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Next-generation sequencing (NGS) technologies are now being 

employed to disclose the continually changing in the transcriptional 

profile of a biological sample in an approach called RNA sequencing 

(RNA-seq). Here, we review how gene expression technology is 

shifting from conventional to contemporary sequencing approaches. 

We also provide a snap shot about the application of RNA-seq 

technology for discovery and comparison of gene expression patterns in 

different organisms with a particular emphasis on the impact of 

Haemonchus contortus on ovine hosts. Furthermore, we presented steps 

in conducting RNA-seq experiment and how to validate the RNA-seq 

data. A future study investigating of Haemonchus and its ovine host 

using RNA-seq technology would be very interesting. 
 

                  Copy Right, IJAR, 2017,. All rights reserved. 

…………………………………………………………………………………………………….... 

The need for RNA sequencing (RNA-seq):- 
Several model organism genomes have been sequenced; the whole genome expression profile under the impact of a 

particular factor should be investigated for interpreting the genome functional elements, and revealing the cell and 

tissue molecular constituents, and also for better understanding development and disease. Many methods have been 

applicable to explore the transcriptome, but only of a few genes at a time. Large-scale screenings of gene expression 

profiles were not probable the way they have been recently performed with RNA sequencing (RNA-seq). There is, 

therefore, a definite need for an immediate snapshot of all or a large set of genes. Furthermore, the necessity of 

RNA-seq emergence is to understand the bio-molecular interaction networks at a global scale. Each specific kind of 

cell or tissue will be distinguished by a diverse gene expression pattern (i.e. each cell or tissue type will produce a 
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specific set of proteins in very peculiar quantities). Gene inactivation (knocking it out), which was for a long time 

the only common approach in genetics available to study the impacts of this knockout in other genes, is extremely 

slow, expensive and inefficient for a large-scale screening of several genes. RNA-seq allows the screening of many 

genes at the same time. By taking a snapshot of a whole gene expression pattern in a given cell or tissue, many 

tissues can be compared with each other or a tumor with the healthy tissue surrounding it. Furthermore, the impacts 

of drugs or stressors on different tissues can be monitored by the gene expression levels. The phenomena related to 

aging or fetal development can be understood by gene expression. Screening tests can be designed for a myriad of 

conditions distinguished by specific gene expression patterns. Drug development, diagnosis, comparative genomics, 

functional genomics and many other fields may benefit hugely from RNA-seq technology that allows accurate and 

relatively economical collection of gene expression information for many genes at a time. The impact of parasitic 

elements (e.g. larval-stages, cercarial stages, sporozoites, and tachyzoites) on the different predilection site in the 

host can be investigated by RNA-seq technology. Gene expression of parasites at different developmental stages can 

be carried out by NGS technology for discovery and comparison of gene expression patterns. A wide variety of 

RNA-seq applications have been reviewed in detail elsewhere [1]. 

 

RNA sequencing-tool for gene expression analysis:- 
The development of molecular approaches, for example, candidate gene method (e.g. real-time polymerase chain 

reaction) and exploratory technique (e.g. microarrays) has fascilitated the exploration of the gene expression or 

transcriptional profiles. The current gold standard for protein-coding gene annotation is expressed sequence tag 

(EST) or full-length cDNA sequencing followed by alignment to a reference genome, but it has been calculated that 

most EST studies using Sanger sequencing discover approximately 60% of cell transcripts, which declines to 

disclose the low abundant and long transcripts [2]. This information gap can be addressed by exploiting the RNA-

seq technologies. RNA-seq is a vigorous tool to unravel the complex landscape and dynamics of transcriptomes at 

an exceptional level of sensitivity and accuracy [3; 4; 5]. This approach offers a number of advantages compared to 

other technologies, including microarrays. These are: unbiased detection of novel transcripts, broader dynamic 

range, compatible with any species, easier detection of rare and low-abundance transcripts, better estimate of 

relative expression levels of any genomic region with higher technical reproducibility, facilitating the alternative 

splicing detection [6; 7]. Along with these advantages, RNA-seq has been employed to reassemble the whole 

organism transcriptome [8; 9]. With today’s advances in RNA-seq technology, enormous sets of gene expression 

data can be generated. Such catalogues are known as gene expression or transcriptional profiles, and the data 

collecting process is named profiling. RNA-seq technology allows rapid profiling and deep mining of the 

transcriptome. While the mRNA-seq application requires especial lab methods (poly-A selection for mRNA 

purification from total-RNA, reverse transcription into cDNAs), the instrumental rationale for mRNA-seq is similar 

to that of Genome-seq. As for reference-based mRNA-seq application, illumina single-end or paired-end layouts are 

favored [10; 11](Table 1).     

 

Table 1:- Advantages of RNA-seq compared with other transcriptomics methods [4]. 

Technology Tiling microarray cDNA or EST 

sequencing 

RNA-seq 

Technology specifications 

Principle Hybridization Sanger 

sequencing 

High-throughput 

sequencing 

Resolution From several to 100 bp Single base Single base 

Throughput High Low High 

Reliance on genomic sequence Yes No In some cases 

Background noise High Low Low 

Application 

Simultaneously map transcribed regions and 

gene expression 

Yes Limited for gene 

expression 

Yes 

Dynamic range to quantify gene expression level Up to a few-hundredfold Not practical >8,000-fold 

Ability to distinguish different isoforms Limited Yes Yes 

Ability to distinguish allelic expression Limited Yes Yes 

Practical issues 

Required amount of RNA High High Low 

Cost for mapping transcriptomes of large genomes High High Relatively low 
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Transcriptional profiling:- 
RNA-seq is a currently developed method for transcriptome profiling [4]. Investigations using this approach have 

altered our understanding of the magnitude and complexity of prokaryotic and eukaryotic transcriptomes [12; 13; 

14; 15; 16]. To date, next generation sequencing technologies have been employed to create transcriptomes for 

diverse species and tissues [13; 15; 17]. For example, a study employed the 454 technology to produce 391,157 EST 

reads from the brain transcriptome of the wasp Polistes metricus [18]. The reads were then aligned to the genome 

sequence and EST resources from the honeybee, Apis mellifera, to annotate P. metricus transcripts. Strikingly, the 

study observed wasp EST matches to 39% of the honeybee mRNAs and detected a robust correlation between the 

expression levels of the corresponding transcripts from the two species. RNA-Seq has been employed to precisely 

monitor gene expression during yeast vegetative growth [17], yeast meiosis [19], and mouse embryonic stem (ES) 

cell differentiation [12], to track gene expression changes during development, and to provide a “ digital 

measurement ” of gene expression difference between different tissues. RNA-seq has disclosed diverse novel 

transcribed regions and splicing isoforms of known genes, and has mapped 5 ′ and 3 ′ boundaries for many genes. In 

this context, the starts and ends of most transcripts had not been precisely determined, and the extent of spliced 

heterogeneity remained poorly known before the advent of RNA-seq. Using RNA-seq technology, the 5 ′ and 3 ′ 

boundaries of 80% and 85% of all annotated genes, respectively, were mapped in Saccharomyces cerevisiae [17]. 

Furthermore, in Schizosaccharomyces pombe [19], several boundaries were delineated by RNA-seq data in 

conjunction with tiling array data. In humans, 31,618 known splicing events were validated (11% of all known 

splicing events) and 379 novel splicing events were identified [20; 21]. In mice, extensive alternative splicing was 

charcterized for 3462 genes [13]. Moreover, results from RNA-seq propose the existence of many novel transcribed 

regions in every genome assessed, including those of Arabidopsis thaliana [22], mouse [12; 13], human [20], S. 

cerevisiae [17], and S. pombe [19]. The high-throughput paired-end Illumina technology was employed to explore 

the haemocytes of O. vulgaris transcriptome (de novo sequencing), identify genes involved in immune defense, and 

understand the molecular basis of octopus tolerance/resistance to coccidiosis [23]. Furthermore, dual RNA-seq of 

parasite and host reveals gene expression dynamics during filarial worm Brugia malayi-mosquito Aedes aegypti  

interactions [24]. The transcriptional profiles of the parasitic nematode Strongyloides stercoralis disclose different 

regulation of canonical dauer pathways [25]. High-throughput RNA sequencing (RNA-seq) has played a crucial in 

providing a concise view of the Leishmania major promastigote stage global transcriptome [9], establishing and 

enlightening current expression datasets, and providing a solid foundation for drug discovery and vaccine 

development[26], and studying of the peripheral-blood mononuclear cells (PBMCs) transcriptome from Fasciola 

hepatica-infected sheep[27]. A recent study by [28] examined the transcriptome profiling of differentially expressed 

genes of H. contortus- infected resistant Canaria Hair Breed (CHB) and susceptible Canaria Sheep (CS). 

 

 

RNA-seq experiment, data generation and analysis: 

All RNA-seq experiments follow a similar protocol. The currently used method can be listed as follows:- 

 

RNA extraction:- 

Total RNA from fundic abomasal samples of sheep was isolated employing Trizol (Invitrogen, Carlsbad, CA, USA) 

followed by DNase digestion, as previously reported [29; 30; 31]. 1% agarose gels was exploited to monitor RNA 

degradation and contamination. The Nano Photometer® spectrophotometer (IMPLEN, CA, USA) was used for 

checking RNA purity. Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA) in combination with its 

RNA Nano 6000 Assay Kit was used for RNA integrity assessment.  

 

Library preparation:- 
RNA-seq library was prepared according to the procedure used by [32] as follows: A total amount of 1 μg RNA per 

sample was exploited as input material. NEBNext®Ultra™ RNA Library Prep Kit for Illumina®NEB, USA) 

following manufacturer's recommendations was conducted for the generation of sequencing libraries. For sorting 

and identification of sequences to each sample, index codes were added. Briefly, the poly (A)-containing mRNA 

molecules were purified from total RNA employing poly-T oligo-attached magnetic beads. Following purification, 

the poly (A)-containing mRNA molecules were fragmented using divalent cations in NEBNext First Strand 

Synthesis Reaction Buffer (5X) under elevated temperature. The first strand cDNA was synthesized from the 

cleaved RNA fragments using reverse transcriptase and random primers. Subsequently, the second strand cDNA 

synthesis was carried out exploiting DNA polymerase I and RNase H. T4 DNA polymerase and Klenow DNA 

polymerase were used to convert overhangs into blunt ends via exonuclease/polymerase activities. Furthermore, 

NEBNext Adaptor with hairpin loop structure was ligated to prepare for hybridization. Following adaptor ligation, 
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cDNA fragments of preferentially (approximately 250 to 300 bp) were selected on a gel and the library fragments 

were purified with AMPure XP system (Beckman Coulter, Beverly, USA). Adaptor-ligated cDNAs were treated 

with 3 μl Uracil-Specific Excision Reagent enzyme mix (USER; NEB) at 37 °C for 15 min followed by heat 

inactivation at 95 °C for 5 min. The clonal amplification of the fragments was conducted with NEBNext Q5 Hot 

Start HiFi PCR Master Mix, Universal PCR primers and Index (X) Primer, and subsequent purification of PCR 

products (AMPure XP system) and evaluation of library quality on the Agilent Bioanalyzer 2100 system. For 

information about the impact of RNA extraction methods and library selection schemes on RNA-seq data, we direct 

the reader to the published articles [33; 34] 

 

Clustering and sequencing:- 
The index-coded samples were clustered on a cBot Cluster Generation System employing the TruSeq PE Cluster Kit 

v3-cBot-HS (Illumina, San Diego, USA), as stated in the manufacturer’s instructions. Then, the library preparations 

were sequenced with the generation of 150 bp pair-end reads on an Illumina Hiseq 4000 platform. We refer the 

reader to [35] for the current situation. 

 

Data processing and quality control:- 
Raw data (raw reads) in FASTQ format were processed to obtain clean data (clean reads) by trimming the adapter 

sequences out of the reads (Trimmomatic software v0.33), and filtering read- containing ploy-Ns (Ns>10% in a 

read), low quality reads (Q<=20) greater than 50% using in-house C scripts. Consequently, the Q20, Q30, GC 

content of the clean data were calculated. All downstream analyses were carried on clean and high-quality data. The 

clean reads were aligned to the reference genome using Tophat2 (v2.1.0)[36]. 

Differential gene expression (DGE) Analysis:- 

Differential expression analysis was conducted employing DESeq 2 packages [27] for comparisons among sample 

gene from  different experimental conditions. To determine the statistically significant differential expression, 

corrected P-value (q-value) < 0.05 and |log2 (fold change)| > 1 were set as the threshold for significantly DEGs [37]. 

 

Functional annotation enrichment analyses:- 
Gene Ontology (GO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) database were selected to 

perform DEGs enrichment analysis under different experimental conditions. Goseq R Bioconductor package was 

implemented for performing Gene Ontology analysis of RNA-seq data [38]. GO terms with adjusted P-value less 

than 0.05 were considered as significantly enriched transcripts. KOBAS v2.0 (KEGG Orthology Based Annotation 

System) was used to identify the statistical enrichment of differentially expressed genes in KEGG pathways 

employing hypergeometric test [39]. KEGG terms with corrected P-value less than 0.05 were considered statistically 

significantly enriched genes (Fig. 1) (https://www.illumina.com/techniques/sequencing/rna-sequencing.html). The 

commonly employed RNA-Seq term explanation is illustrated in Table 2. 

Protein-protein interaction networks (PPI):- 

Interactions between proteins can be predicted through an array of computational methods and databases [40; 41] . 

 

Novel transcripts prediction:- 

Reference Annotation Based Transcript (RABT) assembly method was built upon the Cufflinks v2.1.1 by 

constructing and identifying both known and novel transcripts from TopHat alignment results in the context of an 

existing annotation. 

 

Analysis of alternative splicing:- 

Alternative splicing events (ASEs) were categorized into 12 basic types, including alternative 5′ first exon (TSS), 

alternative 3′ last exon (TTS), skipped exon (SKIP), approximate SKIP (XSKIP), multi-exon SKIP (MSKIP), 

approximate MSKIP (XMSKIP), intron retention (IR), approximate IR (XIR), multi-IR (MIR), approximate MIR 

(XMIR), alternative exon ends (AE), and approximate AE (XAE), by the software Asprofile v1.0 [42]. 

 

Single nucleotide polymorphisms (SNP) Analysis:- 

Picard-tools v1.96 (http://sourceforge.net/projects/picard/files/picard-tools/1.96/) and samtools v0.1.18 [43] were 

employed to classify, remove coupled reads and merge the bam alignment results of each sample. The Genome 

Analysis Toolkit (GATK2) software was adopted to conduct SNP calling [42; 44]. 

 

https://www.illumina.com/techniques/sequencing/rna-sequencing.html
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Figure 1:- An RNA-Seq analysis workflow (Beijing Allwegene Technology Co., Ltd, China). 

 

Quantitative reverse transcriptase-PCR (RT-PCR) analysis for validation of RNA-seq Results:-  

Since the entire transcript is assessed in a more or less unbiased manner, probe bias, poor sensitivity and reduced 

linear range are not as problematic in RNA-seq experiments. However, real-time-PCR discrepancies may be due to 

its oligo (dT) primer and probe-bias based on what region of the cDNA is amplified [4; 45; 46]. A large and growing 

body of literature has reported a strong correlation between these methods [47; 48; 49; 50; 51; 52; 53]. These results 

are consistent with our recent data as illustrated below. We conducted transcriptome sequencing of the ovine 

abomasal tissues using the Illumina Hi Seq 4000 platform to segregate early and late H. contortus-infected sheep (7 

and 50 days post-infected groups [7 dpi and 50 dpi], respectively) from the control naive ones. We accredit the 

reader to reviews and articles by [54; 55; 56; 57] for detailed information about Haemonchus contortus and its ovine 

host. By random selection, 13 genes with (overexpressed or repressed) and without differential expression were 

chosen for verification by quantitative RT-PCR, which was performed as follows: the same total RNA employed for 

RNA-seq was reverse transcribed employing EasyScript® Reverse Transcriptase (Beijing TransGen Biotech Co., 

Ltd) and SYBR green-based RT-PCR was conducted by using SYBR
®
 Select Master Mix (Applied Biosystems; Cat: 

4472908) according to the instructions made by the manufacturer. The results were expressed as fold-changes [58]. 

A Correlation analysis (Graphpad Software, San Diego, Calif) was performed between the RNA-seq and RT-PCR 

fold-change results using the same RNA samples before pooling. Additionally, experiments were conducted in 

triplicate, and data are displayed as mean ± SD. 

 

Validation of transcriptome results by real-time PCR:- 

To validate the transcriptome data, both differentially and non-differentially expressed genes were selected for real-

time polymerase chain reaction (PCR) analysis, which also showed similar trends concordant with the Illumina 

sequencing data indicating the reliability of the comparative analysis of our transcriptomes. As expected, transcript-

specific fold-change in the same RNA samples was highly consistent between the RNA-seq and RT-PCR methods, 

which were corroborated in the correlation analysis. For the selected 13 DEGs (Fig. 2A, B, C, D and E), there was a 

firm correlation between RNA-seq and RT-PCR results (r
2
 = 0.9998), substantiating the reliability of differential 

gene expression analysis adopting RNA-seq.  
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Figure 2:- Validation of RNA-seq data by employing real-time PCR. 

 

The expression of interleukin-2 (IL-2), integrin subunit beta-2 (ITGB-2), tumor necrosis factor (TNF), Autophagy-

related 2B (ATG2B), Tumor necrosis factor (TNF), Autophagy related 2B (ATG2B), transcript variant X1, CNDP 

dipeptidase 2 (metallopeptidase M20 family) (CNDP2), MX dynamin like GTPase-1 (MX-1) and Selectin -E 

(SELE). Further, the selected expressed (galectin-4 (Gal-4), gaalectin-15 (Gal-15), and SPP1) and non-expressed 

Proteasome subunit beta 2 (PSMB2) and Secreted phosphoprotein 2 (SPP2) genes are displayed (E). X-axis, gene 

and group name; Y-axis, log2 fold change in gene expression (A; B; C; D; E). 
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F: Correlation analysis between RNA-seq and RT-PCR log2 (fold-change) results from the same RNA samples. 

Spearman correlation coefficient is displayed. The coefficient of determination (r
2
) expresses the strength of the 

relationship between the RNA seq and real-time PCR variables.  

 

Table 2:- The commonly employed RNA-seq term explanation. 

Term Explanation Reference 

Single- or Paired-end 

reads 

Single-end reads are enough for regular gene expression 

profiling, paired-end reads enable discovery applications 

such as detecting or characterizing novel alternative splicing 

isoforms or gene fusion events. 

[59] 

Read length It relies on the desired results of the experiment. For gene 

expression profiling, 50 bp single-end reads would be 

sufficient for most studies.. For detecting currently unknown 

transcripts, novel splicing isoforms, gene fusion, etc., longer 

(150 bp) reads offer an advantage. 

[60] 

Read depth or coverage Coverage = (total number of bases generated) / (size of 

genome sequenced). In other words, the average number of 

reads that align to, or "cover," known reference bases. Low-

expressing gene measurement or novel feature identification 

needs more coverage. 

[61] 

Complementary DNA 

(cDNA) 

Any DNA that is obtained from an mRNA template via 

reverse transcription. 
[62] 

Expressed sequence tags  

(EST) 

cDNA (sub)sequences derived from a single read of a cDNA 

sequencing experiment. 
[62] 

RNA-seq High-throughput sequencing technology utilization to 

describe entire transcriptomes. 
[4] 

Transcriptome The complete set of transcripts in a cell, and their quantity, 

for a specific developmental stage or physiological 

condition. 

[63; 64] 

Model Genome fully sequenced and annotated [65] 
Novel little/no previous sequencing [65] 
Barcodes (index) Short (6-8 nt) introduced as part of adapters. It provides 

unique identifier for each sample, tolerance of 1-2 

sequencing errors, pooling samples to mitigate lane effects, 

and allowing deep multiplexing due to dual barcodes. 

[66] 

 

Conclusion and future directions:- 
We have attempted to provide a snap shot of RNA-seq technology as a tool for gene expression analysis. 

Future research may exploit RNA-seq to provide a dual RNA-seq time course analysis of H. contortus and 

ovine host. 
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