
ISSN: 2320-5407                                                                                      Int. J. Adv. Res. 7(4), 888-895 

888 

 

Journal Homepage: -www.journalijar.com 

 

 

 

 

Article DOI:10.21474/IJAR01/8901 

DOI URL: http://dx.doi.org/10.21474/IJAR01/8901 

 

RESEARCH ARTICLE 

 
AN APPLICATION OF ESTIMATING CAPABILITY INDICES UNDER NON-NORMALITY USING SB 

JOHNSON SYSTEM. 

 

Suboohi Safdar
1
, Ejaz Ahmed

2
 And Arfa Maqsood

1
. 

1. Assistant Professor, Department of Statistics, University of Karachi. 

2. Dean, Computer Science, College of Computer Science & Information Systems,Karachi Institute of Business 

Management Korangi Creekk. 

…………………………………………………………………………………………………….... 

Manuscript Info   Abstract 

…………………….   ……………………………………………………………… 
Manuscript History 

Received: 12 February 2019 

Final Accepted: 14 March 2019 

Published: April 2019 

 

Key words:- 
Capability Indices, Non normal Process, 

Johnson System, percentage points. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In discussion of process capability indices for normal and non-normal 

processes with symmetrical and asymmetrical tolerances it is noted that 

pertinent research work are based on either proposing new capability 

indices to purport better properties in certain circumstances or replacing 

existing by other procedures.  In this paper an application is presented 

to estimate capability indices under non-normality using Johnson 

system for an earlier used data set. Numerous work have been 

published in literature to estimate these indices using Johnson system. 

This paper present an application of new learning approach to translate 

the measurements of non-normal process to Johnson distributions

 LUB SSS ,, countenanced the user to check foremost assumptions of 

estimating capability indices. In this approach the exact percentage 

points (0.135 lower and upper) are obtained acquiring the knowledge of 

density function before estimating capability indices under non-

normality. Earlier these points are estimated from the process 

measurements come from non-normal process without knowledge of 

the density function. The procedure is illustrated by a data set which is 

transformed in SB Johnson distribution and the percentage points are 

obtained from the proposed modified procedure results better while 

compare with existing procedure. The route is explained by flow chart 

and program is made in R-console.  

 
      Copy Right, IJAR, 2019,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
Process capability indices PCIs always have been flourished for their uses and diversity. PCIs are the numerical 

quantities which raise the ability of a process related with process parameters and process preset values. For initially 

proposed PCIs process mean  and process standard deviation   are needed to develop functional relationship 

with process preset values as lower specification limit LSL, upper specification limit USL, target T, and mid-point 

m see for details Juran (1974), Kane (1986), Chan et al. (1988), Spiring (1991b), Pearn et al. (1992) among many 

others.  It is also noted that these PCIs give false process fall out rates and erroneous results for measurements come 

from non-normal process because process parameters  and   are highly sensitive to departure from normality. 

For the process with asymmetrical tolerances  mT   simply reflect the deviations from target and are less 
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tolerable in one direction than other. For those processes the researchers observed the need of development of new 

PCIs which contains those process parameters that can characterize non-normal behavior sufficiently. More 

precisely two basic approaches are discussed so far in published literature to estimate PCIs for non-normal 

processes. First, estimate PCIs based on percentile method, most applied example is Clements percentile method 

(1989). He swapped X  by median M and 6 , the difference of interval   3,3   by 0.135th lower and 

upper quantiles for non-normal process from basic PCIs developed for normal processes such that the expected 

proportion of non-conforming NC should remain 0.27%.  But Clements method needs the knowledge of coefficient 

of skewness and kurtosis which is not always easy to obtained. Pearn, Kotz and Johnson (1992) discussed and 

improved the Clements method. Second approach based on translate non-normal process to normal using 

transformation methods few examples are Burr method (1942), Johnson transformation method (1949), Box-Cox 

power transformation method (1964) among others.  This paper is an application of modified Johnson 

transformation method proposed by Safdar et al. (2019) for estimating capability indices for SB distribution under 

non-normality. It is noted that this new learning and straightforward procedure prove indices while compared with 

earlier existing procedures of Pyzdek (1992) and Farnum (1997) under non-normality using Johnson system.  

The paper is organized as follows; Section 2 discussed shortly the capability indices and existing methods using 

families of distribution, Section 3 enlightened the new learning approach of estimating indices using Johnson 

method. Section 4 display a flow chart to explain the route of the algorithm made in R-Console. Section 5 illustrated 

new learning of estimating indices using Johnson System. Section 6 contains the discussion and conclusion about 

the new learning system. 

 

Capability Indices and Existing Families of Distribution:  

With individual families of distribution as Poisson, Binomial, Normal and many more there are variety of systems of 

distributions based on simple theory. Many systems of distribution have been discussed by numerous authors with 

their respective significance that will satisfactory represent observed data. Examples are Pearson System, Edgeworth 

Gram-Charlier Distributions and Johnson System of Distribution among others. Pearson system seeks to ascertain 

families of distribution that will satisfactory represent observed data. Various works have been proposed with the 

application of Pearson system to estimate the process capability indices for non-normal distributions see Bittani et 

al. (1998). The estimation of PCIs for non-normal processes using Pearson curves based on use of table giving the 

0.00135 and 0.99865 percentiles of the standardized Pearson curves a functions of the values of skewness and 

kurtosis estimated from data but it suffers from two major draw backs; first the table provides estimates for the 

required percentiles only over a limited range of skewness and kurtosis; second no information about the goodness 

of fit is available. Edgeworth (Gram-Charlier) Distributions approach seeks to represent a given density function as 

a series in the derivatives of the normal density function.  Kocherlakota et al. (1992) established the distribution of 

pĈ  when the process distribution  xf is a Gram Charlier Edgeworth series.  

Where    1,0;
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for the distribution of the natural estimator of Cpu as 
S

XUSL
C pu

3
ˆ 

 where USL is the upper specification limit, 

X and S are the sample mean and sample standard deviation of the given set of measurements. If the process is 

symmetrical ( 01  ),  puCE ˆ is proportional to Cpu and very nearly proportional to Cpu even if 01  . Of 

course if 1 is large, it will not be possible to represent the distribution in the Edgeworth form.  

Johnson System of frequency curve was first developed by Johnson (1963). Farnum (1997) has given a detailed 

description on the use of Johnson Curves. For a complete description of this system, see Bowman and Shenton 

(1983); Johnson, Kotz, and Balakrishnan (1993) and Stuart and Ord (1987). Concisely, there are three distributions 

 LUB SSS ,,  of Johnson curves having two shape ( and ), one location    and one scale   real parameters. 

These distributions are generated by transformations of the form   ,;xkz i  where  ,;xki  are 

chosen to cover a wide range of possible shapes and z is a standard normal variable.   
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Pyzdek (1992) worked on SB distribution and found capability index Cp, Farnum (1997) obtained indices Cp and Cpk 

using Johnson system and fitted SU curve, Chung et al. (2007) proposed decision making rule using p-value for Cpm 

index by fitting SL distribution. Safdar et al. (2019) presented a quick and straightforward modified procedure for 

non-normal process to estimate capability indices using Johnson system and a work example for Su distribution was 

illustrated. This paper is an application of the procedure for an earlier used data set to estimate capability indices 

using SB distribution. In section 3 the new learning system of estimating capability indices under non-normality 

using Johnson system is presented 

 

Modified Procedure to Estimate Capability Indices using Johnson System: 

In our procedure basic capability indices are first estimated using Vannman (1995) superstructure defined as the 

ratio of actual spread (based on preset values) and allowable spread (based on process parameters   and   which 

are sensitive to departure from normality and cannot characterize non-normal process).  
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Such that, 

        pmkPpmPpkPpP CCandCCCCCC  1,11,0,0,1,0,0 .  

Where T is the target value, d is half-length of specification interval i.e.  LSLUSLd 
2

1
; and

 LSLUSLm 
2

1
; the midpoint between upper and lower specification limits.  

The proportion of non-conforming NC and process yield for each basic PCIs are also obtained for industrial and 

manufacturing purpose showing whether NC and process yields are tolerable for production.  

Process measurements are than transformed to the best fitted Johnson system and curve is drawn to the given set of 

measurements come from non-normal process to check the adequacy of the fitted model. Samples (X-variates of 

Johnson System) of size n=49, 99, 199, 499, 999, 1499 and 1999 are simulated. Transformed x-variate and preset 
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values to z-variate of Jonson system. For x-variate and z-variate of Johnson system, test the normality assumption by 

drawing NPP and applying Shapiro-Wilk normality test.  

 

For estimating capability indices using Johnson system, Pearn and Chan (1997) superstructure is used as under;  
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Such that       NpmNPNpkNPNpNP CCCCCC  1,0,0,1,0,0 and   NpmkNP CC 1,1 . 

  

Where F0.135, Median M and F0.99865 are the 0.135th, 0.5th and 0.99865th percentage points of non-normal processes. 

Pyzdek (1992) and Farnum (1997) estimated these points from the process measurements by approximate method 

without acquiring the prior knowledge of density function exhibited by the data set. For our new capability 

calculations these points are obtained from the best fitted Johnson curve of the process measurements coming from 

non-normal process.   
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For our example we estimated capability indices using Equation (2) for each simulated sample drawn from SB 

Johnson curve where the percentage points are obtained by approximate method (Pyzdek 1992, Farnum 1997) and 

named those indices as John (Z) and for our new learning procedure the percentage points are obtained using 

Equation (3) and named as JPCI.  

  

Section 4 display a Flow chart to lustrate our procedure to estimate PCIs easily.   

 

Flow Chart:  

 
Fig 1:-Flow Chart explaining the New Learning Procedure of Estimating Capability Indices 

 

Illustration: 

Pearn and Chen (1997) estimated capability indices for non-normal process with an application in electrolytic 

capacitor manufacturing. He collected the data of capacitance of non-polarized with radial leads from an electronic 
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company of manufacturing of aluminum electrolytic capacitor. The collected sample data consisting of 100 

observations of a non-normal distribution are displayed in Table 1. The preset specifications are LSL=285, T=300 

USL=315 

Table 1:-Non-Polarized (NP) with Radial Leads; Capacitance 

292 293 294 294 294 294 294 294 295 295 

295 295 295 295 295 296 296 296 297 297 

297 297 297 298 298 298 298 298 298 298 

299 299 299 300 300 300 300 300 301 301 

301 301 302 302 302 302 302 302 302 303 

303 303 303 303 303 304 304 304 304 304 

305 305 305 305 305 305 306 306 306 306 

306 306 307 307 307 308 308 308 308 309 

309 309 309 309 309 310 310 310 311 312 

312 313 313 313 313 315 316 319 320 324 

 

First we estimate PCIs assuming that the observations come from normal distribution.  

 

Table 2:-PCIs Assuming Normal Process 

PCIs Normal based PCIs NC% Process Yield% 

Cp 0.759 2.28 97.77<99.73 

Cpk 0.603 7.05 92.95<99.73 

Cpm 0.687 3.93 96.07<99.73 

Cpmk 0.545 10.2 89.80<99.73 

 

Table 2 shows that if we run capability analysis for the experiment assuming normal distribution, large percentage 

of parts rejected were expected which cannot tolerate in any industrial or manufacturing production. There is a need 

to transform the data set.   

 

With algorithm of estimating capability indices best fitted curve is found to be SB (see Equation 4) after translating 

the data set under non-normality using Johnson system.    

                92.31555.291
55.29137.24

55.291
log781.0115.0 












 x

x

x
Z                           4

 
The original data set and simulated samples ‘x’ are transformed in Z. For each simulated transformed sample 0.135

th
 

lower and upper quantiles are obtained by earlier and modified method.  

 

Each simulated sample of x and z of Johnson system the foremost assumption of estimating capability indices is 

checked graphically by NPP and statistically assess by applying Shapiro-Wilk normality test. 

 

Table 3 comprises the results and showed that percentage points are found different by old and new method.  

 

Table 3:-Original& Transformed Specification Limits, NC (PPM) and Johnson Percentiles by Approximate and 

Modified Method 

Size (Lp, Up) 

(Farnum) 

(Lp, Up) 

(Modified) 

original data 291.99 291.8 

315.3 315.8 

49 294 296.66 

316 315.99 

99 293.4 297.06 

315.2 315.19 
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199 291.7 296.44 

318.8 318.79 

499 291.8 296.27 

316.3 316.29 

999 291.8 295.97 

315.8 315.83 

1499 291.6 295.94 

315.6 315.63 

1999 291.9 295.89 

315.3 315.27 

 

We also noted the difference between the percentiles obtained by Farnum and our method in Table 3. For one of the 

assumption we plot the original data and superimpose the selected Johnson curve to know the adequacy of the fitted 

model. 

 

 
Fig 2:-Original and best fitted Johnson curve with probability Histogram 

 

We have noted that the selected Johnson curve adequately fits the data specialy on tails of the distribution. For 

normality assumption before estimating capabilty indices shapiro-Wilk test is perfored and results are sumarized in 

table 4. 

 

Table 4:-Statistical Assement of Normality using Shapiro-Wilk Test 

Sample Size Type SW Statistics P-value 

Original data X 0.965 0.010 

Z 0.990 0.698 

49 X 0.948 0.036 

Z 0.981 0.627 

99 X 0.971 0.029 

Z 0.988 0.545 

199 X 0.969 0.000 

Z 0.987 0.076 

499 X 0.971 0.000 

Z 0.994 0.061 

999 X 0.972 0.000 

Z 0.996 0.015 

1499 X 0.971 0.000 

Z 0.996 0.001 

Original and fitted Johnson curve 

290 295 300 305 310 315 320 325 

0.00 

0.02 

0.04 

0.06 

0.08 

original Data 
Johnson Fitted Data 



ISSN: 2320-5407                                                                                      Int. J. Adv. Res. 7(4), 888-895 

894 

 

1999 X 0.970 0.0000 

Z 0.998 0.025 

 

Preceding the above findings, finally we focus on the estimation of new capability calculations for indices using 

Existing and method with our modified method.  

 

Table gives details of estimating capability indices while the percentage points are obtained by existing and 

modified methods.  

 

Table 5:-PCIs under Johnson Distribution 

Samples Methods Cp Cpk Cpm Cpmk 

O
ri

g
in

a

l 
D

a
ta

 NPCI (Vannman) 0.759 0.603 0.687 0.546 

John(Z) (Pyzdek& Farnum) 1.288 0.974 0.944 0.718 

JPCI( Modified) 1.286 0.974 1.038 0.842 

49 John(Z) 1.364 0.909 0.806 0.538 

JPCI 1.552 1.289 1.219 1.012 

99 John(Z) 1.376 0.982 0.888 0.634 

JPCI 1.655 1.267 1.079 0.826 

199 John(Z) 1.107 0.721 0.726 0.474 

JPCI 1.342 1.121 1.118 0.934 

499 John(Z) 1.224 0.893 0.864 0.628 

JPCI 1.499 1.192 1.103 0.878 

999 John(Z) 1.250 0.933 0.906 0.677 

JPCI 1.511 1.215 1.129 0.908 

1499 John(Z) 1.250 0.950 0.929 0.706 

JPCI 1.524 1.217 1.121 0.896 

1999 John(Z) 1.282 0.974 0.942 0.716 

JPCI  1.547 1.227 1.116 0.885 

 

Table 5 summarizes the results that our new capability calculation JPCI based on estimating percentiles using 

Johnson density function improve results with existing method under normality.  

 

Concluding Remarks 

This paper is an application of the modified procedure of estimating capability indices for non-normal process using 

Johnson system. A data set is taken to exemplify the procedure of new learning system of estimating capability 

indices under non-normality using Johnson system. The results shown that the modified procedure based on 

obtaining percentage points of Pearn and Chan superstructure by first finding the density function of the process 

measurements improve the indices while compared with existing procedure in which the percentage points are 

obtained from the process measurements without having prior knowledge of density function. The program is made 

in R-Console and follows the algorithm estimating capability indices under non-normality using Johnson system. 

This procedure also allow user to rum a straightforward procedure which first estimate capability indices, proportion 

of non-conforming and process yields assuming normal process to show that basic indices misled the result for non-

normal process and transformation is needed. For the process measurements come from non-normal process the 

algorithm select the best fitted Johnson curve, draw fitted curve on process measurements to check the adequacy, 

simulate samples from estimated parameters of the selected Johnson distribution. The route of this new learning 

system check the assumptions before estimating capability indices of simulated samples. The tolerance region of 

process measurement is specified, normality assumption is checked graphically by drawing NPP and applying 

Shapiro-Wilk normality test of all simulated samples. The algorithm can also exclude those simulated samples 

which are beyond the limits of the selected Johnson curve to make the process in statistical control.  After validating 

the assumptions before estimating capability indices the algorithm obtained lower and upper 0.135
th

 percentage 

points for existing and new method under Johnson system. The results shows that the new modified procedure 

improve capability indices for each simulated sample. 
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