

Journal homepage: http://www.journalijar.com

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH

RESEARCH ARTICLE

Partial Characterization Of Various Bacteria Isolated From Indigenous Environments Of Karachi and Baluchistan

.....

¹Khaizran Siddiqui, ¹Jameela Akhtar, ²Talat Y Mujahid, ¹Nuzhat Ahmed

- 1. Centre for Molecular Genetics, University of Karachi, Karachi 75270, Pakistan.
- 2. Department of Microbiology, University of Karachi, 75270, Pakistan.

Manuscript Info

Abstract

Manuscript History:

Received: 15 April 2014 Final Accepted: 26 May 2014 Published Online: June 2014

Key words: *Corresponding Author

Khaizran Siddiqui

Bacteria were isolated from Soil samples, Air samples, Marine samples and Food Samples collected from different habitats. Bacterial isolates were tested for their antibiotic resistance for different antibiotics like Ampicillin, Kanamycin, and chloramphenicol, Tetracycline, Streptomycin and Neomycin. Resistance against heavy metals was also checked for copper, cobalt, Zinc, chromium, Nickel and Lead. Plasmid profiles were also carried out. This study will provide a brief idea of bacterial diversity in different environments.

Copy Right, IJAR, 2014,. All rights reserved.

INTRODUCTION

Bacteria are a diverse group of organisms found in every environment. Many species have adapted to a particular niche, allowing the species to exploit the resources necessary for survival. Bacteria are also metabolically diverse. Even among closely related species, nutritional needs may be significantly different. There is growing concern that metal contamination functions as a selective agent in the proliferation of antibiotic resistance. Documented associations between the types and levels of metal contamination and specific patterns of antibiotic resistance suggest that several mechanisms underlie this co-selection process. These co-selection mechanisms include coresistance (different resistance determinants present on the same genetic element) and cross-resistance (the same genetic determinant responsible for resistance to antibiotics and metals). Metal and antibiotic contamination, therefore, represents a long-standing, widespread and recalcitrant selection pressure with both environmental and clinical importance that potentially contributes to the maintenance and spread of antibiotic resistance factors(Baker et al). This paper focuses on the characterization and interaction of microbes with environment by interacting with metal and antibiotics. Microbial interactions with metals may have several implications for the environment. These microbes may play a large role in the biogeochemical cycling of toxic heavy metals also in cleaning up or remediating metal-contaminated environments. There is also evidence of a correlation between tolerance to heavy metals and antibiotic resistance, a global problem currently threatening the treatment of infections in plants, animals, and humans (Spain et al). Bacteria are able to inherit antibiotic resistance genes to provide protection against most antibiotics. The dissemination of antibiotic resistance genes by horizontal gene transfer has led to the rapid emergence of antibiotic resistance among bacteria (Ploy et al). Extensive studies have shown that mobile genetic elements such as plasmids and transposons are able to facilitate the spread of genetic material between species or genera of bacteria. In the 1980s, genetic elements termed integrons were identified on these mobile elements (Stokes et al). Antibiotic use in clinical and nonclinical settings plays an important part in the development of antibioticresistant bacteria throughout the world (Cunha, B.A).

.....

MATERIALS AND METHODS:

BACTERIAL ISOLATES:

A total of 511 strains of Bacteria were isolated from various environments. Soil Samples were collected from Petrol pumps, workshops, Shipyard and Garden soil. Marine Samples were collected from the coastal areas of Karachi and Baluchistan, Both Attached and free living bacteria were isolated. Air Samples were collected from different places in the University of Karachi. Samples of Industrial effluent were collected from Malir river water contaminated with industrial waste, effluent from Karachi shipyard, Metropolitan steel , Tannery and Pak steel mill. Lactobacilli were isolated from food samples like fruit juices, yogurt and Dairy products.

Samples	Cotaminated Soil sample	Marine sample	Air sample	Industrial Effluent	Food Sample
No of isolates	61	156	6	22	_
Pseudomonas sp	8	44	4	16	_
Bacillus sp	_	17	_	1	_
E.coli	-	7	_	3	_
Enterobacter sp	2	5	_	1	_
Vibrio	-	10	_	-	_
Staph sp	-	10	_	-	_
Lactobacilli sp	_	_	_	-	24
Micsillenious Organisms	1	58	2	1	_
Not Identified	50	12	_	_	_

MEDIA USED:

For the isolation and purification of bacteria Nutrient Agar, Luria Bertani Broth, Luria Agar, Tris Gluconate minimal media, ASW media (Lyman and Fleming, 1940), Brain Heart infusion broth, McConkey broth, Selenite broth, TCBS Agar, VRBDA Agar, SS AGAR, Blood agar and Baired Parker Agar of (Oxoid, Difco, Sigma) were used.

Antibiotic resistance testing:

The antibiotic resistance patterns of strains were routinely tested by Disk diffusion method and Pour plate method. Antibiotic resistance was checked against Ampicillin, Kanamycin, Chloramphenicol, Tetracycline, Streptomycin and Neomycin. Antibiotics resistance was checked from 20µl----200 µl concentration.

Metal resistance testing:

All isolates were tested to determine the resistance against six metal salts by pour plate method. Metal resistance was checked for CoCl2, CuSO4, ZnCl2, Cr2O5, Nicl2, Pb(CHCOO)2 from 0.5 mM----2.0 mM concentration.

Plasmid Analysis:

For isolation of plasmids from understudied bacteria different methods were used. For Lactobacilli Anderson and McKay's method, Kado and Liu method (Kado and Liu, 1981), Flexiprep method (Amersham), Cesium Gradient method (, Birnboim and Doly method (Birnboim and Dolly, 1979)

Results:

511 strains of bacteria were isolated from different samples.

Table 1.1

Strain Code	Identification	Source of Isolation	Antibiotic Resistance	Metal Resistance
			Amp, Tc, Cm, Sm, Rif,	Ni, Cd, Cu, Co, Zn,
CMGKUKU57	Bacillus sp	Industrial effluent	Km	Pb, Fe
	Bacillus			
CMGKU 603	subtilis	Marine Sample	Amp	Co, Cr
	Bacillus			
CMGKU 615	cereus	Marine Sample	Amp, Tc	Cu, Co
	Bacillus			
CMGKU 619	subtilis	Marine Sample	Amp, Sm, Km	Co, Cu
	Bacillus			
CMGKU 621	subtilis	Marine Sample	Amp, Sm, Km	Co, Cu
	Bacillus			
CMGKU 622	subtilis	Marine Sample	Amp, Sm, Km	Cu, Cr
	Bacillus			
CMGKU 629	polymyxa	Marine Sample	Amp, Sm	Co, Cd
	Bacillus		A 17	
CMGKU 630	polymyxa	Marine Sample	Amp, Km	Co, Cr
CMCRAT 320	Bacillus	G - '1 G 1	Cm, Ery, Km, Rif,	Z. C. C. N
CMGKU 370	lichiniformis	Soll Sample	Sm, 1c	Zn, Cu, Cr, Ni
CMCKU 1092	Desiller or	Marina Comula	Easth	Cr, Cu, Zn, Pb, Ni,
CMCKU 1082	Bacillus sp	Marine Sample		
CMGKU 1085	Dacinus sp	Marine Sample	Chlor	Cr, Cu, Zn, Pb, Ni
CMGKU 1084	Bacillus sp	Marine Sample	Chlor, Tet	Cr,Cu,Zn,Pb
CMGKU 1085	Bacillus sp	Marine Sample	Chlor, Tet	Cr,Cu,Zn,Pb,Ni
CMGKU 1086	Bacillus sp	Marine Sample	-	Cr,Cu,Zn,Pb,Ni
CMGKU 1087	Bacillus sp	Marine Sample	Eryth	Cr,Cu,Zn,Pb
CMGKU 1088	Bacillus sp	Marine Sample	=	Cr,Cu,Zn,Pb,Ni
CMGKU 1089	Bacillus sp	Marine Sample	Chlor, Tet, Eryth	Cr,Cu,Zn,Pb,Ni
CMGKU 1090	Bacillus sp	Marine Sample	Chlor,Tet	Cr,Cu,Zn,Pb,Ni
CMGKU 1091	Bacillus sp	Marine Sample	Chlor, Tet, Eryth	Cr,Cu,Zn,Pb

Strain Code	Identification	Source of Isolation	Antibiotic Resis	Metal Resis
CMGKU				
59	E.coli	Industrial effluent	Amp,Tc,Cm,Sm,Rif,Km	Ni,Cd,Cu,Co,Zn,Pb,Fe
CMGKU				
60	E.coli	Industrial effluent	Amp,Tc,Cm,Sm,Rif,Km	Ni,Cd,Cu,Co,Zn,Pb,Fe
CMGKU				
62	E.coli	Industrial effluent	Amp,Tc,Cm,Sm,Rif,Km	Ni,Cd,Cu,Co,Zn,Pb,Fe
CMGKU				
604	E.coli	Marine Sample	Amp,Sm,Tc,Km	Co,Cu,Cr
CMGKU				
606	E.coli	Marine Sample	Amp,Tc	Co,Cu,Cr
CMGKU				
609	E.coli	Marine Sample	Sm,Tc	Co,Cu,Cr
CMGKU				
610	E.coli	Marine Sample	Amp,Tc	Co,Cu,Cr
CMGKU				
611	E.coli	Marine Sample	Amp,Tc,Km	Co,Cu,Cr
CMGKU				
612	E.coli	Marine Sample	Amp,Tc	Co,Cu,Cr
CMGKU				
1055	E.coli	Marine Sample	-	Cr,Cu,Zn,Pb

Table 1.2

Table 1.3

Strain Code	Identification	Source of Isolation	Metal Resistance	Antibiotic Resistance
CMGKU 601	Enterobacter aerogenes	Marine Sample	Co, Cu, Cr	Amp, Tc
CMGKU 613	Enterobacter cloacae	Marine Sample	Co, Cr	Amp, Sm
CMGKU 371	Enterobacter sp	Soil Sample	Cu, Cr III, Ni, Zn, Cd, Co	Cm, Ery, Tc, Sm, Km, Rif,
CMGKU1065	Enterobacter sp	Marine Sample	Cr, Cu, Zn, Pb	Chlor
CMGKU1067	Enterobacter sp	Marine Sample	Cr, Cu, Zn, Pb	-

Table<u>1.4</u>

Strain Code	Identification	Source of	Antibiotic	Metal
		Isolation	Resistance	Resistance
CMGKU SA 120	Lactobacillus Sp	Food		
	_	Sample	Van, Kan	N.D
CMGKU SA 122	Lactobacillus Sp	Food		
	_	Sample	Van, Kan	N.D

		__		
CMGKU SA 135	Lactobacillus Sp	Food		
		Sample	Van, Kan	N.D
CMGKU SA 148	Lactobacillus Sp	Food		
		Sample	Van, Kan	N.D
CMGKU SA 154	Lactobacillus Sp	Food		
		Sample	Van, Chlor, Tet	N.D
CMGKU SA 156	Lactobacillus Sp	Food		
	•	Sample	Van, Kan	N.D
CMGKU SA 158	Lactobacillus Sp	Food	,	
	F	Sample	Van. Kan	N.D
CMGKU SA 163	Lactobacillus Sn	Food	,,	
	Luciobucinus op	Sample	Van Kan	ND
CMCKU SA 164	Lactobacillus Sn	Food	v an, ixan	
CINGRO SA 104	Lactobacinus Sp	Sample	Van Kan	ND
CMCRUSA 169	Lastahasillus Sp	Food	van, Kan	
CMGKU SA 108	Lactobacinus Sp	Foou	Van Van	ND
CMCKUCA 170		Sample	van, Kan	N.D
CMGKU SA 179	Lactobacillus Sp	Food		ND
		Sample	Van, Kan	N.D
CMGKU SA 181	Lactobacillus Sp	Food		
		Sample	Van, Kan	N.D
CMGKU SA 182	Lactobacillus Sp	Food		
		Sample	Van, Kan, Neo	N.D
CMGKU SA183	Lactobacillus Sp	Food	Van, Chlor, Tet,	
		Sample	Neo	N.D
CMGKU SA 228	Lactobacillus Sp	Food	Van, Kan	N.D
	-	Sample	,	
CMGKU SA 261	Lactobacillus Sp	Food	Van. Kan	N.D
	•	Sample	,	
CMCRUSA 264	Tastakasillas Gu	Food		
CMGKU SA 204	Lactobacinus Sp	Food	V	ND
		Sample	van, Kan	N.D
CMGKU SA 269	Lactobacillus Sp	Food	X 7 X 7	ND
		Sample	van, Kan	N.D
CMGKU SA 186	Lactobacillus Sp	Food		
		Sample	Van, Kan	N.D
CMGKU SA 188	Lactobacillus Sp	Food		
		Sample	Van, Kan	N.D
CMGKU SA 161	Lactobacillus Sp	Food		
		Sample	Van, Tet	N.D
CMGKU	Lactobacillus Sp	Food	Van, Kan, Tet,	N.D
SA 1548	·	Sample	Neo	
CMGKU	Lactobacillus Sp	Food	ĺ	
SAE	······································	Sample	Van. Kan	N.D
CMGKU	Lactobacillus Sn	Food		
SA	Luciobucinus op	Sample	Van Kan	ND
101 A		Sumple	, uni , 12ull	

Table1.5	2
----------	---

Strain				
Code	Identification	Source of Isolation	Antibiotic Resistance	Metal Resistance
CMGKU	Staphylococcus			
617	saprophyticus	Marine Sample	Amp, Tc ,Km	Co, Cr
CMGKU	Staph sp			
1092		Marine Sample	Eryth, Tet, Chlor	Cr, Cu, Zn, Pb
CMGKU	Staph sp			
1093		Marine Sample	-	Cr, Cu, Zn, Pb

CMGKU	Staph sp			
1094		Marine Sample	Tet, Chlor	Cr,Cu,Zn
CMGKU	Staph sp			
1095		Marine Sample	Tet, Chlor	Cr,Cu,Zn,Pb
CMGKU	Staph sp			
1096		Marine Sample	Tet, Chlor	Cr,Cu,Zn,Pb
CMGKU	Staph sp			
1097		Marine Sample	Tet,Chlor	Cr,Cu,Zn
CMGKU	Staph sp			
1098		Marine Sample	Tet	Cr,Cu,Zn,Pb
CMGKU	Staph sp			
1099		Marine Sample	Tet,Chlor	Cr,Cu,Zn
CMGKU	Staph sp			
1100		Marine Sample	-	Cr,Cu,Zn,Pb,Ni

Table1.6

Strain Code	Identification	Source of Isolation	Antibiotic Resistance	Metal Resistance
CMGKU1027	Vibrio sp	Marine Sample	-	Cr,Cu,Zn,
CMGKU1028	Vibrio sp	Marine Sample	Kan, Eryth, Tet, Chlor	Cr, Zn
CMGKU1029	Vibrio sp	Marine Sample	-	Cu,Zn,Ni
CMGKU1045	Vibrio sp	Marine Sample	Chlor	Cr,Cu,Zn
CMGKU1046	Vibrio sp	Marine Sample	-	Cr,Cu,Zn,Pb
CMGKU1051	Vibrio sp	Marine Sample	Kan, Eryth ,chlor,Strep	Cr,Cu,Zn
CMGKU1052	Vibrio sp	Marine Sample	Tet,Chlot	Cr,Zn
CMGKU1074	Vibrio sp	Marine Sample	-	Cu, Zn
CMGKU1075	Vibrio sp	Marine Sample	Tet, Chlor	Cr, Cu, Pb

Table 1.7

Strain Code	Identification	Source of Isolation	Metal Resistance	Antibiotic Resistance

CMGKU2K1	Not Identified	Soil sample	Cr, Cu	Sm, Neo
CMGKU2K2	Not Identified	Soil sample	Cr, Cu	Sm
CMGKU2K3	Not Identified	Soil sample	Ni	Sm
CMGKU2K4	Not Identified	Soil sample	Cu, Ni	Km, Tc, Amp, Cm, Sm, Neo
CMGKU2K5	Not Identified	Soil sample	Cu ,Ni	Tc, Amp, Sm ,Neo
CMGKU2K6	Not Identified	Soil sample	Ni, Cu	Km,Tc, Amp, Sm,Neo
CMGKU2K7	Not Identified	Soil sample	Ni, Cu	Km,Tc,Rif,Amp,Cm, Sm,Neo
CMGKU2K8	Not Identified	Soil sample	Ni, Cu	Km,Tc,Amp,Cm, Sm,Neo
CMGKU2K9	Not Identified	Soil sample	Cr	Sm
CMGKU2K10	Not Identified	Soil sample	Cr, Ni, Cu	Amp, Sm
CMGKU2K11	Not Identified	Soil sample	Cu	Тс,Атр
CMGKU2K12	Not Identified	Soil sample	Cr, Cu, Ni	Sm,Neo
CMGKU2K13	Not Identified	Soil sample	Ni, Cr, Cu	Sm,Neo
CMGKU2K14	Not Identified	Soil sample	Cr	Sm
CMGKU2K15	Not Identified	Soil sample	Ni, Cr	Sm
CMGKU2K16	Not Identified	Soil sample	Cr	Sm
CMGKU2K17	Not Identified	Soil sample	Cu	Km,Tc,Amp,Cm, Sm,Neo
CMGKU2K18	Not Identified	Soil sample	Cr, Cu	Sm,Neo

CMGKU2K19	Not Identified	Soil sample	Ni, Cr, Cu	Sm
CMGKU2K20	Not Identified	Soil sample	r, Ni, Cu	Sm
CMGKU2K21	Not Identified	Soil sample	Cu, Cr	Amp,Sm,Neo
CMGKU2K22	Not Identified	Soil sample	Cr	Sm
CMGKU2K23	Not Identified	Soil sample	Cr, Cu	Sm
CMGKU2K24	Not Identified	Soil sample	Cr, Ni	Sm
CMGKU2K25	Not Identified	Soil sample	Cu, Ni	Sm,Neo
CMGKU2K26	Not Identified	Soil sample	Cr, Cu	Sm,Nov,Neo
CMGKU2K27	Not Identified	Soil sample	-	Km,Tc,Amp,Cm, Sm
CMGKU2K28	Not Identified	Soil sample	Ni	Sm,Amp
CMGKU2K29	Not Identified	Soil sample	Cu	Sm,Tc
CMGKU2K30	Not Identified	Soil sample	Cr	Sm
CMGKU2K31	Not Identified	Soil sample	Cr, Ni,Cu	Nov,Sm,Neo
CMGKU2K32	Not Identified	Soil sample	-	Tc,Sm
CMGKU2K33	Not Identified	Soil sample	Cr	Тс
CMGKU2K34	Not Identified	Soil sample	_	Tc,Amp,Cm,Sm
CMGKU2K35	Not Identified	Soil sample	_	Tc,Sm
CMGKU2K36	Not Identified	Soil sample	Cr, Cu	Sm,Tc
CMGKU2K37	Not Identified	Soil sample	Cr, Cu,Ni	Sm,Nov,Neo

CMGKU2K38	Not Identified	Soil sample	Ni,Cu	Sm
CMGKU2K39	Not Identified	Soil sample	Cr, Cu	Sm,Neo
CMGKU2K40	Not Identified	Soil sample	Cr, Ni,Cu	Sm
CMGKU2K41	Not Identified	Soil sample	Cr	Sm
CMGKU2K42	Not Identified	Soil sample	Cr, Cu	Sm,Nov,Neo
CMGKU2K43	Not Identified	Soil sample	Cu	Tc,Amp,Cm,Sm,Neo
CMGKU 1016	Not Identified	Marine Sample	Cr,Cu,Pb	_
CMGKU 1057	Not Identified	Marine Sample	Cu,Pb	-
CMGKU 1058	Not Identified	Marine Sample	Cr,Cu,Pb,Zn	Tet
CMGKU 1059	Not Identified	Marine Sample	Cr,Cu,Pb	-
CMGKU 1066	Not Identified	Marine Sample	Cr,Cu,Ni	Eryth, Chlor
CMGKU 1068	Not Identified	Marine Sample	Cr, Cu,Zn	Eryth, Chlor
CMGKU 1069	Not Identified	Marine Sample	Cr ,Cu	_
CMGKU 1070	Not Identified	Marine Sample	Cr ,Zn	Eryth, Chlor
CMGKU 1081	Not Identified	Marine Sample	Cr Cu,Zn	Eryth, Chlor,Tet

Table : 1.8

Strain Code	Identification	Source of Isolation	Antibiotic Resistance	Metal Resistance
CMGKU501	Pseudomonas cepacia	Marine sample	Ap,Km	Cr

CMGKU503	Pseudomonas	Marine	Ap,Km,Sm	Cr
	cepacia	sample	-	
CMGKU507	Pseudomonas	Marine		Ni
	mirabilis	sample	Ap,Sm	
CMGKU508	Pseudomonas	Marine		
	vulgaris	sample	Ap,Km,Sm,Cm,Rif,Tc	Zn,Ni,Cd,Co
		Marine		
CMGKU 510	P. fluorescene	Sample	Ap,Cm, Rif	Zn
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Marine		<i></i>
CMGKU 511	P.aeruginosa	Sample	Ap,Cm,Km,Rif,Tc	Cd, Zn
		Marine		
CMGKU 512	P.stutzeri	Sample	Ap, Km, Sm	Cu, Nı
	Pseudomonas	Marine		
CMGKU 522	cepacia	Sample	-	-
CMCRU 520	P. 1	Marine		
CMGKU 530	pseudomonellei	Sample	-	Zn, Ni, Co
CMCKU 521	Dom	Sampla	Km	
CNIGKU 351	P. sp	Marina	KIII	-
CMGKU 532	D corriginose	Sampla	Sm	
CIVIORU 352	P.aeruginosa Decudomonas	Morino	5111	-
CMGKU 554	rseudoliionas	Sampla	Km Dif	Cu
CIVIORO 334	maner	Marine	Kili, Kil	Cu
CMGKU 556	P aeruginosa	Sample	An Cm Km Rif Sm Tc	Cd Zn Co Ni
	Pseudomonas	Marine	Ap,eiii, Kii, Kii, Siii, Te	
CMGKU 561	aeruginosa	Sample	Km	_
chiefte 501	ueruginosu	Marine	1111	
CMGKU 557	P.aeruginosa	Sample	Km	_
	Pseudomonas	Marine		
CMGKU 558	sp	Sample	Km	_
	Pseudomonas	Marine		
CMGKU 562	sp	Sample	Ap,Cm,Km,Sm	Cu, Zn
	•	Marine		
CMGKU 545	P.aeruginosa	Sample	Km	-
CMGKU		Marine		
607w	P.aeruginosa	Sample	Ap, Km,Tc	Co,Cr
		Marine		
CMGKU 625	P.Pseudomallei	Sample	Tc, Sm	Co,Cu,Cd
	Pseudomonas	Marine		
CMGKU 627	cepacia	Sample	Ap,Sm	Cu
	Pseudomonas	Marine		~ ~
CMGKU 631	cepacia	Sample	Ap,Km	Cu,Cr
	Pseudomonas	Marine		~ ~ ~
CMGKU 633	sp	Sample	Sm,Km	Co.Cu,Cr
	Pseudomonas	Marine		
CMGKU 636	sp	Sample	Ap, Km, Sm	Co.Cu,Cr
CMGKU	Pseudomonas	Marine		
1024 CMCRU	sp Dam 1	Sample	-	Cr,Cu,Zn,Pb
	Pseudomonas	Marine Sampla	Von Ersth Tat	Cr Cr Zr Dh
	sp Decudementer	Marina	Kan, Eryth, 1 et	Cr,Cu,Zn,PD
	rseudomonas	Sampla		C+ Cu 7n
CMGKU	Pseudomonac	Marine	_	CI,CU,ZII
1013	sn	Sample		Cr Cu Zn Ph
CMGKU	Pseudomonas	Marine	 Tet Chlor	
~				

	1		(
1007	sp	Sample		Cr,Cu,Zn,Pb,Ni,Co
CMGKU	Pseudomonas	Marine		
I021	sp	Sample	Tet	Cr,Cu,Zn,Pb,Ni,Co
CMGKU	Pseudomonas	Marine		
1006	sp	Sample	Tet	Cr,Cu,Zn,Pb,Ni,Co
CMGKU	Pseudomonas	Marine		
I023	sp	Sample	_	Cr,Cu,Zn,Pb
CMGKU	Pseudomonas	Marine		
1003	sp	Sample	_	Cr,Cu,Zn,Pb,Ni,Co
	Pseudomonas	Marine		
CMGKU1004	sp	Sample	_	Cr,Cu,Zn,Pb,Ni,Co
	Pseudomonas	Marine		
CMGKU1030	sp	Sample	_	Cr,Cu,Zn,Pb,Ni,
	Pseudomonas	Marine		
CMGKU1030	sp	Sample	_	Cr,Cu,Zn,Pb
CMGKU	Pseudomonas	Marine		
I034	sp	Sample		Cr,Cu,Zn,Pb
CMGKU	Pseudomonas	Marine		
I035	sp	Sample	Kan,Eryth	Cr,Cu,Zn,Pb,Ni,Co
CMGKU	Pseudomonas	Marine		
1039	sp	Sample		Cr.Cu.Zn.Pb.Ni
CMGKU	Pseudomonas	Marine		
1040	sn	Sample	Kan Fryth Chlor	Cr Cu Zn Ph Ni
1010	Pseudomonas	Marine	Truit, El ytil, ellior	
CMGKU1044	sp	Sample	Chlor	Cr Cu Zn Ph
CMGKU	Pseudomonas	Marine	Cillor	
1047	r seudomonas	Sample		Cr Cu Zn Ph
CMGKU	Pseudomonas	Marine		
10/18	r seudomonas	Sample	Kan Fryth Chlor	Cr Cu Zn Ph
1040	Pseudomonas	Marine	Kan,Eryth,Chior	
CMGKU1050	r seudomonas	Sample		Cr Cu Zn Ph
CINCKO1050	Pseudomonas	Marine		
CMGKU1054	r seudomonas	Sample		Cr Cu Zn Ph
CINORO1034	Proudomonas	Marino		
CMGKU1053	rseudomonas	Sampla		Cr Cu Zn Ph
CMGKU	Proudomonas	Marino		Cr Cu Zn Ph
1056	rseudomonas	Sampla	Chlor	CI,Cu,ZII,FU
1050	Baudomonas	Marina	Cilioi	
CMGKU1063	rseudomonas	Sample	Tet Chlor	Cr Cu Zn Ph Ni
	Pseudomonas	Marina	10,01101	
CMGKU1076	r seucomonas	Sampla		
	Beaudomonas	Marina		
CMGKU1070	r seudomonas	Sample	Fryth Tot	Cr Cu Zn Ph Ni
CIVIOR01079	sp	Industrial	Sm Ame	
CMCRU 101	Domisinoss	Effluent	Sin,Amp, Km Ta, Cm	Zn Cd Cu Co Ni To Di Sn Ao Dh Al
CNIGKU 101	P.aeruginosa	Industrial	Kill, IC, Cill	ZII,Cu,Cu,Co,NI,Te,BI,SII,AS,PO,AI
CMCRIII02	Doomuning	Industrial	Sm,Amp, Km Ta, Cm	Zn Cd Cu Co Ni To Di Co An Di Al
CMGKU102	P.aeruginosa	Enluent	Km, 1C, Cm	Zn,Cd,Cu,Co,Ni,Te,Bi,Sn,AS,Pb,Al
CMCRITTO	Deamains	Industrial	Sm,Amp,	7n Cd Cu Ca Ni Ta Di Ca As Di At
CMGKU103	P.aeruginosa	Enluent	Km, 1c, Cm	Zn,Ca,Cu,Co,Ni,Te,Bi,Sn,As,Pb,Al
CMCRITTO	Deces	Industrial	Sm,Amp,	
CMGKU104	P.aeruginosa	Enluent	Km, 1c, Cm	Zn,Ca,Cu,Co,Ni,Te,Bi,Sn,As,Pb,Al
CMCIZU107	Dere	Industrial	Sm,Amp,	7. OLO O. N'E D'O A D'AL
CMGKU105	P.aeruginosa	Effluent	Km, Ic, Cm	Zn,Cd,Cu,Co,N1, Ie,B1,Sn,As,Pb,Al
	. .	Industrial	Sm,Amp,	
CMGKU106	P.aeruginosa	Effluent	Km,Tc, Cm	Zn,Cd,Cu,Co,Ni,Te,Bi,Sn,As,Pb,Al

	1		1	
CMCRU51	Deemseinees	Industrial	Sm,Amp, Km Ta, Cm Dif	Ni Cd Ca Ca Za Dh Ea
CMGKU51	P.aeruginosa	Elliuent	Km, IC, Cm, Ril	N1,Cd,Co,Cu,Zn,Pb,Fe
CMCRU52	D	Industrial	Sm,Amp,Km,Tc,Cm,,Rif	Ni Cd Ca Ca Za Dh Ea
CMGKU52	P.aeruginosa	Effluent	C A	N1,Cd,Co,Cu,Zn,Pb,Fe
CMCR1152	D	Industrial	Sm,Amp,	
CMGKU53	P.aeruginosa	Effluent	Km, Ic, Cm, Rif	N1,Cd,Co,Cu,Zn,Pb,Fe
CMCV1154	Deemisinees	Industrial	Sm,Amp, Km To, Cm Dif	Ni Cd Co Cu Zo Dh Eo
CMGKU34	P.aeruginosa	Industrial	Kill, IC, Cill, Kil	NI,Cu,Co,Cu,Zii,Pb,Fe
CMGKU56	P aeruginosa	Effluent	Sill, Allip, Km Tc. Cm Rif	Ni Cd Co Cu Zn Ph Fe
CMOROJO	1.acruginosa	Industrial	Sm Amn	
CMGKU58	P aeruginosa	Effluent	Km Tc. Cm Rif	Ni Cd Co Cu Zn Ph Fe
CINCK050	1.acruginosa	Industrial	Sm Amp	
CMGKU64	P aeruginosa	Effluent	Km Tc. Cm	Ni Cd Co Cu Zn Ph Fe
Civiciteor	1 .ueruginosu	Industrial	Sm Amp	
CMGKU107	P aeruginosa	Effluent	Km Tc. Cm	Zn Cd Cu Co Ni Te Bi Sn As Ph Al
	1 mor ugino su	Industrial	Sm.Amp.	
CMGKU108	P.aeruginosa	Effluent	Km.Tc. Cm	Zn.Cd.Cu.Co.Ni.Te.Bi.Sn.As.Pb.Al
	Pseudomonas	Air		
CMGKU 818	sp	Sample	Sm, Tet	Cr(VI),Cu,Co,Ni
	Pseudomonas	Air		
CMGKU 821	sp	Sample	Sm,Tet	Cd,Cu,Ni
	•	•	,	
		Air		
CMGKU 823	P.aeruginosa	Sample	Amp,Sm	Cu,Ni
		Air		
CMGKU 826	P.aeruginosa	Sample	Sm,Tet	Cu,Co.Ni
	Pseudomonas	Soil		
CMGKU 01	sp	Sample	N.D	Cd,Co,Cu,Cr,Pb
	Pseudomonas	Soil		
CMGKU 04	sp	Sample	N.D	Cd,Co,Cr,Pb
	Pseudomonas	Soil		
CMGKU 05	sp	Sample	N.D	Cd,Co,Cr,Pb
	~ .	~		
	Pseudomonas	Soil	ND	
CMGKU 16	sp	Sample	N.D	Cd,Co,Cr,Pb
		G 11		
CMCPUL 104	Pseudomonas	S01l	ND	
CMGKU 106	sp	Sample	N.D	Ca,Co,Cr,Pb
	Doudomonas	Sei1		
CMCVII 457	rseudomonas	Somela	Sm Amn Tat	Cd Co Cr Dh
CIVIORU 437	sp	Sample	Siii, Ailip, Fet,	
		Soil		
CMGKU 462	P stutzeri	Sample	Sm Amn	Cd Co Cu Cr Ph
	1.50002011	Sumple	Sin, Amp,	
		Soil		
CMGKU 463	P stutzeri	Sample	Sm Amn	Ni Co Cr Ph
CMGKU 581	Pseudomonas	Soil	Sm, Amp,	Zn, Ni, Cd, Co,Cr Cu
		~~~~		~~~, ~~~, ~~~, ~~~, ~~~, ~~~, ~~~

	sp	Sample	Neo,Cm,Km,Tet	
	Pseudomonas	Soil	Sm,Amp,	
CMGKU 585	sp	Sample	Neo,Cm,Km,Tet	Zn, Cd, Co,Cr,Cu
	Pseudomonas	Soil	Sm,Amp,	
CMGKU 586	sp	Sample	Neo,Cm,Km	Zn, Cd, Co,Cr,Cu
	Pseudomonas	Soil	Sm,Amp,	
CMGKU 587	sp	Sample	Neo,Cm,Km,Tet	Zn, Cd, Co,Cr,Cu
	Pseudomonas	Soil	Sm,Amp,	
CMGKU 589	sp	Sample	Cm,Km	Co,Cr,Cu
	Pseudomonas	Soil	Sm,Amp,	
CMGKU 590	sp	Sample	Km,Tet	Zn,Ni

### Table:1.9

CULTURE CODE	IDENTIFICATION	SOURCE OF ISOLATION	METAL RESISTANCE	ANTIBIOTIC RESISTANCE
CMGKU 61	Morexella	Industrial Effluent	Ni,Cd,Co,Cu,Zn,Pb,Fe	Ap, Km,Tc,Cm,Sm, Rif
CMGKU 55	Enterococcus sp	Industrial Effluent	,Ni,Cd,Co,Cu,Zn,Pb,Fe	Ap, Tc, Sm,Cm,Rif
CMGKU 602	Klebsiella oxytoca	Marine Sample	Co,Cu,Cr	Amp,Tc
CMGKU 605	Serretia liquifacies	Marine Sample	Co,Cu,Cr	Тс
CMGKU 608	Aeromona Salmonicida	Marine Sample	Co,Cr	Amp,Tc
CMGKU 613	Klebsiella ozanae	Marine Sample	Co,Cu	Тс
CMGKU 614	Enterobacter cloacae	Marine Sample	Co,Cr	Amp,Sm
CMGKU 620	Actinobacillus lignieresii	Marine Sample	Co,Cu,Cr	Amp,Tc,Km, Sm
CMGKU 623	Actinobacillus lignieresii	Marine Sample	Co,Cu	Amp, Sm
CMGKU 624	Stomatococcus mucilaginosa	Marine Sample	Co,Cu	Amp,Tc, Sm
CMGKU 626	Haemophilus arphrophilus	Marine Sample	Co,Cu,Cd	Amp,Sm
CMGKU 632	Serratia	Marine Sample	Co,Cu	Amp,Km
CMGKU 634	Alcalagenes sp	Marine Sample	Co,Cu	Amp,Km, Sm
CMGKU 480	Curcubit yellow vine disease Bacterium	Air Sample	Cr,Cu,Cd,Ni,	Amp,Km,Sm
CMGKU 814	Klebsiella sp	Air Sample	Cd,Cu,Co,Ni	Amp,Km,Sm
CMGKU 1020	Citrobacter sp.	Marine Sample	Cr,Cu,Zn,Pb,Ni,Co	Tet
CMGKU 1018	Shigella sp.	Marine Sample	Cr,Cu,Zn,Pb	_
CMGKU 1017	Shigella sp.	Marine Sample	Cr,Cu,Zn,Co	Chlor
CMGKU	Klebsiella sp.	Marine	Cr,Cu,	_

1015		Sample		
CMGKU 1014	Proteus sp.	Marine Sample	Cr,Cu,Zn	Chlor
CMGKU 1011	Shigella sp.	Marine Sample	Cr,Cu,Zn	_
CMGKU 1008	Serratia sp.	Marine Sample	Cr,Cu,Zn,Co	Kan,Eryth,Chlor
CMGKU 1005	Proteus sp.	Marine Sample	Cr,Cu,Zn	Chlor
CMGKU 1001	Klebsiella sp.	Marine Sample	Cr,Cu,Zn	Tet
CMGKU I002	Proteus sp.	Marine Sample	Cr,Cu	Tet
CMGKU I009	Klebsiella sp.	Marine Sample	Cr,Co	Kan,Eryth

### Antibiotic Resistance:

Most of the bacterial strains showed resistance to multiple antibiotics. Antibiotic resistance against selected antibiotics is compared by calculating the percentage of a certain bacteria resistant to the given antibiotic (Table:2.1). E. coli show high percentage of resistance against Tetracycline and Ampicillin. Lactobacilli sp were highly resistant to Kanamycine and Neomycine. Vibrio sp were highly resistant to Chloramphenicol.

### Table:2.1

### Antibiotic Resistance Pattern of Various bacteria

	Percentage of Antibiotic Resistance								
Antibiotic s	Pseudomonas	Bacilli	E.coli	Enterobacter	Lactobaccil li	Vibrio sp	Staphylococcu s	Micsilleni ous Organism s	Not Identifie d
Тс	39%	42.1%	90%	40%	16.3%	30%	80%	34%	30.7%
Km	51.2%	31.5%	50%	20%	87.4%	20%	10%	24%	11.5%
Cm	37.8%	42.1%	30%	20%	8.3%	50%	60%	14%	21.1%
Sm	46.3%	31.5%	40%	40%	-	10%	N.D	22%	78.8%
Neo	4.8%	N.D	N.D	-	8.3%	N.D	-	-	25%
Атр	46%	42%	80%	40%	-	N.D	10%	28%	25%

٦

### KEY

Antibiotic resistance is checked up to 20---200 µl. Antibotics;Tc :Tetracycline,Km :Kanamycin,Cm:Chloramphenicol,Sm :Streptomycin,Neo: Neomycin, Amp: Ampicillin,N.D :Not Done

### Figure :1



### Abbreviations

Bacteria: Pseudo: Pseudomonas sp,Entero: Enterobacter sp, Lactobac: Lactobacilli sp, Staph: Staphylococcus sp, Misci: Miscillenious organisms. Antibiotics: Tc :Tetracycline, Km: Kanamycin, Cm:Chloramphenicol, Sm:Streptomycin, Neo:Neomycin, Amp: Ampicillin, Not Id: Not Identified.

### Heavy Metal Resistance:

Most of the bacterieal isolates showed resistance to multiple heavy metal salts.Resistance against selected metal salts is compared by calculating the percentage of certain bacteria resistant to the given metal salt (Table 2.2).E.coli showed higher percentage of resistance against Cobalt and Copper.

**Table: 2.2** 

### Heavy Metal Resistance Pattern of Various bacteria

Percentage of Heavy Metal Resistance

Heavy Metals	Pseudomona s	Bacilli	E.coli	Enterobac ter	Lactobaccil li	Vibrio sp	Staphylococ cus	Micsilleni ous Organisms	Not Identified
Со	52.4%	42.1%	90%	60%	N.D	-	10%	60%	-
Cu	71.9%	84.2%	100%	80%	N.D	100%	90%	92%	69.2%
Zn	60.9%	63.1%	40%	60%	N.D	90%	90%	58%	7.6%
Cr	45.1%	73.6%	70%	100%	N.D	80%	100%	80%	65.3%
Ni	36.5%	47.3%	30%	20%	N.D	-	10%	12%	38.4%
Pb	53.6%	57.8%	40%	40%	N.D	20%	60%	4%	7.6%

### KEY:

Heavy Metal resistance is checked upto 0.5mM----2.0mM concentration Heavy Metals;Co: CoCl2, Cu:CuSo4,Zn:ZnCl2,Cr:Cr2O5,Ni:Nicl2,Pb:Pb(CHCOO)2,N.D :Not Done

### Figure:2



### Abbreviations :

Bacteria: Pseudo: Pseudomonas sp,Entero: Enterobacter sp, Lactobac: Lactobacilli sp, Staph: Staphylococcus sp, Misci: Miscillenious organisms. Heavy Metals;Co: CoCl2, Cu:CuSo4,Zn:ZnCl2,Cr:Cr2O5,Ni:Nicl2,Pb:Pb(CHCOO)2, N.D :Not Done

### Plasmid profile:

Out of 511 strains in 37 strains plasmids of different molecular sizes are found:

#### Table: 2.3

Culture code	Plasmid
CMGKU 57	No
CMGKU 603	No
CMGKU 615	No
CMGKU 619	No
CMGKU 621	No
CMGKU 622	No
CMGKU 629	No
CMGKU 630	No
CMGKU 370	No
CMGKU 1082	No
CMGKU 1083	No
CMGKU 1084	No
CMGKU 1085	No
CMGKU 1086	No
CMGKU 1087	No
CMGKU 1088	No
CMGKU 1089	No
CMGKU 1090	No
CMGKU 1091	No
CMGKU 59	3.5 kb
CMGKU 60	No
CMGKU 62	No
CMGKU 604	Yes
CMGKU 606	Yes
CMGKU 609	No
CMGKU 610	No
CMGKU 611	No
CMGKU 612	No
CMGKU 1055	1 kb
CMGKU 59	No
CMGKU 60	No
CMGKU 601	No
CMGKU 613	No
CMGKU 371	No
CMGKU1065	1 kb
CMGKU1067	No
CMGKU 601	No
CMGKU 613	No
CMGKU2K1	No
CMGKU2K2	No
CMGKU2K3	No

CMGKU2K4	No
CMGKU2K5	No
CMGKU2K6	No
CMGKU2K7	No
CMGKU2K8	Yes
CMGKU2K9	No
CMGKU2K10	No
CMCKU2K11	No
CMGKU2K12	No
CMCKU2K12	No
CMCKU2K14	No
CMCKU2K14	I es
CMGKU2KI5	No
CMGKU2K10	NO
CMGKU2K17	Yes
CMGKU2K18	Yes
CMGKU2K19	No
CMGKU2K20	No
CMGKU2K21	No
CMGKU2K22	Yes
CMGKU2K23	No
CMGKU2K24	Yes
CMGKU2K25	Yes
CMGKU2K26	Yes
CMGKU2K27	Yes
CMGKU2K28	Yes
CMGKU2K29	No
CMGKU2K30	No
CMGKU2K31	Yes
CMGKU2K32	No
CMGKU2K33	Yes
CMGKU2K34	Yes
CMGKU2K35	Yes
CMGKU2K36	Yes
CMGKU2K37	No
CMGKU2K38	No
CMGKU2K39	No
CMCKU2K40	Vos
CMCKU2K41	No
CMGKU2K42	No
CMGKU2K42	NO
CMCKU 1016	105
CMCKU 1010	INO No
CMGKU 1057	INO N.
CMGKU 1058	NO
CMGKU 1059	No
CMGKU 1066	No
CMGKU 1068	No
CMGKU 1069	No
CMGKU 1070	No
CMGKU 1081	No
CMGKU SA 120	Yes
CMGKU SA 122	No
CMGKU SA 135	Yes
CMGKU SA 148	No
CMGKU SA 154	No

CMGKU SA 156	Yes
CMGKU SA 158	Yes
CMGKU SA 163	No
CMGKU SA 164	Yes
CMGKU SA 168	No
CMGKU SA 179	No
CMGKU SA 181	No
CMGKU SA 182	Yes
CMGKU SA183	Yes
CMGKU SA 228	No
CMGKU SA 261	No
CMGKU SA 264	No
CMGKU SA 269	No
CMGKU SA 186	No
CMGKU SA 188	No
CMGKU SA 161	No
CMGKUSA 1548	No
CMGKUSAF	No
CMGKUSA	No
CMGKU5A	3 03 Kb
CMGKU55	No
CMGKU55	No
CMCKU 605	No
CMGRU 603	No No
CMCKU609	No
CMGKU608	No No
CMGRU613	No No
CMGKU624	INO N.
CMGKU 614	NO
CMGKU620	NO
CMGKU623	NO
CMGKU626	NO
CMGKU632	NO
CMGKU 1080	NO
CMGKU634	NO
CMGKU 480	N0
CMGKU 814	9.9kb/7.5kb
CMGKU 1020	No
CMGKU 1018	INO N
CMGKU 1017	INO N
CMGKU1015	NO
CMGKU 1014	NO
CMGKU 1011	No
CMGKU 1008	No
CMGKU 1005	No
CMGKU 1001	No
CMGKU 1002	No
CMGKU 1009	No
CMGKU 1012	No
CMGKU 1025	No
CMGKU1010	No
CMGKU I026	No
CMGKU 1031	No
CMGKU 1032	No
CMGKU 1033	No

CMGKU 1036	No
CMGKU 1037	No
CMGKUI038	No
CMGKUI041	No
CMGKU I042	No
CMGKU 1043	No
CMGKU 1049	No
CMGKU 1060	No
CMGKU 1061	No
CMGKU1062	No
CMGKU 1071	No
CMGKU 1072	No
CMGKU 1073	No
CMGKU1077	No
CMGKU1078	No
CMGKU I080	No
CMGKU 501	No
CMGKU503	No
CMGKU 507	No
CMGKU 508	No
CMGKU 510	No
CMGKU 511	No
CMGKU 512	No
CMGKU 522	No
CMGKU 530	No
CMGKU 531	No
CMGKU 532	No
CMGKU 554	No
CMGKU 556	No
CMGKU 561	No
CMGKU 557	No
CMGKU 558	No
CMGKU 562	No
CMGKU 545	No
CMGKU 607w	No
CMGKU 625	No
CMGKU 627	No
CMGKU 631	No
CMGKU 633	No
CMGKU 636	No
CMGKU 1024	No
CMGKU 1022	No
CMGKU 1019	No
CMGKU 1013	No
CMGKU 1007	No
CMGKU I021	No
CMGKU 1006	No
CMGKU 1023	No
CMGKU 1003	No
CMGKU1004	No
CMGKU1030	No
CMGKU1030	No
CMGKU 1034	No
CMGKU I035	No

CMGKU I039	No
CMGKU I040	No
CMGKU1044	No
CMGKU I047	No
CMGKU I048	No
CMGKU1050	No
CMGKU1054	No
CMGKU1053	No
CMGKU 1056	No
CMGKU1063	No
emokeroos	No
CMCKU1076	No
CMCKU1070	No
CMCKU 101	No
CMCKU102	No
CMGKU102	INO N.
CMGKU103	NO
	INO N.
CMGKU105	NO
CMGKU106	No
CMGKU51	No
CMGKU52	No
CMGKU53	No
CMGKU54	No
CMGKU56	No
CMGKU58	10.02kb
CMGKU64	10.68kb
CMGKU107	Yes
CMGKU108	No
CMGKU 818	No
CMGKU 821	No
CMGKU 823	No
CMGKU 826	No
CMGKU 01	No
CMGKU 04	No
CMGKU 05	No
CMGKU 16	No
CMGKU 106	No
CMGKU 457	Yes
CMGKU 462	Yes
CMGKU 463	No
CMGKU 581	No
CMGKU 585	No
CMGKU 586	No
CMGKU 587	No
CMGKU 580	No
CMGKU 500	No
CMCKU 617	5 10kb
	J.17KU No
CMGKU 1092	INU Na
CMGKU 1093	INO Nu
CMGKU 1094	NO N
CMGKU 1095	NO
CMGKU 1096	NO
CMGKU 1097	No
CMGKU 1098	No

CMGKU 1099	No
CMGKU 1100	No
CMGKU1027	No
CMGKU1028	No
CMGKU1029	No
CMGKU1045	No
CMGKU1046	No
CMGKU1051	No
CMGKU1052	No
CMGKU1052	No
CMGKU1074	No
CMGKU1075	No

### Discussion

Bacteria isolated from different habitats showed resistance to multiple antibiotics and heavy metals. E.coli is highly resistant bacteria either isolated from Marine samples or industrial effluent. Infections caused by E.coli can be difficult to treat as it has acquired

Resistance to many antibiotics. Bacteria isolated from marine samples showed high percentage of resistance to multiple antibiotics (Table2.1) and heavy metals (Table 2.2) because in the sea bacterial flora is diverse .Bacteria isolated from soil samples contaminated with metal waste have developed resistance mechanisms to many heavy metals. In spite of the plasmids present in the bacterial isolates (Table2.3), there was no consistent correlation between plasmid profiles and antibiotic and heavy metal resistance pattern.

### **References:**

1. Baker, A.C., Wright, M.S., Sepanauskas, R., Arthur, J.V. 2006 Co- selection of antibiotic and metal resistance. Trends Microbiol. Apr;14(4):176-82. Epub. 14

**2.** Anne Spain, Communicated by: Dr. Elizabeth Alm. 2003.Implications of Microbial Heavy Metal Tolerance in the Environmen.Reviews in Undergraduate Research, Vol. 2, 1-6.

3. Cunha, B. A. 2000. Antibiotic resistance. Med. Clin. N. Am. 84:1407-1429.

**4.**Ploy, M. C., T. Lambert, J. P. Couty, and F. Denis. 2000. Integrons: an antibiotic resistance gene capture and expression system. Clin. Chem. Lab. Med. 38:483-487.

**5**.Stokes, H. W., and R. M. Hall. 1989. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol. Microbiol. 3:1669-1683.