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Solution of large order sparse system of equations need to be 

optimized on numerical computers in terms of memory usage and 

execution time. This optimization includes rearranging the equations 

in terms of its position and identifying submatric blocks where dense 

matrix operations can be defined.Direct solution methods of linear 

system of equation are based on factorization of coefficient matrix to 

set the solution. This thesis studies the effect of cholesky factorization 

of symmetric sparse matrices for reducing fill-ins and factorization 

time. The study is carried out on ISRO’s in-house developed finite 

element structural analysis software, FEASTSMT direct solution 

schemes. The reordering techniques used here are Approximate 

minimum degree ordering (AMD), Column approximate minimum 
degree ordering (COLAMD), Multiple minimum degree ordering 

(MMD) and METIS. Since the finite element models of launch 

vehicle and satellite structures result in vary large order sparse system 

of equations, a variation of cholesky method called multifrontal 

scheme based on element connectivity information is used. The 

studies were carried out on basic large order 1D, 2D , 3D models as 

well as the models involving combination of these three types. 

Complexity of these algorithms depends on the data structure of 

assembly tree, which is a relationship between submatrices. The 

overall execution time , average, worst and best case time 

complexities of the multifrontal method with respect to number of 
partial factorization were studied and presented in this thesis.
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Introduction:- 
FEAST (Finite Element Analysis of Structures) is ISRO's structural analysis software based on Finite Element 

Method (FEM) realized by Structural Engineering Entity of Vikram Sarabhai Space Centre (VSSC). Substructured 

and Multi-Threaded (SMT) implementation of the solver ensures high performance of the software to the end users. 

Numerical computational aspects are the core of FEASTSMT.PreWin is the graphical user interface based pre and 

post processor, developed using state of the art graphical processing technology. FEASTSMT is a FE solver module, 

built as dynamic link library (DLL), integrated with pre and post processor as shown in Fig.1. 
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Fig.1:- Architecture model of PreWin/FEASTSMT. 

 

The system of linear equations arising from a linear solution of a structure with n degree of freedoms is written as: 

}{}]{[ fdK                              (1) 

whereKis the n by n stiffness matrix, fis a vector of size n, which stores the loading at each degree of freedom (dof), 

and dis a vector of size n, which stores the unknown displacement corresponding to the loading. 

 

There are two main classes of methods for the solution of sparse linear systems: direct methods, that are based on a 

factorization of A (e.g., LU or QR), and iterative methods, that build a sequence of iterates that hopefully converges 

to the solution. Direct methods are acknowledged for their numerical stability but often have large memory and 
computational requirements, while iterative methods are less memory demanding and often faster but less robust in 

general; the choice of a method is usually complicated since it depends on many parameters such as the properties of 

the matrix and the application. 

 

The various numerical aspects of FEASTSMT are included in  1. Here sparse system of equations are considered. 

Cholesky factorization is used for those models having smaller dimension but results in larger number of fill-ins. So 

the main task is to reduce the number of fill-ins. 

 

Reordering algorithms can be used for reducing the amount of fill-in by rearranging the initial matrix according to 

the generated permutation order. The various minimum degree reordering algorithms were defined in detail in  2. 

Here the analysis is carried out on approximate minimum degree ordering  3, column approximate minimum degree 

ordering  4,Multiple Minimum Degree ordering  5 and METIS  6.  Here each routine returns a permutation vector P of 
size n, where P[k] = i if row and column i are the kth row and column in the permuted matrix . This permuted vector 

can be used for reordering the matrix and thereby reducing the amount of fill-in. 

 

Cholesky solution method for interface variables requires global stiffness matrix to be assembled. This creates 

memory related issues for large order problems and cannot exploit parallel processing system architectures to reduce 

overall solution time. Since sparse storage schemes are employed to reduce active memory requirements, dense 

matrix operations, which uses system cache memory are not implemented in the SMT solver for matrix algebra, 

which is given as detailed in  7. 

 

Multifrontal method is included in detail in section 2 ,which mainly includes both forward elimination and backward 

substitution algorithms and the assembly tree construction process. Section 3 mainly focuses on the various 
reordering routines and their advantages and later in section 4, which includes some test problems and their results 

are concluded. 

 

Multifrontalmethod:- 
In the multifrontal method, the numerical factorization is reduced to a series of partial factorization operations on 

dense frontal matrices. The partial factorization on a frontal matrix is performed by finding the factors for the fully 

assembled degrees of freedoms(dofs) and finding the Schur complement for partially assembled dofs. The fully 
assembled dofs are the dofs for which all connected elements have been assembled in the frontal matrix. They are 

also called the eliminated dofs. On the other hand, the partially assembled dofs are the dofs for which all connected 

elements are not assembled. They are also called remaining dofs. The partial factorization is similar to the 

condensation of a frontal matrix where the condensed dofs are fully assembled dofs and the remaining dofs are 



ISSN: 2320-5407                                                                                  Int. J. Adv. Res. 4(8), 1257-1265 

1259 

 

partially assembled dofs. Typically, we exploit the supernodes and there are multiple dofs eliminated at a frontal 

matrix.Therefore, we can use a blocked form of the partial factorization that can be written as 
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The matrix on the left hand side of (2) is called the frontal matrix. The frontal matrix is composed of the dense 

matrices Bnexne,Vnrxne and Cnrxnr where ne and nr are the number of eliminated and remaining dofs respectively. Bis a 

square matrix corresponding to the eliminated degrees of freedom’s (dof), Cis a square matrix corresponding to the 

remaining dofs, and Vis a rectangular matrix which couples the eliminated and remaining dofs. After the partial 

factorization is completed, Bstores the diagonal factors LB, Vstores the off-diagonal factors and Cstores the 

Schurcomplement .  

 

Once the factors are calculated, the triangular solution can be performed by forward elimination and back 

substitution. The forward elimination for an assembly tree node can start as soon as the factors corresponding to 
fully assembled dofs are computed. Alternatively, the factorization and forward elimination can be separated by 

starting the forward elimination after all factorization steps are completed. The back substitution, on the other hand, 

must wait until all forward elimination tasks are completed.  

 

Forward Elimination:- 
The forward elimination , involves solving Ly = b for y.Frontal RHS matrices are used to perform forward 

eliminationand back substitution operations efficiently on dense matrix blocks. In addition to the frontal matricesthat 
stores the factors for the eliminated dofs,  RHS frontal matrices stores the loads and partial results for the eliminated 

and remaining dofs. For the forwardelimination steps, the frontal matrix and loads on the corresponding dofs are 

written in ablocked form as follows: 
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Where Fe and Fr store the loads updated with the partial solution on the eliminatedand remaining dofs respectively. 

The right-hand side matrix in Equation (3) is referred to as RHSfrontal matrix. When the forward elimination steps 

are complete, Fe stores Ye, the resultsof the forward elimination for the fully assembled dofs. Fr, on the other hand, 

stores Yr,the contribution from the current assembly tree node to the forward elimination steps atthe parent assembly 

tree node. 
 

For forward elimination, the dense matrix operationson the frontal matrix are given as follows: 
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1

Be


  

YLFF eoffr
u
r   

whereYe is the results from the forward elimination and F
u
r  is the contributionfrom the currently processed tree node 

to the forward elimination steps at the parent tree node. 

 

Backward Substitution:- 
The backward substitution, consisting in solving Ux = y for  x. After forward elimination is finished, the solution 

iscompleted by a backsubstitution. For the back substitution steps, the frontal matrix and RHS vectors can bewritten 

in the blocked matrix form as follows: 
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 whereDe and Dr are displacements corresponding to the eliminated and remainingdofs. The back substitution for 

thecurrent frontal matrix determines De. The entries of Ye are the values computed in theforward elimination phase 

from Equation (4). Dr stores the displacements for theremainingdofs, which are found at an ancestor of the current 

(3)

 

(4) 

(5) 

(6) 
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tree node. XandYrarenotused for the back substitution operations on the frontal matrix.  Matrix operations for the 

back  substitution 

are given as: 
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u
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After the displacement matrix De is computed, it isdisassembled to Drmatrices of the children elements. 

 
Fig.2:- Direction of the dependencies between the factorization and triangular solution tasks for an assembly tree 

data structure. 

 

A partial factorization is performed for each frontal matrix corresponding to an assembly tree node. The 

dependencies between the partial factorization tasks are shown in Fig.2 for an example assembly tree. For the 

factorization, the tree nodes are visited in a postorder tree traversal, for which the children of an assembly tree node 

are visited before the parent node. A single active frontal matrix is used for the numerical factorization for the serial 

factorization. For multithreaded factorization, the active frontal matrices are as many as the number of threads used 
for the factorization if the tree-level parallelism is exploited.  

 

Assembly tree:- 
The assembly tree represents the dependency between the partial factorization tasks  1. A parent node in the 

assembly tree can only be processed after all of its children are assembled to the corresponding frontal matrix. Leaf 

nodes of the assembly tree represent the finite elements, whereas, the internal nodes represent the intermediate 

elements obtained by the assembly and condensation of the children nodes. Once all children of an intermediate 
node are processed, its stiffness matrix can be assembled and fully summed DOFs of the element can be condensed. 

 

Fig.3illustrates the assembly tree using a 4×4 mesh.The gray nodes represent the finite elements in the model. There 

are four subtrees processed by different threads. Here, FE’s are shown in gray color and they are not considered as 

assembly tree nodes. The FE’s are stored at the leaves of the assembly tree. The black nodes shown in Fig.3 are 

assemblytree nodes for a nested dissection matrix ordering. 

 
Fig.3:- Assembly tree structure for the example 4×4 mesh. 

(7) 

(8) 
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Reordering algorithms:- 
The reordering algorithms considered for analysis includes minimum degree algorithms and multilevel k-way 

partitioning algorithms. The minimum degree idea aims to minimize fill locally at each step of the elimination game 

by choosing to eliminate a vertex with the minimum degree in theelimination graph. The minimum degree 

algorithms considered here for analysis includes Approximate Minimum Degree ordering(AMD), Column 

Approximate Minimum degree ordering (COLAMD)and Multiple minimum Degree ordering(MMD).Similarly 

METIS is used for the multilevel partitioning of the graph and thereby minimizes the fill-ins encountered during 

factorization process. Each of this algorithms computes a permutation order and reorders the input sparse matrix 

according to the permutation order.  Reordering not only reduces the amount of fill-ins but also reduces the number 

of computations.   

 

Approximate Minimum Degree ordering:- 

AMD is a set of routines for preordering a sparse matrix prior to numerical factorization. It uses an approximate 
minimum degree ordering algorithm  3 to find a permutation matrix P and the reordered matrix after factorization has 

fewer nonzero entries than the original matrix . 

 

In a graph G, two adjacent vertices u and v are said to be indistinguishable ifadj(u) U adj(u) = adj(v) U adj(v). 

Clearly, if u and v are indistinguishable then they havethe same degree, and if one of them, say u, is eliminated, no 

new fill edges joiningv to any other neighbor of u are created. The degree of v will decrease by onein the remaining 

graph. Thus if one of them is amongthe vertices with minimum degree, then they both are, and after the elimination 

ofone, the other will continue to be among the vertices with minimum degree in thenext elimination graph. For this 

reason, both vertices could be eliminated at thesame step, and numbered consecutively in a minimum degree 

ordering. Two vertices that become indistinguishable at one step of theelimination game remain indistinguishable 

for the rest of the algorithm. In addition,they can be eliminated together whenever one of them is chosen for 
elimination . Thus for purposes of the MD algorithm, the two vertices can be merged into a supernode and treated as 

one vertex for the remainder of the algorithm. This is called mass elimination in MD implementations. The major 

limitation of using MD algorithm is the calculation of exact degrees of vertices. For this reason variants of minimum 

degree algorithms were implemented and AMD is one of them, which is based on approximate degree calculation of 

each vertex according to some heuristics. 

 

The most costly part of the minimum degree algorithm is the recomputation of the degrees of nodes adjacent to the 

current pivot element. Rather than keep track of the exact degree, the approximate minimum degree algorithm finds 

an upper bound on the degree that is easier to compute. For nodes of least degree, this bound tends to be tight. Like 

MD, and unlike MMD, the Approximate Minimum Degree (AMD) algorithmis a single elimination algorithm; 

hence the degree and graph updates are performedafter a single supernode is eliminated.Using the approximate 

degree instead of the exact degree leads to a substantial savings in run time, particularly for very irregularly 
structured matrices. It has no effect on the quality of the ordering. 

 

Column Approximate Minimum Degree ordering:- 

Column approximate minimum degree ordering (COLAMD) method is based on the symbolic LU factorization 

algorithm. At step k, we select a pivot column c to minimize some metric on all of the candidate pivot columns as an 

attempt to reduce fill-in. Columns c and k are then exchanged. The choice of pivot column c is a heuristic. The 

presence of dense (or nearly dense) rows or columns in A can greatly affect both the ordering quality and run time. 

 

Taking advantage of supercolumns can greatly reduce theordering time. In the symbolic update step, all columns j in 

the set Rranalysed. If any two or more columns have the same pattern (tested via a hash function  4 ), they are 

merged into a single super-column. This saves both time and storage in subsequent steps. Selecting a super-column c 
allows us to mass-eliminate all columns [c] represented by the super-column c, and we skip ahead to step k + |[c]| of 

symbolic factorization. 

 

Multiple Minimum Degree ordering:- 

The Multiple Minimum Degree (MMD) algorithm, an improvement over the minimum degree algorithm by 

eliminating maximal independent set of minimum degree (MD) vertices before doing a degree update.When the 

MMD idea is implemented with supernodes instead of single vertices, the assumed current minimum degree might 

become inaccurate. Since external degrees are used for snodes, eliminating ansnode in the independent set K might 

actually cause ansnode outside of K to acquire an external degree lower than that of any of the other snodes in K. In 
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this case, eliminating the snodes of K before other snodes of possibly lower degree will generate a slightly perturbed 

minimum degree ordering. However, in practice the quality of the orderings from the MMD algorithm is usually 

even better than orderings from the MD algorithm with respect to fill. 

 

METIS:- 

Graph partitioning algorithms are also used to compute fill-reducing orderings of sparse matrices. These fill 
reducing orderings are useful when direct methods are used to solve sparse systems of linear equations. A good 

ordering of a sparse matrix dramatically reduces both the amount of memory as well as the time required to solve 

the system of equations. Furthermore, the fill-reducing orderings produced by graph partitioning algorithms are 

particularly suited for parallel direct factorization as they lead to high degree of concurrency during the factorization 

phase. 

 

The algorithms implemented in METIS are based on the multilevel graph partitioning paradigm  6. The  multilevel 

paradigm, illustrated in  6, consists of three phases: graph coarsening, initial partitioning, and uncoarsening. In the 

graph coarsening phase, a series of successively smaller graphs is derived from the input graph. In the initial 

partitioning phase, a partitioning of the coarsest and hence, smallest, graph is computed using relatively simple 

approaches such as the algorithm developed by Kernighan-Lin  6.The three phases of multilevel k-way partitioning is 

shown in Fig.4. Since the coarsest graph is usually very small, this step is very fast. Finally, in the uncoarsening 
phase, the partitioning of the smallest graph is projected to the successively larger graphs by assigning the pairs of 

vertices that were collapsed together to the same partition. Because of the presence of graph partitioning METIS 

provides much more improved results than other reordering methods , especially for three dimensional models of 

large number of nodes. 

 
Fig.4:- Three phases of multilevel k-way partitioning. 

Test  Problems:- 

This section contains the various test problems as well as the results including the time for factorization and amount 

of fill-ins occurred after factorization . 

 
Fig.5:- Model 1. 
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Properties of Model 1:- 

Nodes 3244 

2D Elements 2686 

Degrees of freedom 16206 

Matrix size 52572264x52572264 

 
 

 
Fig.6:- Model 2. 

 

 

Properties of Model 2:- 

Nodes 3875 

2D Elements 2778 

Degrees of freedom 17220 

Matrix size 3606916x3606916 

 

 

 
Fig.7:- Model 3. 

 

Properties of Model 3:- 

Nodes 5616 

3D Elements 4000 

Degrees of freedom 15768 

Matrix size 88553088x88553088 
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Fig.8:- Model 4 

 

Properties of Model 4:- 

 

Corresponding to each model the amount of fill-in and cholesky factorization time is given in  

 

Table 1. Fill-ins in model 2 is very large compared to other three models this is because of its larger 

degrees of freedom which leads to biggermatrices. For all four models fill-ins before reordering is very high and the 

various reordering algorithm is then applied to reduce this fill-in. It is found that METIS generated better results 

compared to other three methods if the model size is increased. Similarly factorization timeis also analyzed and it 

shows that cholesky factorization takes more time for its computation and is not suitable for those models which are 
larger in size.  

 

Table 1:-Cholesky factorization time and fill-in. 
 

For three dimensional models of increasing size the effect of various reordering techniques are shown in  Fig .9. 

Nodes 6717 

1D Elements 
2D Elements 

1242 
2621 

Degrees of freedom 16122 

Matrix size 108291474x108291474 

MODEL Fill-ins Before 

reordering 

Reordering Routine 

 Fill-in Fact. 

Time 

AMD COLAMD MMD METIS 

   Fill-in Fact. 

Time 

 

Fill-in 

Fact. 

Time 

Fill-in Fact. 

Time 

Fill-in Fact. 

Time 

Model 1 4705284 7s 1798164 458s 2198764 212s 1758900 448s 1976158 6s 

Model 2 26623581 37s 2604462 576s 3190173 368 2472096 547s 2143392 13s 

Model 3 7712401 5s 3103219 633s 3453228 448s 3628558 618s 2748391 10s 

Model 4 7897966 6s 2070945 483s 2559728 297s 2004034 438s 1790177 10s 
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Fig .9:-  Three dimensional model fill-ins. 

Due to the limitations of cholesky factorization method ,multifrontal method with multithreading feature is 

used. The factorization time in multifrontal method is shown inTable 2. 

Table 2:-Multifrontal solution time 

The factorization time using multifrontal method is more effective than cholesky factorization. This is because of its 

multithreading feature in assembly tree levels. Therefore multifrontal method can be used for solving models of 

larger dimension.  

 

Conclusion:- 
In this thesis the various matrix reordering algorithms, their time and space complexity, multifrontal based direct 

solution schemes for large order linear systems were studied. The reordering algorithms includes Approximate 

Minimum Degree ordering (AMD), Column AMD (COLAMD), Multiple Minimum Degree ordering (MMD) and 

METIS. These reordering algorithms generates a permutation order for the algebraic system of equations formed 

based on engineering parameters. The reordering algorithm which is best suited for numerical model of practical 

launch vehicle structure is identified based on its complexity analysis. For one dimensional models  of smaller 

number of nodes it is analysed that AMD is more suitable,  Column AMD  is  more suitable for smaller two 

dimensional models  and MMD is the best for three dimensional models of smaller sizes. But in the case of models 

of larger sizes ie. For 1D, 2D, 3D and also for those models having all these types of elements METIS is found to be 

best routine for FEASTSMT. This is because of the proper partitioning of graph structure. It is concluded that METIS 
reduces amount of fill-ins as well as the time required for factorization. In the case of cholesky factorization the 

amount of time required for partial factorization increases with respect to the model size but in the case of 

multifrontal method due to the presence of multithreading feature it considerably reduces the amount of time for 

factorization. Thus METIS routine along with multifrontal method reduces the memory requirement as well as the 

overall execution time for factorization. 
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