

RESEARCH ARTICLE

ON rgwalc-SEPARATION AXIOMS IN TOPOLOGICAL SPACES.

R. S. Wali¹ and Vijayalaxmi R. Patil²

- 1. Department of MathematicsBhandari and Rathi College, Guledagudd, Karnataka, India.
- 2. Department of MathematicsRani Channamma University Belagavi, Karnataka, India.

..... Manuscript Info Abstract The aim of this paper is to introduce and study two new classes of Manuscript History spaces, namely rgwalc- τ_0 , rgwalc- τ_1 , rgwalc- τ_2 ,rgwalc-regular and Received: 22 April 2017 rgwαlc-normal spaces and obtained their properties by utilizing Final Accepted: 24 May 2017 rgwalc-closed sets. Also we will present some characterizations of Published: June 2017 these spaces. Key words:rgwalc-closed set, RGWaLC-

rgwalc-closed set, RGWaLCcontinuous function, RGWaLCirresolute, rgwalc- τ_0 space, rgwalc- τ_1 space, rgwalc- τ_2 space, rgwalc-regular space and rgwalc-normal space.

Copy Right, IJAR, 2017,. All rights reserved.

Introduction:-

Munshi [1], introduced g-regular and g- normal spaces using g-closed sets of Levine [4]. Maheshwari and Prasad [7] introduced the new class of spaces called s-normal spaces using semi-open sets. It was further studied by Noiri and Popa[10],Dorsett[2] and Arya[8]. Later, Benchalli et al [9] and Shik John[3] studied the concept of g^* – pre regular, g^* – pre normal and w-normal, w-regular spaces in topological spaces. Recently, Wali et al [5,6] introduced and studied the properties of rgwalc-closed sets and RGWaLC-continuous andRGWaLC-irresolute maps.

.....

Preliminaries:-

Throughout this paper (X, τ) , (Y, τ) (or simply X, Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X the closure, interior and r α -closure of A with respect to τ are denoted by cl(A), int(A) and r α cl(A) respectively

Definition 2.1: A subset A of a topological space X is called a

(1)semi–open set [9] if $A \subseteq cl(int(A))$.

(2)w-closed set [3] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X. (3)g closed set [4] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(3)g–closed set [4] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

Definition 2.2: A topological space X is called

i) a α - τ_0 [11] if for each pair of distinct points x, y of X, there exists a α -open sets G in X containing one of them and not the other.

ii) a $\alpha - \tau_1$ [11] if for each pair of distinct points x, y of X, there exists two α -open sets G1, G2 in X such that $x \in G1$, $y \notin G1$, and $y \in G2$, $x \notin G2$.

Corresponding Author:-R. S. Wali.

Address:-Department of MathematicsBhandari and Rathi College, Guledagudd, Karnataka, India.

iii) a α - τ_2 [11] (α - Hausdorff) if for each pair of distinct points x, y of X there exists distinct α -open sets H1 and H2 such that H1 containing x but not y and H2 containing y but not x.

Definition 2.3: A topological space X is said to be a

(1)g-regular[10], if for each g-closed set F of X and each point $x \notin F$, there exists disjoint open sets U and V such that $F \subseteq U$ and $x \in V$.

 $(2)\alpha$ -regular [4], if for each closed set F of X and each point $x \notin F$, there exists disjoint α - open sets U and V such that $F \subseteq V$ and $x \in U$.

(3)w-regular[3], if for each w-closed set F of X and each point $x \notin F$, there exists disjoint open sets U and V such that $F \subseteq U$ and $x \in V$.

Definition 2.4: A topological space X is said to be a

(1) g-normal [10], if for any pair of disjoint g-closed sets A and B, there exists disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

(2) α -normal [4], if for any pair of disjoint closed sets A and B, there exists disjoint α -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

(3) w-normal [3], if for any pair of disjoint w-closed sets A and B, there exists disjoint open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

Definition 2.5: A subset A of a topological space X is called a

(i)regular generalized weakly α -locally closed [5] (briefly rgw α lc- closed) if A=U \cap F where U is rgw α -open in (X, τ) and F is rgw α -closed in (X, τ).

(ii)regular generalized weakly α -locally open [5] (briefly rgw α lc- open) if A^c is rgw α -locally closed.

Definition 2.6: [5] A topological space X is called $\tau rgw\alpha lc$ -space if every $rgw\alpha lc$ -closed set in it is closed set.

Definition 2.7: A function f: $X \rightarrow Y$ is called

(1) RGWaLC-continuous [6] (resp. w-continuous [12]) if $f^{-1}(F)$ is RGWaLC-closed (resp. w-closed) set in X for every closed set F of Y.

(2) RGWaLC -irresolute [6] (resp. w-irresolute [12]) if f^{-1} (F) is RGWaLC-closed (resp. w-closed set in X for every RGWaLC-closed (resp. w- closed) set F of Y.

rgwalc– τ_k Space (k=0, 1, 2).

Definition 3.1: A topological space X is called

i) a **rgwalc** $-\tau_0$ if for each pair of distinct points x, y of X, there exists a rgwalc–open set G in X containing one of them and not the other.

ii) a **rgwalc**- τ_1 if for each pair of distinct points x, y of X, there exists two rgwalc- open sets G1, G2 in X such that x \in G1, y \notin G1, and y \in G2, x \notin G2.

iii) a $rgwalc-\tau_2(rgwalc-Hausdorff)$ if for each pair of distinct points x, y of X there exists distinct rgwalc-open sets H₁ and H₂ such that H₁ containing x but not y and H2 containing y but not x.

Theorem 3.2:

(i) Every τ₀ space is rgwαlc - τ₀ space.
(ii) Every τ₁ space is rgwαlc - τ₀ space.
(iii) Every τ₁ space is rgwαlc - τ₁ space.
(iv) Every τ₂ space is rgwαlc - τ₂ space.
(v) Every rgwαlc - τ₁ space is rgwαlc - τ₀ space.

(vi) Every rgwalc $-\tau_2$ space is rgwalc $-\tau_1$ space.

Proof: Straight forward.

The converse of the theorem need not be true as in the examples.

Example 3.3: Let $X = \{a, b, c, d\}$ and $\tau = \{X, \Phi, \{a\}, \{a, b\}\}$. Then $rgw\alpha lcC(X) = rgw\alpha lcO(X) = P(X)$. Here (X, τ) is $rgw\alpha lc - \tau_0$ and $rgw\alpha lc - \tau_1$ space but not τ_0 space and not τ_1 space.

Example 3.4: Let $X = \{a, b, c\}$ and $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}\}$. Then $rgw\alpha lcC(X) = rgw\alpha lcO(X) = P(X)$. Here (X, τ) is $rgw\alpha lc - \tau_2$ space but not τ_2 space.

Theorem 3.5:

(i) Every $\alpha - \tau_0$ space is rgw α lc $- \tau_0$ space.

(ii) Every $\alpha - \tau_1$ space is rgw α lc $- \tau_0$ pace.

(iii) Every $\alpha - \tau_1$ space is rgw α lc $- \tau_1$ space.

(iv) Every $\alpha - \tau_2$ space is rgw α lc $- \tau_2$ space.

Proof: i) For each pair of distinct points x, y of X. Since $\alpha - \tau_0$ space, there exists a α - open sets G in X containing one of them and not the other. But every α -open is rgw α -open then there exists a α -open sets G in X containing one of them and not the other. Therefore rgw α - τ_0 space.

ii) Since $\alpha - \tau_1$ space, but every $\alpha - \tau_1$ space is $\alpha - \tau_0$ space and also from Theorem 5.5(i). Therefore rgw α lc - τ_0 space. iii) and (iv) similarly we can prove.

Theorem 3.6: Let X be a topological space and Y is an rgw α lc- τ_0 space. If f: X \rightarrow Y is injective and rgw α lcirresolute then X is rgw α lc- τ_0 space.

Proof: Suppose x, $y \in X$ such that $x \neq y$. Since f is injective then $f(x) \neq f(y)$. Since Y is $rgw\alpha lc - \tau_0$ space then there exists a $rgw\alpha lc$ -open sets U in Y such that $f(x) \in U$, f(y) U or there exists a $rgw\alpha lc$ -open sets V in Y such that $f(y) \in V$, f(x) V with $f(x) \neq f(y)$. Since f is $rgw\alpha lc$ - irresolute then $f^{-1}(U)$ is a $rgw\alpha lc$ -open sets in X such that $x \in f^{-1}(U)$, $y f^{-1}(U)$ or $f^{-1}(V)$ is a $rgw\alpha lc$ -open sets in X such that $y \in f^{-1}(V)$, $x f^{-1}(V)$. Hence X is $rgw\alpha lc - \tau_0$ space.

Theorem 3.7: Let X be a topological space and Y is an rgw α lc- τ_2 space. If f: X \rightarrow Y is injective and rgw α lcirresolute then X is rgw α lc- τ_2 space.

Proof: Suppose x, $y \in X$ such that $x \neq y$. Since f is injective then $f(x) \neq f(y)$. Since Y is $rgw\alpha lc - \tau_2$ space then there are two $rgw\alpha lc$ -open sets U and V in Y such that $f(x) \in U$, $f(y) \in V$ and $U \cap V = \Phi$. Since f is $rgw\alpha lc$ - irresolute then $f^{-1}(U)$, $f^{-1}(V)$ are two $rgw\alpha lc$ - open sets in X, $x \in f^{-1}(U)$, $y \in f^{-1}(V)$, $f^{-1}(U) \cap f^{-1}(V) = \Phi$. Hence X is $rgw\alpha lc - \tau_2$ space.

Theorem 3.8: Let X be a topological space and Y is an rgw α lc- τ_1 space. If f: X \rightarrow Y is injective and rgw α lc- τ_1 space. **Proof:** Similarly to Theorem 3.7.

Theorem 3.9: Let X be a topological space and Y is an τ_2 space. If f: X \rightarrow Y is injective and rgwalc– continuous then X is rgwalc– τ_2 space.

Proof: Suppose x, $y \in X$ such that $x \neq y$. Since f is injective, then $f(x) \neq f(y)$. Since Y is an τ_2 space, then there are two open sets U and V in Y such that $f(x) \in U$, $f(y) \in V$ and $U \cap V = \Phi$. Since f is rgwalc– continuous then $f^{-1}(U)$, $f^{-1}(V)$ are two rgwalc– open sets in X. Then $x \in f^{-1}(U)$, $y \in f^{-1}(V)$, $f^{-1}(U) \cap f^{-1}(V) = \Phi$. Hence X is rgwalc– τ_2 space.

Theorem 3.10: (X, τ) is rgwalc– τ_0 space if and only if for each pair of distinct x, y of X, rgwalc–cl({x}) \neq rgwalc–cl({y}).

Proof: Let (X,τ) be a rgw α lc- τ_0 space. Let x, $y \in X$ such that $x \neq y$, then there exists a rgw α lc- open set V containing one of the points but not the other, say $x \in V$ and $y \notin V$. Then V^c is a rgw α lc-closed containing y but not x. But rgw α lc-cl($\{y\}$) is the smallest rgw α lc-closed set containing y. Therefore rgw α lc-cl($\{y\}$) $\subset V^c$ and hence $x \notin rgw\alpha$ lc-cl($\{y\}$). Thus rgw α lc-cl($\{x\}$) \neq rgw α lc-cl($\{y\}$).

Conversely, suppose x, $y \in X$, $x \neq y$ and $rgw\alpha lc-cl(\{x\}) \neq rgw\alpha lc-cl(\{y\})$. Let $z \in X$ such that $z \in rgw\alpha lc-cl(\{x\})$ but $z \notin rgw\alpha lc-cl(\{y\})$. If $x \in rgw\alpha lc-cl(\{y\})$ then $rgw\alpha lc-cl(\{x\}) \subset rgw\alpha lc-cl(\{y\})$ and hence $z \in rgw\alpha lc-cl(\{y\})$. This is a contradiction. Therefore $x \notin rgw\alpha lc-cl(\{y\})$. That is $x \in (rgw\alpha lc-cl(\{y\}))^c$. Therefore $(rgw\alpha lc-cl(\{y\}))^c$ is a $rgw\alpha lc-cp(\{y\})$ but not y. Hence (X,τ) is $rgw\alpha lc-\tau_0$ space.

Theorem 3.11: A topological space X is $rgw\alpha lc - \tau_1$ space if and only if for every $x \in X$ singleton $\{x\}$ is $rgw\alpha lc - closed$ set in X.

Proof: Let X be $rgw\alpha lc - \tau_1$ space and let $x \in X$, to prove that $\{x\}$ is $rgw\alpha lc$ -closed set. We will prove X- $\{x\}$ is $rgw\alpha lc$ - open set in X. Let $y \in X-\{x\}$, implies $x \neq y \in$ and since X is $rgw\alpha lc - \tau_1$ space then their exit two $rgw\alpha lc$ - open sets G1, G2 such that $x \notin G1$, $y \in G2 \subseteq X-\{x\}$. Since $y \in G2 \subseteq X-\{x\}$ then X- $\{x\}$ is $rgw\alpha lc$ - open set. Hence $\{x\}$ is $rgw\alpha lc$ -closed set.

Conversely, Let $x \neq y \in X$ then $\{x\}$, $\{y\}$ are rgwalc– closed sets. That is X– $\{x\}$ is rgwalc–open set. Clearly, $x \notin X = \{x\}$ and $y \in X - \{x\}$. Similarly X– $\{y\}$ is rgwalc– open set, $y \notin X - \{y\}$ and $x \in X - \{y\}$. Hence X is rgwalc– τ_1 space.

Theorem 3.12: For a topological space (X, τ) , the following are equivalent

(i) (X, τ) is rgw α lc– τ_2 space.

(ii) If $x \in X$, then for each $y \neq x$, there is a rgwalc-open set U containing x such that $y \notin rgwalc-cl(U)$

Proof: (i) \Rightarrow (ii) Let x \in X. If y \in X is such that y \neq x there exists disjoint rgwalc-open sets U and V such that x \in U and y \in V. Then x \in U \subset X-V which implies X-V is rgwalc- open and y \notin X-V. Therefore y \notin rgwalc-cl(U).

(ii) \Rightarrow (i) Let x, y \in X and x \neq y. By (ii), there exists a rgwalc- open U containing x such that y \notin rgwalc-cl(U). Therefore y \in X-(rgwalc-cl(U)). X-(rgwalc-cl(U)) is rgwalc-open and x \notin X- (rgwalc-cl(U)). Also U \cap X- (rgwalc-cl(U))= Φ . Hence (X, τ) is rgwalc- τ_2 space.

rgwαlc- Regular Space:-

In this section, we introduce a new class of spaces called $rgw\alpha lc$ -regular spaces using $rgw\alpha lc$ -closed sets and obtain some of their characterizations.

Definition 4.1: A topological space X is said to be **rgwalc-regular** if for each rgwalc-closed set F and a point $x \notin F$, there exist disjoint open sets G and H such that $F \subseteq G$ and $x \in H$.

We have the following interrelationship between $rgw\alpha lc$ –regularity and regularity.

Theorem 4.2: Every rgwαlc-regular space is regular.

Proof: Let X be a rgw α lc-regular space. Let F be any closed set in X and a point $x \in X$ such that $x \notin F$. By [2], F is rgw α lc-closed and $x \notin F$. Since X is a rgw α lc-regular space, there exists a pair of disjoint open sets G and H such that $F \subseteq G$ and $x \in H$. Hence X is a regular space.

Theorem 4.3: If X is a regular space and $\tau rgw\alpha$ - space, then X is $rgw\alpha$ lc- regular.

Proof: Let X be a regular space and $\tau rgw\alpha$ - space. Let F be any $rgw\alpha lc$ -closed set in X and a point $x \in X$ such that $x \notin F$. Since X is $\tau rgw\alpha$ - space, F is closed and $x \notin F$. Since X is a regular space, there exists a pair of disjoint open sets G and H such that $F \subseteq G$ and $x \in H$. Hence X is a rgw α -regular space

Theorem 4.4: Every rgw α lc–regular space is α –regular.

Proof: Let X be a rgw α lc –regular space. Let F be any α -closed set in X and a point x \in X such that x \notin F. By [2], F is rgw α lc–closed and x \notin F. Since X is a rgw α lc–regular space, there exists a pair of disjoint open sets G and H such that F \subseteq G and x \in H. Hence X is a α - regular space.

We have the following characterization.

Theorem 4.5: The following statements are equivalent for a topological space X

i) X is a rgw α lc–regular space.

ii) For each $x \in X$ and each $rgw\alpha lc$ open neighbourhood U of x there exists an open neighbourhood N of x such that $cl(N) \subseteq U$.

Proof: (i) => (ii): Suppose X is a rgw α lc –regular space. Let U be any rgw α lc –

neighbourhood of x. Then there exists $rgw\alpha lc$ -open set G such that $x \in G \subseteq U$. Now X

− G is rgwalc –closed set and $x \notin X - G$. Since X is rgwalc –regular, there exist open sets M and N such that $X - G \subseteq M$, $x \in N$ and $M \cap N = \phi$ and so $N \subseteq X - M$. Now $cl(N) \subseteq cl(X - M) = X - M$ and $X - G \subseteq M$. This implies $X - M \subseteq G \subseteq U$. Therefore $cl(N) \subseteq U$.

(ii) => (i): Let F be any rgwalc- closed set in X and $x \notin F$ or $x \in X - F$ and X - F is a rgwalc-open and so X - F is a rgwalc – neighbourhood of x. By hypothesis, there exists an open neighbourhood N of x such that $x \in N$ and $cl(N) \subseteq X - F$. This implies $F \subseteq X - cl(N)$ is an open set containing F and $N \cap \{(X - cl(N)\} = \phi, Hence X \text{ is } rgwalc - regular space.}$

We have another characterization of $rgw\alpha lc - regularity$ in the following.

Theorem 4.6: A topological space X is $rgw\alpha lc$ –regular if and only if for each $rgw\alpha lc$ –closed

set F of X and each $x \in X$ –F there exist open sets G and H of X such that $x \in G$, $F \subseteq H$ and $cl(G) \cap cl(H) = \phi$.

Proof: Suppose X is $rgw\alpha lc - regular$ space. Let F be a $rgw\alpha lc - closed$ set in X with $x \notin F$. Then there exists open sets M and H of X such that $x \in M$, $F \subseteq H$ and $M \cap H = \phi$. This implies $M \cap cl(H) = \phi$. As X is $rgw\alpha lc - regular$,

there exist open sets U and V such that $x \in U$, $cl(H) \subseteq V$ and $U \cap V = \Phi$, so $cl(U) \cap V = \Phi$. Let $G = M \cap U$, then G and H are open sets of X such that $x \in G$, $F \subseteq H$ and $cl(H) \cap cl(H) = \phi$.

Conversely, if for each rgwalc –closed set F of X and each $x \in X$ – F there exists open sets

G and H such that $x \in G$, $F \subseteq H$ and $cl(H) \cap cl(H) = \Phi$. This implies $x \in G$, $F \subseteq H$ and $G \cap H = \phi$. Hence X is rgwalc – regular.

Now we prove that $rgw\alpha lc$ –regularity is a hereditary property.

Theorem 4.7: Every subspace of a rgw α lc- regular space is rgw α lc – regular.

Proof: Let X be a rgw α L –regular space. Let Y be a subspace of X. Let $x \in Y$ and F be a rgw α L – closed set in Y such that $x \notin F$. Then there is a closed set and so rgw α L –closed set A of X with $F = Y \cap A$ and $x \notin A$. Therefore we have $x \in X$, A is rgw α L–closed in X such that $x \notin A$. Since X is rgw α L–regular, there exist open sets G and H such that $x \in G$, $A \subseteq H$ and $G \cap H = \Phi$. Note that $Y \cap G$ and $Y \cap H$ are open sets in Y. Also $x \in G$ and $x \in Y$, which implies $x \in Y \cap G$ and $A \subseteq H$ implies $Y \cap A \subseteq Y \cap H$, $F \subseteq Y \cap H$. Also $(Y \cap G) \cap (Y \cap H) = \Phi$. Hence Y is rgw α L–regular space.

We have yet another characterization of $rgw\alpha lc$ -regularity in the following.

Theorem 4.8: The following statements about a topological space X are equivalent:

(i) X is rgwαlc–regular

(ii) For each $x \in X$ and each $rgw\alpha lc$ -open set U in X such that $x \in U$ there exists an open set V in X such that $x \in V \subseteq cl(V) \subseteq U$

(iii) For each point $x \in X$ and for each $rgw\alpha lc$ -closed set A with $x \notin A$, there exists an open set V containing x such that $cl(V) \cap A = \Phi$.

Proof: (i)=> (ii): Follows from Theorem 3.5.

(ii) => (iii): Suppose (ii) holds. Let $x \in X$ and A be an $rgw\alpha c$ - closed set of X such that $x \notin A$. Then X –A is a $rgw\alpha c$ -open set with $x \in X$ –A. By hypothesis, there exists an open set V such that $x \in V \subseteq cl(V) \subseteq X$ –A. That is $x \in V, V \subseteq cl(A)$ and $cl(A) \subseteq X$ –A. So $x \in V$ and $cl(V) \cap A = \Phi$.

(iii) => (ii): Let $x \in X$ and U be an $rgw\alpha lc$ -open set in X such that $x \in U$. Then X –U is an $rgw\alpha lc$ –closed set and $x \in X$ –U. Then by hypothesis, there exists an open set V containing x such that $cl(V) \cap (X - U) = \Phi$. Therefore $x \in V$, $cl(V) \subseteq U$ so $x \in V \subseteq cl(V) \subseteq U$.

The invariance of $rgw\alpha lc$ - regularity is given in the following.

Theorem 4.9: Let f: $X \to Y$ be a bijective, rgwalc –irresolute and open map from a rgwalc– regular space X into a topological space Y, then Y is rgwalc–regular.

Proof: Let $y \in Y$ and F be a rgw α lc–closed set in Y with $y \notin F$. Since f is rgw α lc–irresolute, $f^{-1}(F)$ is rgw α lc–closed set in X. Let f(x) = y so that $x = f^{-1}(y)$ and $x \notin f^{-1}(F)$. Again X is rgw α lc–regular space, there exist open sets U and V such that $x \in U$ and $f^{-1}(F) \subseteq G$, $U \cap V = \Phi$. Since f is open and bijective, we have $y \in f(U)$, $F \subseteq f(V)$ and $f(U) \cap f(V) = f(U \cap V) = f(\Phi) = \Phi$. Hence Y is rgw α lc–regular space.

Theorem 4.10: Let f: $X \to Y$ be a bijective, rgwalc –closed map from a topological space X into a rgwalc–regular space Y. If X is τ rgwa–space, then X is rgwalc–regular.

Proof: Let $x \in X$ and F be an rgwalc–closed set in X with $x \notin F$. Since X is $\tau rgwa$ –space, F is closed in X. Then f(F) is rgwalc–closed set with $f(x)\notin f(F)$ in Y, since f is rgwalc–closed. As Y is rgwalc–regular, there exist disjoint open sets U and V such that $f(x)\in U$ and $f(F)\subseteq V$. Therefore $x\in f^{-1}(U)$ and $F\subseteq f^{-1}(V)$. Hence X is rgwalc–regular space.

Theorem 4.11: Let X be a topological space. If X is a $rgw\alpha lc$ -regular and a τ_1 space then X is an $rgw\alpha lc$ - τ_2 space. **Proof:** Suppose x, y X such that $x \neq y$. Since X is τ_1 - space then there is an open set U such that $x \in U$, $y \notin U$. Since X is $rgw\alpha lc$ -regular space and U is an open set which contains x, then there is $rgw\alpha lc$ -open set V such that $x \in V \subset rgw\alpha lc$ -cl(V) $\subseteq U$. Since y U, hence y $rgw\alpha lc$ -cl(V). Therefore $y \in X$ -($rgw\alpha lc$ -cl(V)). Hence there are $rgw\alpha lc$ -open sets V and X-($rgw\alpha lc$ -cl(V)) such that (X- ($rgw\alpha lc$ -cl(V))) $\cap V = \Phi$. Hence X is $rgw\alpha lc$ - τ_2 space.

rgwαlc-Normal Spaces;-

In this section, we introduce the concept of $rgw\alpha lc$ - normal spaces and study some of their characterizations. **Definition 5.1**: A topological space X is said to be $rgw\alpha lc$ -normal if for each pair of disjoint $rgw\alpha lc$ - closed sets A and B in X, there exists a pair of disjoint open sets U and V in X such that $A \subseteq U$ and $B \subseteq V$. We have the following interrelationship. **Theorem 5.2:** Every rgwαlc–normal space is normal.

Proof: Let X be a rgw α lc–normal space. Let A and B be a pair of disjoint closed sets in X. From [2], A and B are rgw α lc–closed sets in X. Since X is rgw α lc–normal, there exists a pair of disjoint open sets G and H in X such that $A \subseteq G$ and $B \subseteq H$. Hence X is normal.

Remark 5.3: The converse need not be true in general as seen from the following example.

Example 5.4: Let Let $X=\{a,b,c\}$, $\tau=\{X, \phi, \{a\},\{b\},\{a,b\}\}$. Then the space X is normal but not rgw α lc –normal, since the pair of disjoint rgw α lc–closed sets namely, $A = \{b\}$ and $B = \{c\}$ for which there do not exists disjoint open sets G and H such that $A \subseteq G$ and $B \subseteq H$.

Theorem 5.5: If X is normal and $\tau rgw\alpha$ -space, then X is $rgw\alpha$ lc-normal.

Proof: Let X be a normal space. Let A and B be a pair of disjoint $rgw\alpha lc$ -closed sets in X. since $\tau rgw\alpha$ -space, A and B are closed sets in X. Since X is normal, there exists a pair of disjoint open sets G and H in X such that $A \subseteq G$ and $B \subseteq H$. Hence X is $rgw\alpha lc$ -normal.

Theorem 5.6: Every rgwαlc–normal space is w–normal.

Proof: Let X be a rgw α lc–normal space. Let A and B be a pair of disjoint w–closed sets in X. From [2], A and B are rgw α lc-closed sets in X. Since X is rgw α lc–normal, there exists a pair of disjoint open sets G and H in X such that A \subseteq G and B \subseteq H. Hence X is w– normal.

Hereditary property of $rgw\alpha lc$ -normality is given in the following.

Theorem 5.7: A rgwαlc–closed subspace of a rgwαlc–normal space is rgwαlc–normal.

Proof: Let X a be rgw α lc-normal space. Let Y be a rgw α lc-closed subspace of X. Let A and B be pair of disjoint rgw α lc-closed sets in Y. Then A and B be pair of disjoint rgw α lc-closed sets in X. Since X is rgw α lc-normal, there exist disjoint open sets G and H in X such that $A \subseteq G$ and $B \subseteq H$. Since G and H are open in X, $Y \cap G$ and Y \cap H are open in Y. Also we have $A \subseteq G$ and $B \subseteq H$ implies $Y \cap A \subseteq Y \cap G$, $Y \cap B \subseteq Y \cap H$. So $A \subseteq Y \cap G$ and $B \subseteq Y \cap H$ and $(Y \cap G) \cap (Y \cap H) = Y \cap (G \cap H) = \phi$. Hence Y is rgw α lc -normal. We have the following characterization.

Theorem 5.8: The following statements for a topological space X are equivalent:

i) X is rgwαlc–normal.

ii) For each rgwalc–closed set A and each rgwalc–open set U such that $A \subseteq U$, there exists an open set V such that $A \subseteq V \subseteq cl(V) \subseteq U$

iii) For any disjoint rgw α lc–closed sets A, B, there exists an open set V such that A \subseteq V and cl(V) \cap B = Φ

iv) For each pair A, B of disjoint rgwalc–closed sets there exist open sets U and V such that $A \subseteq U$, $B \subseteq V$ and $cl(U) \cap cl(V) = \Phi$.

Proof: (i) => (ii): Let A be a rgw α lc-closed set and U be a rgw α lc-open set such that A \subseteq U. Then A and X –U are disjoint rgw α lc-closed sets in X. Since X is rgw α lc-normal, there exists a pair of disjoint open sets V and W in X such that A \subseteq V and X –U \subseteq W. Now X –W \subseteq X – (X –U), so X –W \subseteq U also V \cap W = Φ implies V \subseteq X –W, so cl (V) \subseteq cl(X –W) which implies cl(V) \subseteq X – W. Therefore cl(V) \subseteq X –W \subseteq U. So cl (V) \subseteq U. Hence A \subseteq V \subseteq cl(V) \subseteq U.

(ii)=>(iii): Let A and B be a pair of disjoint $rgw\alpha lc-closed$ sets in X. Now $A \cap B = \Phi$, so $A \subseteq X - B$, where A is $rgw\alpha lc-closed$ and X - B is $rgw\alpha lc-open$. Then by (ii) there exists an open set V such that $A \subseteq V \subseteq cl(V) \subseteq X - B$. Now $cl(V) \subseteq X - B$ implies $cl(V) \cap B = \Phi$. Thus $A \subseteq V$ and $cl(V) \cap B = \Phi$

(iii) =>(iv): Let A and B be a pair of disjoint rgwalc-closed sets in X. Then from (iii) there exists an open set U such that $A \subseteq U$ and $cl(U) \cap B = \Phi$. Since cl(V) is closed, so rgwalc-closed set. Therefore cl(V) and B are disjoint rgwalc-closed sets in X. By hypothesis, there exists an open set V, such that $B \subseteq V$ and $cl(U) \cap cl(V) = \Phi$.

(iv) => (i): Let A and B be a pair of disjoint rgwalc–closed sets in X. Then from (iv) there exist an open sets U and V in X such that $A \subseteq U$, $B \subseteq V$ and $cl(U) \cap cl(V) = \Phi$. So $A \subseteq U$, $B \subseteq V$ and $U \cap V = \Phi$. Hence X rgwalc–normal.

Theorem 5.9: Let X be a topological space. Then X is $rgw\alpha lc$ -normal if and only if for any pair A, B of disjoint $rgw\alpha lc$ -closed sets there exist open sets U and V of X such that $A \subseteq U$, $B \subseteq V$ and $cl(U) \cap cl(V) = \Phi$. **Proof:** Follows from Theorem 5.8. Theorem 5.10: Let X be a topological space. Then the following are equivalent:

(i) X is normal

(ii) For any disjoint closed sets A and B, there exist disjoint $rgw\alpha lc$ -open sets U and V such that $A \subseteq U, B \subseteq V$.

(iii) For any closed set A and any open set V such that $A \subseteq V$, there exists an $rgw\alpha lc$ -open set U of X such that $A \subseteq U \subseteq r\alpha cl(U) \subseteq V$.

Proof: (i) =>(ii): Suppose X is normal. Since every open set is $rgw\alpha lc$ -open [2], (ii) follows.

(ii)=>(iii): Suppose (ii) holds. Let A be a closed set and V be an open set containing A. Then A and X –V are disjoint closed sets. By (ii), there exist disjoint rgwalc–open sets U and W such that $A \subseteq U$ and $X-V \subseteq W$, since X –V is closed, so rgwalc–closed. From Theorem 2.3.14 [2], we have $X - V \subseteq raint(W)$ and $U \cap raint(W) = \Phi$ and so we have $cl(U) \cap raint(W) = \Phi$. Hence $A \subseteq U \subseteq racl(U) \subseteq X - raint(W) \subseteq V$. Thus $A \subseteq U \subseteq racl(U) \subseteq V$.

(iii) =>(i): Let A and B be a pair of disjoint closed sets of X. Then $A \subseteq X$ -B and X-B is open. There exists a rgwalc-open set G of X such that $A \subseteq G \subseteq racl(G) \subseteq X$ -B. Since A is closed, it is rgwalc-closed, we have $A \subseteq int(G)$. Take U = int(cl(int(raint(G)))) and V = int(cl(int(X racl(G)))). Then U and V are disjoint open sets of X such that $A \subseteq U$ and $B \subseteq V$. Hence X is normal.

Theorem 5.11: If f: $X \to Y$ is bijective, open, rgwalc–irresolute from a rgwalc–normal space X onto Y then is rgwalc–normal.

Proof: Let A and B be disjoint rgwalc–closed sets in Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint rgwalc–closed sets in X as f is rgwalc–irresolute. Since X is rgwalc–normal, there exist disjoint open sets G and H in X such that $f^{-1}(A) \subseteq G$ and $f^{-1}(B) \subseteq H$. As f is bijective and open, f(G) and f(H) are disjoint open sets in Y such that $A \subseteq f(G)$ and B $\subseteq f(H)$. Hence Y is rgwalc–normal.

References:-

- 1. B.M. Munshi, Separation axioms, Acta Ciencia Indica 12 (1986) 140-146.
- 2. C. Dorsett, Semi normal Spaces, Kyungpook Math. J. 25 (1985) 173-180.
- 3. M.S. John, A Study on Generalizations of Closed Sets and Continuous Maps in Topological and Bitopological spaces, Ph.D. Thesis, Bharathiar University, Coimbatore (2002).
- 4. N. Levine, Generalized Closed sets in Topology, Rendi. Circ. Math. Palermo 19/2 (1970) 89–96.
- 5. R. S. Wali, Vijayalaxmi R. Patil On rgwα-Locally closed sets in Topological Spaces (processing).
- 6. R. S. Wali, Vijayalaxmi R. Patil On RGWαLC-continuous and RGWαLC-irresolute maps in Topological Spaces (*processing*).
- S.N. Maheshwar and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci. Math. R.S. Roumanie 22 (1978) 27– 28.
- 8. S.P. Arya and T.M. Nour, *Characterization of s- normal spaces*, Indian. J.Pure and Appl. Math., 21(8),(1990), 717–719.
- 9. S.S. Benchalli, T.D. Rayanagoudar and P.G. Patil, g*– Pre Regular and g*–Pre Normal Spaces, Int. Math. Forum 4/48(2010) 2399–2408.
- 10. T. Noiri and V. Popa, On g-regular spaces and some functions, Mem. Fac. Sci. Kochi Univ. Math 20 (1999)67-74.
- 11. Thakur C.K Raman , Vidyottama Kumari and M.K. Sharma , α-Generalized & α*- separation Axioms for Topological Spaces , IOSR–JM, Volume 10, Issue 3 Ver. VI(2014), PP 32–36.