

 

  ,  -  
 (  ,  -)  (∑   

 

  ,  -  
)

 

 (   )  ∫   ( )
   

 

 

 (   )  (∫   ( )  
 

 

)

 

 

 

And   ̂ 
 ( ) is again of    ( ). The above results imply that     (  ( ))    ( ). 

 

Combining the results all above, we get the first part of Theorem 2. As to the second part of Theorem 2, an 

analogous discussion can be applied and omitted.  
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