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To design engineering structures at a particular region, it requires the 

information about the characteristics of strong ground motion. Peak 

Ground Acceleration (PGA) is most frequently used parameter to 

characterize such ground motions. Ground motion predictions using 

regression analysis are commonly used for estimating these loading 

conditions by using strong ground motion data from previous recorded 

earthquakes. Artificial Neural Networks (ANNs) are efficient 

computing models which have shown their strengths in solving many 

complex problems in numerous fields. A data set of 398 strong ground 

motion records from 69 earthquakes (3.0≤M≤6.8) occurred in 

Himalayan region is used in this study. Multi-layer perceptron 

architecture with the error back-propagation learning algorithm has 

been adopted to estimate peak ground accelerations for the Himalayan 

earthquakes. The PGAs predicted by the ANN have been compared 

with PGAs obtained by regression analysis. From these observations it 

has been concluded that the perceptron model is quite promising for 

the estimation of peak ground acceleration. Results of the predicted 

PGA have indicated that ANN is a promising tool for the estimation of 

peak ground acceleration at a site.  
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Introduction:- 
Strong Ground Motion (SGM) record at a particular site during an occurrence of earthquake is a result of complex – 

non linear combination of many factors (Sachdeva, 2014). Ground motion associated with a peak ground 

acceleration of 0.05g or higher is considered as strong ground motion (Chen and Scawthorn, 2003). For design of 

engineering structures for a specified region the information about the characteristics of strong ground motion is of 

paramount importance. Peak Ground Acceleration (PGA) is most frequently used parameter to characterize such 

ground motions. Ground Motion Prediction Equations (GMPE’s) are commonly used for estimating these loading 

conditions by using strong ground motion data from previous recorded earthquakes. A very little agreement has been 

reached in the past 30 years of ground motion estimation relation studies and the scatter could not be reduced to 

requisite level. This is more because the relations not only depends upon data selection, characterization of source, 

path or site or the regression technique employed but also on the purpose for which equation is intended to be used. 
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So the process of determining the regression relation much depends upon the appropriate judgment of scholar 

(Sachdeva, 2014). 

 

Artificial Neural Networks (ANNs) are efficient computing models which have shown their strengths in solving 

many complex problems in numerous fields. They have the versatility to approximate a wide range of complex 

functional relationships between sets of input and output data. The purpose of this study is to predict strong ground 

motion parameters using ANN that are of primary significance in earthquake engineering. In this study, sets of 

Multilayer Perception (MLP) neural network model are trained to predict the PGA. Neuro Intelligence (Neural 

Network Simulator) software has been used to model ANN and the standard back-propagation supervised training 

scheme is used to train all networks. A data set of 398 strong ground motion records from 69 earthquakes 

(3.0≤M≤6.8) occurred in Himalayan region are used in this study. A comparision of PGA values obtained from 

neural network and regression analysis have made. 

 

Acceleration Data:- 
Two types of data sets collected from the Himalaya region have been used in the study. The first data set of 144 

records from 10 earthquakes (5.2≤M≤6.8) as shown in Figure 1 became available from strong motion array 

comprised of strong motion accelerographs (SMA-1 of Kinematrics) in the Himalaya region. The purpose of deploy 

these instruments is to record the strong ground motion due to moderate and large-sized earthquakes occurring in the 

Himalayan region (Chandrasekharan, 1991). At each station the threshold level (trigger level) to sense the ground 

motion was set about 0.01 g. The analog recordings of these earthquakes were manually digitized using a semi 

automatic digitizer and digital data was processed adopting standard processing procedures (Trifunac, 1976). The 

data was converted to a uniform sampling rate of 0.02 seconds and band-pass filtered (0.17–0.20 Hz; 25–27 Hz) 

using an Ormsby filter (Chandrasekaran and Das, 1992).  

 

The second data set of 254 records from 59 earthquakes of magnitude range (3.0≤M≤6.8) was recorded by recently 

installed digital accelerographs in the Himalayan region (Figure 2). These accelerograph installations form part of 

the National Strong Motion Network of 300 strong motion stations deployed under Mission Mode project to cover 

seismic zones V, IV and some thickly populated cities falling in seismic zone III (Kumar et al., 2012; Mittal et al., 

2012). The digital accelerographs are of GSR-18 type (Geosig, model GSR-18) and data is acquired at a sampling 

rate of 200 Hz. About 260 digital accelerographs, networked using NIC-net allows monitoring the health of 

accelerographs as well as downloading of the strong motion data at IIT Roorkee campus.  

 

The earthquakes considered for training neural network are shown in Table 1. The magnitude distance distribution 

of these earthquakes is shown in Figure 4.  

 

Artificial Neural Network:- 
Artificial neural networks are among the most powerful learning models that are capable of establishing a mapping 

relationship between the given sets of inputs and outputs. The theoretical background on neural networks (NN) can 

be found in a large volume of literature (e.g., Zurada, 1992; Hagan et al., 1996; Bishop, 1995; Mehrotra et al., 1996; 

Haykin, 1994; Demuth et al., 2006; Arjun and Kumar, 2009).  

 

In this study, multi-layer feedforward neural networks, commonly referred to as multilayer perceptrons (MLPs) have 

been used. It has a layered architecture consisting of input, hidden, and output layers. The input signal propagates 

through the network in a forward direction on a layer-by-layer basis. The output of each layer is transmitted to the 

input of neurons in the next layer through weighted links. The hidden layer aids in performing useful complex 

computations by extracting progressively more meaningful features from the input layer. Figure 3 shows a one-

hidden-layer MLP with D inputs, K hidden processing elements and M outputs (i.e., MLP (D-K-M)). 

 

Training and weight adaptation is done in MLPs in a supervised manner with a highly popular algorithm known as 

the error back-propagation algorithm. Back-propagation learning consists of two phases. During the first phase, 

inputs presented to the input layer propagate through the network, layer by layer, to the output layer, where the error 

between the desired output and the network output is calculated. During this phase, the weights are not modified, 

and they remain constant. During the second phase, the error signal is propagated backwards from the output layer 

through the network to the input layer. During this stage, the weights are adjusted in such a way that the actual 

output moves closer to the desired output.  
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Networks have been trained in this study by using the gradient descent with momentum learning scheme, which 

focuses on using the error between the network output and the desired output. The learning algorithm adapts the 

weights of the system based on the error until the system produces the desired output. The error criterion used is the 

2 L -norm or mean squared error (MSE) criterion. It simply computes the difference between the system output and 

the desired signal and squares it. The stopping criteria should be such that it addresses the problem of generalization. 

This has been done by stopping the training at the point of maximum generalization. The training set is usually 

divided into two sets: the training and the cross-validation sets. The training is stopped when the error in the cross-

validation set is smallest. This will be the point of maximum generalization. 

 

Application of ANN for estimating PGA:- 
A data set of 398 strong ground motion records from 69 earthquakes (3.0≤M≤6.8) occurred in Himalayan region is 

used in this study. Figure 4 gives the scatter plot of magnitude versus hypocentral distance of the data used. The 

neural network is trained and tested using the data. 

The total set of 398 values has been divided into three sets: 

1. training set, 

2. validation set, and 

3. testing set. 

 

The training set, which is about 80% of the complete dataset, has been used to train the network; the validation set, 

which is about 10%, has been used for the purpose of monitoring the training process, and to guard against 

overtraining; and the testing set, which is about 10%, has been used to judge the performance of the trained network. 

The training was stopped when the cross-validation error began to increase, i.e., when the cross-validation error was 

minimum.  

 

A [2-2-1] architecture with 9 weights have been selected which have 3.25 fitness. The training error is 0.35; 

validation error is 0.27 and testing error is 0.31 for this architecture. A correlation of 0.73 is obtained between the 

actual PGA and predicted PGA (Figure 5). Then estimated PGAs for magnitude 6.8 were compared with actual and 

that obtained from regression analysis. 

   ( )                     (          )    (Kumar et al., 2017) 

A good correlation has been observed between predicted by ANN and that obtained from regression analysis.  

 

Table 1: The earthquakes considered for attenuation regression analysis: 

Earthquake Date Time Latitude 

(˚N) 

Longitude 

(˚E) 

Depth 

(Km) 

Magnitude Records 

1 19860426 13:05 32.18 76.29 07.0 5.5 9 

2 19860910 13:20 25.43 92.08 43.0 5.2 12 

3 19870518 07:24 25.27 94.20 50.0 5.7 14 

4 19880206 20:21 24.65 91.52 15.0 5.8 18 

5 19880806 06:07 25.15 95.13 91.0 6.8 33 

6 19900110 00:21 24.75 95.24 119.0 6.1 14 

7 19911020 02:30 30.74 78.79 12.0 6.6 13 

8 19950506 07:29 25.01 95.34 122.0 6.4 9 

9 19970805 08:23 24.89 92.25 35.0 5.6 11 

10 19990329 00:35 30.41 79.42 20.0 6.8 11 

11 20050406 08:10 31.20 91.10 10.0 4.3 1 

12 20051214 07:09 30.90 79.30 25.3 5.2 8 

13 20070722 23:02 31.20 78.20 33.0 5.0 2 

14 20080819 10:54 30.10 80.10 15.0 4.3 4 

15 20080904 12:53 30.10 80.40 10.0 5.1 7 

16 20090215 07:35 26.00 90.20 39.3 4.4 5 

17 20090224 17:46 25.90 94.30 10.0 4.8 5 

18 20090225 04:04 30.60 79.30 10.0 3.7 1 
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19 20090318 11:22 30.20 78.90 10.0 3.3 1 

20 20090425 04:04 30.60 79.30 10.0 4.0 2 

21 20090501 10:11 30.20 78.10 10.0 4.6 7 

22 20090615 11:17 30.90 78.10 10.0 3.4 2 

23 20090615 12:12 27.40 79.20 05.0 3.0 1 

24 20090615 08:19 30.50 78.30 15.0 4.1 1 

25 20090819 10:45 26.60 92.50 20.0 4.9 2 

26 20090827 16:54 30.00 80.00 14.0 3.9 3 

27 20090830 19:27 25.40 94.80 85.0 5.3 5 

28 20090903 19:51 24.30 94.60 100.0 5.9 9 

29 20090921 08:53 27.30 91.50 08.0 6.2 14 

30 20090921 09:43 30.90 79.10 13.0 4.7 12 

31 20091003 05:20 30.00 79.90 15.0 4.3 3 

32 20091029 17:00 27.30 91.40 10.0 4.2 5 

33 20091029 19:56 26.60 90.00 05.0 5.2 5 

34 20091108 21:43 24.40 94.80 22.0 5.6 12 

35 20091229 09:01 24.50 94.80 80.0 5.5 6 

36 20091231 09:57 27.30 91.40 07.0 5.5 5 

37 20100111 05:15 29.70 80.00 15.0 3.9 3 

38 20100222 17:23 30.00 80.10 02.0 4.7 6 

39 20100226 04:42 28.50 86.70 28.0 5.4 7 

40 20100503 17:15 30.40 78.40 08.0 3.5 4 

41 20100531 11:37 30.00 79.80 10.0 3.6 2 

42 20100706 19:08 29.80 80.40 10.0 5.1 2 

43 20100710 03:16 29.90 79.60 10.0 4.1 4 

44 20100911 07:02 25.90 90.20 20.0 5.0 3 

45 20101212 01:40 25.00 93.30 15.0 4.8 2 

46 20110204 13:53 28.40 94.60 30.0 6.4 7 

47 20110209 11:23 27.45 92.24 10.0 5.0 6 

48 20110314 09:01 30.50 79.10 08.0 3.3 1 

49 20110404 11:31 29.60 80.80 10.0 5.7 22 

50 20110504 2057 30.20 80.40 10.0 5.0 1 

51 20110620 06:27 30.50 79.40 12.0 4.6 13 

52 20110623 22:13 30.00 80.50 05.0 3.2 1 

53 20110918 12:40 27.70 88.20 10.0 6.8 13 

54 20110921 02:24 30.90 78.30 10.0 3.1 1 

55 20110924 14:32 30.90 78.30 10.0 3.0 1 

56 20120116 05:01 29.70 78.90 10.0 3.6 1 

57 20120226 23:08 29.60 80.80 10.0 4.3 2 

58 20120510 22:00 30.20 79.40 05.0 3.9 1 

59 20120728 05:48 29.70 80.70 10.0 4.5 2 

60 20120823 16:30 28.40 82.70 10.0 5.0 3 

61 20121111 18:39 29.20 81.50 10.0 5.0 3 

62 20121127 12.15 30.90 78.40 12.0 4.8 4 

63 20130102 17:42 29.40 81.10 10.0 4.8 2 

64 20130109 07:44 29.70 81.70 34.0 5.0 4 

65 20130110 15:16 30.10 80.40 05.0 3.2 1 

66 20130129 19:42 30.00 81.60 07.0 4.0 1 

67 20130211 10:48 30.00 78.40 05.0 4.3 3 

68 20130217 16:27 30.90 78.40 10.0 3.2 1 

69 20130905 18:35 30.90 78.50 11.0 3.5 1 
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Figure 1:-. Map showing the strong motion arrays and locations of earthquakes (Sharma, 2005). 

 

 
Figure 2:- Indian nation strong motion instrumentation network (Kumar et al., 2012). 

 

 
Figure 3:- Multilayer perceptron, MLP (D-K-M), with one hidden layer. 
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Figure 4:- The magnitude-distance distribution of peak ground horizontal accelerations. 

 

 
Figure 5:- Scatter plot showing actual PGA vs estimated PGA.  
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Figure  6:- Plot shows actual PGA; estimated by ANN and regression analysis. 

 

Conclusions:- 
A multi-layer perceptron architecture with the error back-propagation learning algorithm has been adopted to 

estimate peak ground accelerations for the Himalayan earthquakes. The PGAs predicted by the ANN have been 

compared with PGAs obtained by regression analysis. From these observations it has been concluded that the 

perceptron model is quite promising for the estimation of peak ground acceleration. Results of the predicted PGA 

have indicated that ANN is a promising tool for the estimation of peak ground acceleration at a site. The 

performance of networks may be improved by carrying a detailed parametric study on the optimal network to be 

used for predicting the peak ground acceleration. Future work may also examine the application of hybrid artificial 

intelligence techniques. 
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