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Introduction:- 
Munshi [1], introduced g–regular and g– normal spaces using g–closed sets of Levine [4]. Maheshwari and Prasad 

[7] introduced the new class of spaces called s–normal spaces using semi–open sets. It was further studied by Noiri 

and Popa[10],Dorsett[2] and Arya[8]. Later, Benchalli et al [9] and Shik John[3] studied the concept of g* – pre 

regular, g* – pre normal and w–normal, w–regular spaces in topological spaces. Recently, Wali et al [5,6] 

introduced and studied the properties of rgw⍺lc-closed sets and RGW⍺LC–continuous andRGW⍺LC-irresolute 

maps. 

 

Preliminaries:- 

Throughout this paper (X, τ), (Y, 𝜏) (or simply X, Y) denote topological spaces on which no separation axioms are 

assumed unless explicitly stated. For a subset A of a space X the closure, interior and rα–closure of A with respect to 

τ are denoted by cl(A), int(A) and rαcl(A) respectively 

 

Definition 2.1: A subset A of a topological space X is called a 

(1)semi–open set [9] if A ⊆cl(int(A)). 

(2)w–closed set [3] if cl(A)⊆U whenever A ⊆ U and U is semi–open in X. 

(3)g–closed set [4] if cl(A) ⊆ U whenever A ⊆ U and U is open in X. 

 

Definition 2.2: A topological space X is called 

i) a α– 𝜏0 [11] if for each pair of distinct points x, y of X, there exists a α–open sets G in X containing one of them 

and not the other. 

ii) a α– 𝜏1 [11] if for each pair of distinct points x, y of X , there exists two α–open sets G1, G2 in X such that x∈G1 

, y∉ G1, and y∈ G2 , x∉ G2. 
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iii) a α– 𝜏2 [11] (α– Hausdorff) if for each pair of distinct points x, y of X there exists distinct α–open sets H1 and H2 

such that H1 containing x but not y and H2 containing y but not x. 

 

Definition 2.3: A topological space X is said to be a 

(1)g–regular[10],if for each g–closed set F of X and each point x∉F, there exists disjoint open sets U and V such that 

F ⊆ U and x∈V . 

(2)α–regular [4], if for each closed set F of X and each point x∉F, there exists disjoint α– open sets U and V such 

that F ⊆ V and x∈ U. 

(3)w–regular[3], if for each w–closed set F of X and each point x∉F, there exists disjoint open sets U and V such 

that F ⊆ U and x∈V . 

 

Definition 2.4: A topological space X is said to be a 

(1) g–normal [10], if for any pair of disjoint g–closed sets A and B, there exists disjoint open sets U and V such that 

A ⊆ U and B ⊆ V . 

(2) α–normal [4], if for any pair of disjoint closed sets A and B, there exists disjoint α–open sets U and V such that 

A ⊆ U and B ⊆ V . 

(3) w–normal [3], if for any pair of disjoint w–closed sets A and B, there exists disjoint open sets U and V such that 

A ⊆ U and B ⊆ V . 

 

Definition 2.5: A subset A of a topological space X is called a 

(i)regular generalized weakly ⍺-locally closed [5] (briefly rgw⍺lc- closed) if A=U∩F where U is rgw⍺-open in (X, 

𝜏) and F is rgw⍺-closed in (X, 𝜏). 
(ii)regular generalized weakly ⍺-locally open [5] (briefly rgw⍺lc- open) if A

c 
is rgw⍺-locally closed. 

 

Definition 2.6: [5] A topological space X is called 𝜏rgw⍺lc–space if every rgw⍺lc-closed set in it is closed set. 

 

Definition 2.7: A function f: X→Y is called 

(1) RGW⍺LC-continuous [6] (resp. w–continuous [12]) if f
–1

(F) is RGW⍺LC-closed (resp. w–closed) set in X for 

every closed set F of Y. 

(2) RGW⍺LC -irresolute [6] (resp. w–irresolute [12]) if f
–1

 (F) is RGW⍺LC-closed (resp. w–closed set in X for 

every RGW⍺LC-closed (resp. w– closed) set F of Y. 

 

rgw⍺lc–𝜏k Space (k=0, 1, 2). 

Definition 3.1: A topological space X is called 

i) a rgw⍺lc –𝜏0 if for each pair of distinct points x, y of X, there exists a rgw⍺lc–open set G in X containing one of 

them and not the other. 

ii) a rgw⍺lc–𝜏1 if for each pair of distinct points x, y of X , there exists two rgw⍺lc– open sets G1, G2 in X such that 

x∈G1 , y∉G1, and y∈G2 , x∉G2. 

iii) a rgw⍺lc–𝜏2(rgw⍺lc– Hausdorff) if for each pair of distinct points x, y of X there exists distinct rgw⍺lc–open 

sets H1 and H2 such that H1 containing x but not y and H2 containing y but not x. 

 

Theorem 3.2: 

(i) Every 𝜏0 space is rgw⍺lc – 𝜏0 space. 

(ii) Every 𝜏1 space is rgw⍺lc – 𝜏0 space. 

(iii) Every 𝜏1 space is rgw⍺lc –𝜏1 space. 

(iv) Every 𝜏2 space is rgw⍺lc – 𝜏2 space. 

(v) Every rgw⍺lc – 𝜏1 space is rgw⍺lc – 𝜏0 space. 

(vi) Every rgw⍺lc –𝜏2 space is rgw⍺lc – 𝜏1 space. 

Proof: Straight forward. 

The converse of the theorem need not be true as in the examples. 

 

Example 3.3: Let X= {a, b, c, d} and τ ={X, Φ, {a}, {a, b}}. Then rgw⍺lcC(X) = rgw⍺lcO(X)= P(X). Here (X, τ) is 

rgw⍺lc– 𝜏0  and  rgw⍺lc– 𝜏1 space but not 𝜏0 space and not 𝜏1 space.  
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Example 3.4: Let X= {a, b, c} and τ ={X, Φ, {a},{b},{a, b}}. Then rgw⍺lcC(X) = rgw⍺lcO(X)= P(X). Here (X, τ) 

is rgw⍺lc– 𝜏2 space but not 𝜏2 space. 

 

Theorem 3.5: 

(i) Every α– 𝜏0 space is rgw⍺lc– 𝜏0 space. 

(ii) Every α– 𝜏1  space is rgw⍺lc– 𝜏0 pace. 

(iii) Every α– 𝜏1 space is rgw⍺lc– 𝜏1 space. 

(iv) Every α– 𝜏2 space is rgw⍺lc– 𝜏2 space. 

Proof: i) For each pair of distinct points x, y of X. Since α– 𝜏0 space, there exists a α– open sets G in X containing 

one of them and not the other. But every α–open is rgw⍺lc– open then there exists a α–open sets G in X containing 

one of them and not the other. Therefore rgw⍺lc– 𝜏0 space. 

ii) Since α– 𝜏1 space, but every α– 𝜏1 space is α– 𝜏0 space and also from Theorem 5.5(i).  Therefore rgw⍺lc– 𝜏0 space. 

iii) and (iv) similarly we can prove. 

 

Theorem 3.6: Let X be a topological space and Y is an rgw⍺lc– 𝜏0 space. If f: X → Y is injective and rgw⍺lc– 

irresolute then X is rgw⍺lc– 𝜏0 space. 

Proof: Suppose x, y∈X such that x≠y. Since f is injective then f(x)≠f(y). Since Y is rgw⍺lc– 𝜏0 space then there 

exists a rgw⍺lc–open sets U in Y such that f(x)∈U , f(y) U or there exists a rgw⍺lc–open sets V in Y such that 

f(y)∈V , f(x) V with f(x)≠f(y). Since f is rgw⍺lc– irresolute then f
–1

(U) is a rgw⍺lc–open sets in X such that x∈f
–

1
(U), y f

–1
(U) or f

–1
(V) is a rgw⍺lc–open sets in X such that y∈f

–1
(V), x f

–1
(V). Hence X is rgw⍺lc– 𝜏0 space. 

 

Theorem 3.7: Let X be a topological space and Y is an rgw⍺lc– 𝜏2 space. If f: X → Y is injective and rgw⍺lc– 

irresolute then X is rgw⍺lc– 𝜏2 space. 

Proof: Suppose x, y∈X such that x≠y. Since f is injective then f(x)≠f(y). Since Y is rgw⍺lc– 𝜏2 space then there are 

two rgw⍺lc–open sets U and V in Y such that f(x)∈U , f(y)∈V and U∩V=Φ. Since f is rgw⍺lc– irresolute then f
–

1
(U), f

–1
(V) are two rgw⍺lc– open sets in X, x∈f

–1
(U), y∈f

–1
(V), f

–1
(U)∩f

–1
(V) =Φ. Hence X is rgw⍺lc– 𝜏2 space. 

 

Theorem 3.8: Let X be a topological space and Y is an rgw⍺lc– 𝜏1 space. If f: X → Y is injective and rgw⍺lc– 

irresolute then X is rgw⍺lc– 𝜏1 space. 

Proof: Similarly to Theorem 3.7.  

 

Theorem 3.9: Let X be a topological space and Y is an 𝜏2 space. If f: X → Y is injective and rgw⍺lc– continuous 

then X is rgw⍺lc– 𝜏2 space. 

Proof: Suppose x, y∈X such that x≠y. Since f is injective, then f(x)≠f(y). Since Y is an 𝜏2 space, then there are two 

open sets U and V in Y such that f(x)∈U, f(y)∈V and U∩V =Φ. Since f is rgw⍺lc– continuous then f
–1

(U), f
–1

(V) are 

two rgw⍺lc– open sets in X. Then x∈f
–1

(U), y∈f
–1

(V),   f
–1

(U)∩f
–1

(V) =Φ. Hence X is rgw⍺lc– 𝜏2 space. 

 

Theorem 3.10: (X, τ) is rgw⍺lc– 𝜏0 space if and only if for each pair of distinct x, y of X, rgw⍺lc–cl({x}) ≠ rgw⍺lc-

cl({y}) . 

Proof: Let (X,τ) be a rgw⍺lc– 𝜏0 space. Let x, y ∈ X such that x≠y, then there exists a rgw⍺lc– open set V 

containing one of the points but not the other, say x∈V and y∉ V. Then V
c 
is a rgw⍺lc–closed containing y but not x. 

But rgw⍺lc–cl({y}) is the smallest rgw⍺lc–closed set containing y. Therefore rgw⍺lc–cl({y})⊂V
c
  and hence 

x∉rgw⍺lc– cl({y}). Thus rgw⍺lc–cl({x}) ≠ rgw⍺lc–cl({y}). 

Conversely, suppose x, y ∈ X, x≠ y and rgw⍺lc–cl({x}) ≠ rgw⍺lc–cl({y}). Let z∈ X such that z ∈rgw⍺lc–cl({x}) 

but z ∉rgw⍺lc–cl({y}). If x ∈rgw⍺lc–cl({y}) then rgw⍺lc–cl({x}) ⊂rgw⍺lc–cl({y}) and hence z∈rgw⍺lc–cl({y}). 

This is a contradiction. Therefore x∉rgw⍺lc–cl({y}). That is x ∈ (rgw⍺lc–cl(y))
c 

. Therefore (rgw⍺lc–cl({y}))
c 

is a 

rgw⍺lc– open set containing x but not y. Hence (X,τ) is rgw⍺lc– 𝜏0 space. 

 

Theorem 3.11: A topological space X is rgw⍺lc– 𝜏1 space if and only if for every x∈ X singleton {x} is rgw⍺lc– 

closed set in X.  

Proof: Let X be rgw⍺lc– 𝜏1 space and let x∈X, to prove that {x} is rgw⍺lc–closed set. We will prove X– {x} is 

rgw⍺lc- open set in X. Let y ∈ X–{x}, implies x≠y ∈ and since X is rgw⍺lc– 𝜏1 space then their exit two rgw⍺lc– 

open sets G1, G2 such that x∉G1, y∈ G2 ⊆ X–{x}. Since y∈ G2 ⊆ X–{x} then X–{x} is rgw⍺lc– open set. Hence 

{x} is rgw⍺lc–closed set. 



ISSN: 2320-5407                                                                                  Int. J. Adv. Res. 5(6), 1546-1552 

1549 

 

Conversely, Let x≠y ∈X then {x}, {y} are rgw⍺lc– closed sets. That is X–{x} is rgw⍺lc–open set. Clearly, x∉ X–

{x} and y∈ X–{x}.Similarly X–{y} is rgw⍺lc– open set, y∉X–{y} and x∈X–{y}. Hence X is rgw⍺lc– 𝜏1 space. 

 

Theorem 3.12: For a topological space (X, τ), the following are equivalent 

(i) (X, τ) is rgw⍺lc– 𝜏2 space. 

(ii) If x∈X , then for each y≠ x , there is a rgw⍺lc–open set U containing x such that y∉rgw⍺lc–cl(U) 

Proof: (i)⟹(ii) Let x∈X. If y∈X is such that y≠x there exists disjoint rgw⍺lc–open sets U and V such that x∈U and 

y∈V. Then x∈U ⊂X–V which implies X–V is rgw⍺lc– open and y∉X–V. Therefore y∉rgw⍺lc–cl(U). 

(ii) ⟹(i) Let x, y∈ X and x ≠y. By (ii), there exists a rgw⍺lc– open U containing x such that y∉rgw⍺lc–cl(U). 

Therefore y∈ X–(rgw⍺lc–cl(U)). X–(rgw⍺lc–cl(U)) is rgw⍺lc–open and x∉X– (rgw⍺lc–cl(U)). Also U∩X–

(rgw⍺lc– cl(U))= Φ. Hence (X,τ) is rgw⍺lc– 𝜏2 space. 

 

rgw⍺lc- Regular Space:- 

In this section, we introduce a new class of spaces called rgw⍺lc-regular spaces using rgw⍺lc-closed sets and obtain 

some of their characterizations. 

 

Definition 4.1: A topological space X is said to be rgw⍺lc-regular if for each rgw⍺lc-closed set F and a point x∉F, 

there exist disjoint open sets G and H such that F ⊆ G and x ∈H. 

We have the following interrelationship between rgw⍺lc –regularity and regularity. 

 

Theorem 4.2: Every rgw⍺lc-regular space is regular. 

Proof: Let X be a rgw⍺lc-regular space. Let F be any closed set in X and a point x∈X such that x∉F. By [2], F is 

rgw⍺lc-closed and x∉F. Since X is a rgw⍺lc-regular space, there exists a pair of disjoint open sets G and H such that 

F ⊆ G and x∈H. Hence X is a regular space. 

 

Theorem 4.3: If X is a regular space and 𝜏rgw⍺– space, then X is rgw⍺lc- regular. 

Proof: Let X be a regular space and 𝜏rgw⍺– space. Let F be any rgw⍺lc –closed set in X and a point x∈X such that 

x∉F. Since X is 𝜏rgw⍺– space, F is closed and x∉F. Since X is a regular space, there exists a pair of disjoint open 

sets G and H such that F ⊆ G and x∈H. Hence X is a rgw⍺lc–regular space 

 

Theorem 4.4: Every rgw⍺lc–regular space is α–regular. 

Proof: Let X be a rgw⍺lc –regular space. Let F be any α–closed set in X and a point x∈X such that x∉F. By [2], F is 

rgw⍺lc–closed and x∉F. Since X is a rgw⍺lc–regular space, there exists a pair of disjoint open sets G and H such 

that F ⊆ G and x∈H. Hence X is a α- regular space. 

We have the following characterization. 

 

Theorem 4.5: The following statements are equivalent for a topological space X 

i) X is a rgw⍺lc–regular space. 

ii) For each x∈X and each rgw⍺lc open neighbourhood U of x there exists an open neighbourhood N of x such that 

cl(N) ⊆ U. 

Proof: (i) => (ii): Suppose X is a rgw⍺lc –regular space. Let U be any rgw⍺lc – 

neighbourhood of x. Then there exists rgw⍺lc -open set G such that x∈G ⊆ U. Now X 

– G is rgw⍺lc –closed set and x∉ X – G. Since X is rgw⍺lc –regular, there exist open sets M and N such that X – G 

⊆ M , x∈N and M ∩N = ϕ and so N ⊆ X –M. Now cl(N) ⊆ cl (X – M) = X –M and X – G⊆ M. This implies X – M 

⊆ G ⊆ U. Therefore cl(N) ⊆ U. 

(ii) => (i): Let F be any rgw⍺lc– closed set in X and x∉ F or x∈X –F and X –F is a rgw⍺lc–open and so X –F is a 

rgw⍺lc – neighbourhood of x. By hypothesis, there exists an open neighbourhood N of x such that x∈ N and cl(N) ⊆ 

X –F. This implies F ⊆ X – cl(N) is an open set containing F and N ∩ {(X –cl(N)} = ϕ. Hence X is rgw⍺lc – regular 

space. 

We have another characterization of rgw⍺lc – regularity in the following. 

 

Theorem 4.6: A topological space X is rgw⍺lc –regular if and only if for each rgw⍺lc –closed 

set F of X and each x∈ X –F there exist open sets G and H of X such that x∈ G, F ⊆ H and cl(G) ∩ cl(H) = ϕ. 

Proof: Suppose X is rgw⍺lc – regular space. Let F be a rgw⍺lc –closed set in X with x∉F. Then there exists open 

sets M and H of X such that x∈ M, F ⊆ H and M ∩H = ϕ. This implies M ∩ cl(H) = ϕ. As X is rgw⍺lc –regular, 
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there exist open sets U and V such that x∈U, cl(H) ⊆ V and U ∩ V = Φ, so cl(U) ∩ V = Φ. Let G = M ∩ U, then G 

and H are open sets of X such that x ∈G, F ⊆ H and cl(H) ∩ cl(H) = ϕ. 

Conversely, if for each rgw⍺lc –closed set F of X and each x ∈ X– F there exists open sets 

G and H such that x ∈ G, F ⊆ H and cl(H) ∩ cl(H) = Φ. This implies x ∈ G, F ⊆ H and G ∩ H = ϕ. Hence X is 

rgw⍺lc – regular. 

Now we prove that rgw⍺lc –regularity is a hereditary property. 

 

Theorem 4.7: Every subspace of a rgw⍺lc- regular space is rgw⍺lc –regular. 

Proof: Let X be a rgw⍺lc –regular space. Let Y be a subspace of X. Let x∈Y and F be a rgw⍺lc– closed set in Y 

such that x∉F. Then there is a closed set and so rgw⍺lc –closed set A of X with F = Y ∩ A and x∉A. Therefore we 

have x∈X, A is rgw⍺lc–closed in X such that x∉A. Since X is rgw⍺lc–regular, there exist open sets G and H such 

that x∈G, A ⊆ H and G ∩ H = Φ. Note that Y ∩ G and Y ∩ H are open sets in Y. Also x∈G and x∈Y, which implies 

x∈Y ∩ G and A ⊆ H implies Y ∩ A ⊆ Y ∩ H, F ⊆ Y ∩ H. Also (Y ∩ G) ∩ (Y ∩ H) = Φ. Hence Y is rgw⍺lc–

regular space. 

We have yet another characterization of rgw⍺lc–regularity in the following. 

 

Theorem 4.8: The following statements about a topological space X are equivalent: 

(i) X is rgw⍺lc–regular 

(ii) For each x∈X and each rgw⍺lc–open set U in X such that x∈U there exists an open set V in X such that x∈V ⊆ 

cl(V ) ⊆ U 

(iii) For each point x∈X and for each rgw⍺lc–closed set A with x∉A, there exists an open set V containing x such 

that cl(V ) ∩ A = Φ. 

Proof: (i)=> (ii): Follows from Theorem 3.5. 

(ii) => (iii): Suppose (ii) holds. Let x∈X and A be an rgw⍺lc– closed set of X such that x∉A. Then X –A is a 

rgw⍺lc–open set with x∈X –A. By hypothesis, there exists an open set V such that x∈V ⊆ cl(V ) ⊆ X –A. That is 

x∈V,V⊆ cl(A) and cl(A) ⊆ X –A. So x∈V and cl(V)∩ A= Φ. 

(iii) => (ii): Let x∈X and U be an rgw⍺lc–open set in X such that x∈U. Then X –U is an rgw⍺lc –closed set and 

x∈X –U. Then by hypothesis, there exists an open set V containing x such that cl(V) ∩ (X –U) = Φ. Therefore x∈V, 

cl(V ) ⊆ U so x∈V ⊆ cl(V ) ⊆ U. 

The invariance of rgw⍺lc– regularity is given in the following. 

 

Theorem 4.9: Let f: X → Y be a bijective, rgw⍺lc –irresolute and open map from a rgw⍺lc– regular space X into a 

topological space Y, then Y is rgw⍺lc–regular. 

Proof: Let y∈Y and F be a rgw⍺lc–closed set in Y with y∉F. Since f is rgw⍺lc–irresolute, f 
–1

(F) is rgw⍺lc–closed 

set in X. Let f(x) = y so that x = f
–1

(y) and x∉f
–1

(F). Again X is rgw⍺lc–regular space, there exist open sets U and V 

such that x∈U and f
–1

 (F) ⊆ G, U ∩ V = Φ. Since f is open and bijective, we have y∈f(U) , F ⊆ f(V ) and f(U) ∩ f(V 

) = f(U ∩ V ) = f(Φ) = Φ. Hence Y is rgw⍺lc–regular space. 

 

Theorem 4.10: Let f: X → Y be a bijective, rgw⍺lc –closed map from a topological space X into a rgw⍺lc–regular 

space Y. If X is 𝜏rgw⍺–space, then X is rgw⍺lc–regular. 

Proof: Let x ϵ X and F be an rgw⍺lc–closed set in X with x∉F. Since X is 𝜏rgw⍺–space, F is closed in X. Then f(F) 

is rgw⍺lc–closed set with f(x)∉f(F) in Y , since f is rgw⍺lc–closed. As Y is rgw⍺lc–regular, there exist disjoint open 

sets U and V such that f(x)∈ U and f(F) ⊆ V . Therefore x∈f
–1

(U) and F ⊆ f
–1

 (V). Hence X is rgw⍺lc–regular space. 

 

Theorem 4.11: Let X be a topological space. If X is a rgw⍺lc–regular and a 𝜏1 space then X is an rgw⍺lc– 𝜏2  space. 

Proof: Suppose x, y X such that x≠y. Since X is 𝜏1 – space then there is an open set U such that x∈ U, y∉U. Since X 

is rgw⍺lc–regular space and U is an open set which contains x, then there is rgw⍺lc–open set V such that 

x∈V⊂rgw⍺lc–cl(V)⊆U. Since y U, hence y rgw⍺lc–cl(V). Therefore y∈X–(rgw⍺lc–cl(V)). Hence there are rgw⍺lc–

open sets V and X–(rgw⍺lc–cl(V)) such that (X– (rgw⍺lc–cl(V)))∩V = Φ. Hence X is rgw⍺lc– 𝜏2 space. 

 

rgw⍺lc–Normal Spaces;- 

In this section, we introduce the concept of rgw⍺lc– normal spaces and study some of their characterizations. 

Definition 5.1: A topological space X is said to be rgw⍺lc–normal if for each pair of disjoint rgw⍺lc– closed sets A 

and B in X, there exists a pair of disjoint open sets U and V in X such that A ⊆ U and B ⊆ V . 

We have the following interrelationship. 
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Theorem 5.2: Every rgw⍺lc–normal space is normal. 

Proof: Let X be a rgw⍺lc–normal space. Let A and B be a pair of disjoint closed sets in X. From [2], A and B are 

rgw⍺lc–closed sets in X. Since X is rgw⍺lc–normal, there exists a pair of disjoint open sets G and H in X such that 

A ⊆ G and B ⊆ H. Hence X is normal. 

 

Remark 5.3: The converse need not be true in general as seen from the following example. 

 

Example 5.4: Let Let X={a,b,c}, τ= {X, ϕ , {a},{b},{a,b}}. Then the space X is normal but not rgw⍺lc –normal, 

since the pair of disjoint rgw⍺lc–closed sets namely, A = {b} and B = {c} for which there do not exists disjoint open 

sets G and H such that A ⊆ G and B ⊆ H. 

 

Theorem 5.5: If X is normal and 𝜏rgw⍺–space, then X is rgw⍺lc–normal. 

Proof: Let X be a normal space. Let A and B be a pair of disjoint rgw⍺lc–closed sets in X. since 𝜏rgw⍺–space, A 

and B are closed sets in X. Since X is normal, there exists a pair of disjoint open sets G and H in X such that A ⊆ G 

and B ⊆ H. Hence X is rgw⍺lc– normal. 

 

Theorem 5.6: Every rgw⍺lc–normal space is w–normal. 

Proof: Let X be a rgw⍺lc–normal space. Let A and B be a pair of disjoint w–closed sets in X. From [2], A and B are 

rgw⍺lc-closed sets in X. Since X is rgw⍺lc–normal, there exists a pair of disjoint open sets G and H in X such that A 

⊆ G and B ⊆ H. Hence X is w– normal. 

Hereditary property of rgw⍺lc–normality is given in the following. 

 

Theorem 5.7: A rgw⍺lc–closed subspace of a rgw⍺lc–normal space is rgw⍺lc–normal. 

Proof: Let X a be rgw⍺lc–normal space. Let Y be a rgw⍺lc-closed subspace of X. Let A and B be pair of disjoint 

rgw⍺lc–closed sets in Y. Then A and B be pair of disjoint rgw⍺lc –closed sets in X. Since X is rgw⍺lc–normal, 

there exist disjoint open sets G and H in X such that A ⊆ G and B ⊆ H. Since G and H are open in X, Y ∩ G and Y 

∩ H are open in Y. Also we have A ⊆ G and B ⊆ H implies Y ∩ A ⊆ Y ∩ G, Y ∩ B ⊆ Y ∩ H . So A ⊆ Y ∩ G and 

B ⊆ Y ∩ H and (Y ∩ G) ∩ (Y ∩ H) = Y ∩ (G∩ H) = ϕ. Hence Y is rgw⍺lc -normal. 

We have the following characterization. 

 

Theorem 5.8: The following statements for a topological space X are equivalent: 

i) X is rgw⍺lc–normal. 

ii) For each rgw⍺lc–closed set A and each rgw⍺lc–open set U such that A ⊆ U, there exists an open set V such that 

A ⊆ V ⊆ cl(V ) ⊆ U 

iii) For any disjoint rgw⍺lc–closed sets A, B, there exists an open set V such that A ⊆ V and cl(V ) ∩ B = Φ 

iv) For each pair A, B of disjoint rgw⍺lc–closed sets there exist open sets U and V such that A ⊆ U, B ⊆ V and 

cl(U) ∩ cl(V ) = Φ. 

Proof: (i) => (ii): Let A be a rgw⍺lc–closed set and U be a rgw⍺lc–open set such that A ⊆ U. Then A and X –U are 

disjoint rgw⍺lc–closed sets in X. Since X is rgw⍺lc–normal , there exists a pair of disjoint open sets V and W in X 

such that A ⊆ V and X –U ⊆ W. Now X –W ⊆ X – (X –U), so X –W ⊆ U also V ∩W = Φ implies V ⊆ X –W, so cl 

(V ) ⊆ cl(X –W) which implies cl(V ) ⊆ X – W. Therefore cl(V ) ⊆ X –W ⊆ U. So cl (V ) ⊆ U. Hence A ⊆ V ⊆ 

cl(V ) ⊆ U. 

(ii)=>(iii): Let A and B be a pair of disjoint rgw⍺lc– closed sets in X. Now A∩B = Φ, so A ⊆ X –B, where A is 

rgw⍺lc–closed and X – B is rgw⍺lc–open . Then by (ii) there exists an open set V such that A ⊆ V ⊆ cl(V )⊆ X –B. 

Now cl(V ) ⊆ X –B implies cl(V ) ∩ B = Φ. Thus A ⊆ V and cl(V ) ∩ B = Φ 

(iii) =>(iv): Let A and B be a pair of disjoint rgw⍺lc-closed sets in X. Then from (iii) there exists an open set U such 

that A ⊆ U and cl(U)∩B = Φ. Since cl(V ) is closed, so rgw⍺lc–closed set. Therefore cl(V ) and B are disjoint 

rgw⍺lc–closed sets in X. By hypothesis, there exists an open set V, such that B ⊆ V and cl(U) ∩ cl(V ) = Φ. 

(iv) => (i): Let A and B be a pair of disjoint rgw⍺lc–closed sets in X. Then from (iv) there exist an open sets U and 

V in X such that A ⊆ U, B ⊆ V and cl(U)∩cl(V ) = Φ. So A ⊆ U, B ⊆ V and U ∩ V = Φ. Hence X rgw⍺lc– normal. 

 

Theorem 5.9: Let X be a topological space. Then X is rgw⍺lc–normal if and only if for any pair A, B of disjoint 

rgw⍺lc–closed sets there exist open sets U and V of X such that A ⊆U, B ⊆V and cl(U)∩cl(V )= Φ. 

Proof: Follows from Theorem 5.8. 
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Theorem 5.10: Let X be a topological space. Then the following are equivalent: 

(i) X is normal 

(ii) For any disjoint closed sets A and B, there exist disjoint rgw⍺lc–open sets U and V such that A ⊆ U, B ⊆ V. 

(iii) For any closed set A and any open set V such that A ⊆ V , there exists an rgw⍺lc–open set U of X such that A 

⊆ U ⊆ rαcl(U) ⊆ V. 

Proof: (i) =>(ii): Suppose X is normal. Since every open set is rgw⍺lc–open [2], (ii) follows. 

(ii)=>(iii): Suppose (ii) holds. Let A be a closed set and V be an open set containing A. Then A and X –V are 

disjoint closed sets. By (ii), there exist disjoint rgw⍺lc–open sets U and W such that A ⊆ U and X–V ⊆ W, since X 

–V is closed, so rgw⍺lc–closed. From Theorem 2.3.14 [2], we have X –V ⊆ rαint(W) and U ∩ rαint(W) = Φ and so 

we have cl(U) ∩ rαint(W) = Φ. Hence A ⊆ U ⊆ rαcl(U) ⊆ X –rαint(W) ⊆ V . Thus A ⊆ U ⊆ rαcl(U) ⊆V. 

(iii) =>(i): Let A and B be a pair of disjoint closed sets of X. Then A ⊆ X–B and X–B is open. There exists a 

rgw⍺lc-open set G of X such that A ⊆ G ⊆ rαcl(G) ⊆ X–B. Since A is closed, it is rgw⍺lc–closed, we have A ⊆ 

int(G). Take U = int(cl(int(rαint(G)))) and V = int(cl(int(X rαcl(G)))). Then U and V are disjoint open sets of X such 

that A ⊆ U and B ⊆ V. Hence X is normal. 

 

Theorem 5.11: If f: X → Y is bijective, open, rgw⍺lc–irresolute from a rgw⍺lc–normal space X onto Y then is 

rgw⍺lc–normal. 

Proof: Let A and B be disjoint rgw⍺lc–closed sets in Y. Then f 
–1

(A) and f 
–1

(B) are disjoint rgw⍺lc –closed sets in 

X as f is rgw⍺lc–irresolute. Since X is rgw⍺lc–normal, there exist disjoint open sets G and H in X such that f 
–1

(A) 

⊆ G and f 
–1

(B) ⊆ H. As f is bijective and open, f(G) and f(H) are disjoint open sets in Y such that A ⊆ f(G) and B 

⊆ f(H). Hence Y is rgw⍺lc–normal. 
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