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Taking into account the color-electrostatic and magnetic energies due 

to  one gluon exchange(OGE) interaction, along with that due to the 

residual quark-pion coupling arising out of the requirement of the 

chiral symmetry and due to necessary centre-of–mass(c.m) motion 

and the interactions between the constituent quarks arising out of 

Goldstone-Boson exchange(GBE), which are considered to play an 

important contributing to the energy of the Baryon core, were not 

taken into account in our earlier works, the baryon resonance spectra 

are calculated in a chiral symmetric “Potential Model of independent 

quarks”. The effective potential representing Phenomenologically  the 

non-perturbative gluon interactions  including gluon self-couplings, is  

chosen with equally mixed scalar and vector parts in a linear form. 

The calculated values of baryon resonance spectra are found to agree 

reasonably well with the experiment .It is found that OGE corrections 

require a value of quark gluon coupling constant         which is 

consistent with the idea of treating OGE effects in low order 

perturbation. 
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Introduction:-  
The present work we prefer to work based on the Dirac equation with purely phenomenological individual quark 

potential in an equally mixed scalar – vector potential in linear form         

                              

                                                    Vq (r ) = 
 

 
 (1 +   

 ) (a
2 
r + V0 ) ,  a > 0       (1.1)    

 

This model was found to be quite successful in describing the static electromagnetic properties, such as the magnetic 

moments, axial vector coupling constant ratios for beta decay processes, and the charge radii of octet baryons, as 

well as electromagnetic form factors of nucleons. This model is also adopted to study successfully the mass and 

decay constant of the ( q q  ) pion [1]. This model was further employed to explain reasonably well the mass 

spectrum of octet baryons [2], taking into account the contributions due to the color electric and magnetic energies 

arising out of the residual one gluon exchange (OGE) interaction, along with that due to the residual quark – pion 

coupling arising out of the requirement of the chiral symmetry and due to the necessary center-of-mass (c.m) 

motion.  But in this work the interactions between the constituent quarks arising out of Goldstone –boson – 

exchange (GBE),which are considered to play an important role in contributing to the energy of the Baryon core, 

were not taken into account. Therefore in the present work we intend to incorporate the GBE contributions with our 

model in a perturbative manner to study the mass-spectra of light and strange baryons. Here our aim is to provide a 

Corresponding Author:- S. Panda. 

Address:- Department of Physics, Berhampur University,Berhampur-760007,Odisha, India. 
 

http://www.journalijar.com/


ISSN: 2320-5407                                                                                      Int. J. Adv. Res. 5(7), 906-916 

907 

 

unified description of the ground states and the excitation spectra of baryons in the framework of this quark model, 

taking into account the contributions from the OGE and GBE interactions between the constituent over and above 

the centre-of-mass motion. We are mainly interested to see here the applicability of this model to the study of the 

mass spectra for some baryon resonances of the particle data group with three and four-star status [3]. 

 

In the present model, baryons are considered as systems of three constituent quarks with dynamical masses, which 

are confined in a first approximation by an effective linear potential and are subjected to interactions due to the OGE 

and GBE. For the inclusion of the GBE contributions in this model we have followed the guidelines of the chiral 

constituent quark models suggested by Glozman et al [4-6]. However we use these contributions in a perturbative 

manner along with the OGE contributions. On this context we may point that we consider the constituent quarks of 

flavours u, d, s with masses considerably larger than the corresponding current quark masses, so that underlying 

chiral symmetry of QCD is spontaneously broken (SBCS). As a consequence of SBCS at the same time Goldstone 

bosons appear, which couple directly to the constituent quarks [4 ,6 ,7 ,8 ,9 ]. Hence Beyond the scale of SBCS, one 

is left with constituent quarks with dynamical masses related to ‹ q q› condensates and with Goldstone bosons as the 

effective degrees of freedom. This feature, that in the Nambu – Goldstone mode of chiral symmetry, constituent 

quark and Goldstone boson fields prevail together, is well supported, e.g by the σ model [10] or the Nambu-Jona-

Lasino (NJL) model [11]. In the same framework also the spin and flavour content of the nucleon are naturally 

resolved. 

 

The work is organised in this paper as follows. In section -II we outline the potential model with the solutions for the 

relativistic bound states of the individually confined quarks in the 1s,2s, 1p ,1d  and 1f states of baryons. Second part 

of the section -II provides the energy corrections due to the spurious center – of –mass motion are discussed and a 

brief account of the corrections due to the GBE interactions between the constituent quarks is provided in a 

generalized ways. This section also deals with a further correction to the baryon masses due to colour- electric and 

magnetic interaction energies originating from the hopefully weak residual OGE interactions, treated perturbatively. 

Finally, in section -III we present the results for the mass-spectra of three- four-star resonances of baryons along 

with those for the masses of the ground states and excited states of light-strange baryons, which are in reasonable 

agreement with the experimental values. This section also embodies the conclusion of the present work.   

 

Relativistic Potential Models:- 
From a phenomenological point of view we assume that the constituent quarks in a baryon core are independently 

confined by an average flavor – independent relativistic potential of the form given in equation (1.1). Hence, to a first 

approximation, the confining of the interaction represented here by an average flavor – independent potential is 

believed to provide zeroth order constituent quark dynamics inside such baryons . Here a and V0 are the potential 

parameters. We further assume that the constituent independent quarks or antiquarks obey the Dirac equation with 

potential Vq( r ) implying thereby a Lagrangian density of zeroth order as 

 

                                 
 (x) =  q(x ) [ 

 

 
  μ

  μ – mq – Vq (r ) ] Ψq(r )                            (2.1) 

 

 Which  leads to Dirac equation for individual quark of mass mq as 

 

                                    [  0
Eq -  . p - mq – Vq ( r ) ] Ψq ( r ) = 0                                 (2.2) 

 

  The Dirac eqn (2.2) derivable from   
     can be written in two component form as  

 

                                     ( r ) =     (

         

 

   r̂           

 

)      (r)                                                   (2.3)    
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Here the normalized spin angular part  

 

                                (r)  = 

,l sm m

 l, ml,  
 

 
, ms │j , mj   

    

 

                                (2.4)                       

                   

And      is the overall normalization constant .The reduced radial part      (r ) of the upper component of  Dirac 

spinor Ψnlj satisfies the equation 

 

                                           
  (r) + [ λnl{   

 
 – mq – V(r )} - 

       

   ]      = 0                      (2.5) 

 

              Where                                =    
 

+ mq                                                                (2.6)         

 

The present model can in principle provide the quark orbitals     ( r ) and the zeroth order binding energies of the 

confined quark for various possible eigen modes through eqns. (2.2) . However, the ground state baryons, in which 

all the constituent quarks are in the lowest eigen states, the corresponding quark orbitals can be expressed as  

 

                                                       Ψ1s( r ) =     

(

 
 

    r   

   p         

   
)

 
 

                                     (2.7)     

 

Where  1s( r ) is the radial angular part of the upper component Ψ1s( r ) and is given by    

 

                                                     1s( r ) = 
 

√  

       

 
 

 

For the ground state eqn (2.5) reduces to 

 

   
  (r) + [    (E1s - mq – a

2
r – V0)] f1s(r) = 0                (2.8) 

 

which can be transformed into a convenient dimensionless form      

 

                                                  
   (    +   1s –  ) f1s (     = 0                                           (2.9) 

 

Where     
 

   
) is a dimensionless variable with    = ( λqa

2
 )

-1/3 

 

                                                 and  1s = (
   

  )1/3
 [   

 - mq –V0]                                      (2.10)   

 

The eqn (2.9) is the basic eigen value equation, which can be solved as follows: with z =     q,  fq = f1s and  q =  1s   

eqn.(2.9) reduces to the Airy equation 

 

                                                                       
   (   – z fq(z ) = 0                                       (2.11) 

 

The solution fq(z) of equation (2.11) is the Airy function Ai(z ). Since at r = 0 we require fq (r) =0, we have Ai(z ) = 0 

at z = -  q. If zq are the roots of the Airy function such that Ai (zn) = 0, then we have z = -  q = zn .For the ground 

state of quarks or antiquarks, the  1s value is given by the first root z1 of the airy function so that  

                                                          q =  1s = - z1                                                      (2.12) 

the value of this root z1 = -2.33811. 
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The eigen value  q and fq by W.K.B method which can yield a solution (2.9) as per [2] in the form 

 

                                             fq (  ) = [ Aq /   q –  )
1/4

 ] cosηq                                           (2.13) 

 

                                        where   ηq =  ∫    
 

 
( q -   )-1/ 2

 - 
 

 
                                            (2.14) 

 

                                                       and  q =  
 

 
 ( 

 

 
 )

2/3
                                                          (2.15)   

 

and Aq = normalization constant =   q /    )
1/2

. Now the individual quark binding energy Eq of zeroth order in 

ground state can be obtained from eqn.(2.10) through the relations 

 

                                                   Eq =   + V0 + a                                                             (2.16) 

                                               1s)
3
 = 

  

   a
3  

   =  
       

 
   

      

                                                                        

                                                   
   = 

              

 
   

           

                                                                   

                                          
  =   

  + 
        

 
  

   =    
  + b   

      

                                                                        

                                                    Where b = 
        

 
                                                     (2.17) 

                                                    xq
4 
+ b   

    -   
  = 0                                                     (2.18)  

 

Then using  q value from the solution of eqn.(2.9) and „b‟ from (2.36) with known potential parameters V0, a and 

mq ,the eqn.(2.17) can be solved to get an unique value of    , which when substituted in eqn.(2.16) yield the 

independent quark binding energy Eq . The independent quark wave function Ψq( r ) given by the eqn.(2.7) and the 

corresponding energy Eq describe the relativistic bound states of the confined quarks of baryons. 

For ground state, the quark wave function can also be written in two component form as  

 

                                          Ψq ( r ) = Nq   

(

 
 

   r   

  p
  

   r   

)

 
 

 χ                                           (2.19)       

                  Where λq = Eq +       

  

and                                         q( r ) = 
       

 
   

                                                            (2.20) 

 q( r ) is the normalized radial angular part of Ψq( r ).The overall normalization constant Nq of   Ψq( r ) In the 

equation (2.19) can be obtained in a simplified form as 

 

                                                
  =  

        

            
                                                             (2.21) 

 

Solution for the quark binding energy    
 

 in zeroth order corresponding to the ground state of the baryon 

immediately leads to the ground state mass of the baryon core in zeroth order as 

 

                                                   
  =      = 

 
q

    
 

                                                                            (2.22) 

 

In this model eqn.(2.5) is then solved for 2s , 1p states to obtain the individual quark binding    
 

     
 

 respectively, 

with the help of a standard numerical method which yields  2s= 4.08741,  1p = 3.3611. These values lead to the 
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corresponding masses of the excited states of baryon core in zeroth order in the same way as in case of ground state. 

The overall normalization constant Nnl of Ψnlj( r ) appearing in eqn.(2.3) is of the form 

 

                     
  = [ [ 1+     

  
 -    – V0 – a    nl] / λnl ]

-1
                                              (2.23)   

 

where     nl  is the expectation value of r with respect to  nlj( r ) 

 

2 Energy correction to baryon masses:- 

The contribution of quark binding energy to the mass of the baryon core given by the eqn.(2.22) needs correction 

due to center -of-mass motion, Goldstone boson exchange (GBE) interactions and quark-gluon interaction which 

need to be calculated separately in order to obtain the physical mass of the baryons. 

 

2A Centre – of-Mass Correction:- 

Due to the mass of the center-of-mass of the three quark system, there would be sizeable correction to the energy of 

baryons. Our shell type relativistic quark model is not transitionally invariant which means the independent motion 

of the quarks inside the hadron-core does not lead to a state of definite total momentum, as it should to represent the 

physical state of baryons. The problem appears in the same way in nuclear physics in case of He
3
 and also in MIT 

bag model [12 ] and therefore has to be resolved accordingly [13]. Here we adopt the prescriptions of Wong [14] 

and other workers, which is just one way of accounting for the centre-of-mass motion. In such a prescription[x] , the 

physical mass   
  of the baryon core is related to the relativistic energy    of the three quark states as 

 

                                                              
   = (   

  -     
   )

1/ 2
                                     (2.24) 

Where     = 

q

    ,  p
 

 is the centre - of – mass momentum and     p
 

 

    is evaluated with                         

usual approximation as          p
 

 

    = 

q

    p
 

 q                                               (2.25)                                                              

where    p
 

 

  is the average value of the square of the individual quark momentum taken over /   

 

 single -quark 

states and is given in this model as  

 

                              p
 

 

    =  
                    –                             

             
                       (2.26) 

 

In the same way, one can find the expression for the centre of mass corrected mass of the bare baryon core as 

 

                                                = (  (  
 ) 

2
 - 

q

   p
 

 

    )
1 / 2

                                                 (2.27) 

 

which provides the necessary c.m correction to the energy as  

 

                         )c.m  =     -   
  )  = (  (  

 ) 
2
 - 

q

   p
 

 

    )
1 / 2

  -                             (2.28)   

 

 

2B Correction due to Goldstone Boson Exchange interaction  (GBE):- 

The SU(3)L   SU(3)R chiral symmetry of QCD  Lagrangian´s spontaneously broken down to SU(3)v by the QCD  

vacuum [ in large Nc limit it would be U(3)L   U(3)R   U(3)v].There are two important generic consequences of 

SBCS. The first one is an appearance of the octet of pseudoscalar mesons of low mass π , k ,η which represent the 

associated approximate Goldstone bosons (in the large Nc limit the flavour singlet state η
´
 should be added ).The 

second one is that valence (partially massless) quarks acquire a dynamical mass, which has been called historically 
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constituent mass. Indeed, the nonzero value of quark condensate,   q q     - (250 Mev)
3
, itself implies at the 

formal level that there must be at low momenta a rather big dynamical mass, which should be a momentum  

dependent quantity. Such a dynamical mass is now directly observed on the lattice [15]. 

 

Thus the constituent quarks should be considered as quasi –particles whose dynamical mass at low momenta comes 

from the non-perturbative gluon and quark-antiquark dressing. The flavor- octet axial current conservation in the 

chiral limit tells that the constituent quarks and Goldstone bosons should be coupled with the strength g = 
   

  
 ,[16] 

which is a quark analog of the famous Goldberger-Treiman relation. It has been recently suggested that in the low 

energy regime, below the chiral symmetry breaking scale   1Gev, the low lying light and strange baryons should be 

predominantly viewed as systems of three constituent quarks with an effective   confining interaction mediated by 

GBE between the constituent quarks [17]. 

 

The coupling of Goldstone bosons ( π , η & k mesons ) to the constituent quarks arising from SBCS in QCD can be 

taken into account in a perturbative manner in the same way as it has been done in the study of the effect of quark-

pion coupling in the CBM [18].Here the fields of the Goldstone bosons may be treated independently without any 

constraint and their interactions with the quarks can be assumed to be linear as it is done in case of pion[ 19]. 

 

Following the Hamiltonian technique [20] as has been used in CBM, we can describe the effect of Goldstone 

bosons ( i.e meson, χ = π ,η , k ) in low order perturbation theory as follows. The pionic self –energy of the baryons 

can be evaluated with the help of the single-loop self energy diagram  (fig (2.1 ) as  

 

                       

B

 ( EB )  = 

K

  
'B

  
        

         
                                                              (2.29) 

   where  

K

 =
j ∫

  k
       . Here j corresponds to the pion-isospin index and B

´
 is the intermediate baryon state. 

And     
( K ) is the general baryon-pion absorption vertex function obtained in this model as 

 

                   
    ( K ) = i  √    

      

  
  

      

 √    
   

   

 k̂  )     
                                      (2.30)    

 

where
 

   

and      are spin and isospin matrices and   
  = k

 

+   
  . The form factor u( k) in    this model can be 

expressed as  

 

u(k) = 
   

 

     
 [ ( 2  +   )      (│ k │r  )   +          (│ k │r  )   +         (│ k │r ) / k )   ]    (2.31) 

 

Where    (│ k │r ) and    (│ k │r ) represent the zeroth and first order spherical Bessel functions, respectively.The 

double angular brackets stand for the expectation values with respect to   (r ). In this model the axial vector 

coupling constant    for the beta decay of the neutron is given by  

 

                                
  =   

 

 
 (  

             

              
 )                                                    (2.32) 

 

Now, with the vertex function   
     k ) at hand, it is possible to calculate the pionic self- energy for various 

baryons with appropriate baryon intermediate states contributing to the process. For degenerate intermediate states 

on mass shell with   
  =    

  the self energy correction becomes 

 

                                   )π = 
B

  (   
     

      
  ) =  - 

',K B


         

  
                           (2.33)     
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Now using eqn ( 91 ), we find  

 

                                                            )π  = - 
  

 
 

'B

         
    

                                             (2.34) 

 

   Where        = (                  
   

  
   

 )                                                                   (2.35) 

 

                                                   and       = 
 

    
 ∫

             

  
 

 

 
                                     (2.36)  

 

For intermediate baryon states B´ we consider only the octet and decuplet ground states. The self-energy       )π  

for different baryons can be computed by using the values of       and      [2 ].The self – energy        )π  

calculated here contains both the quark self energy fig(2.2a) and the one –pion exchange contributions fig (2.2b) . It 

must be noted here that this method ignores to a large extent the short range part of pion exchange interaction, which 

is of crucial – importance for splittings. Only when the complete infinite set of all radially excited intermediate state 

B´is taken into account, the method could be adequate[21]. For example, the meson exchange contribution to the N-

   difference will become much larger. It will also be strongly enhanced when meson exchange contribution is 

strongly dependent on the radious of the bare wave function i.e on the type of confinement. This dependence has not 

been studied in the present work. 

 

The corrections due to η – exchange and kaon exchange interactions between the constituent quark can be calculated 

following same approach as we have just used in case of pion. Thus in general, one can write energy corrections due 

to GBE interactions as  

 

                                                     ) χ = - 
  

 
 

'B

 CBB´      
                                                     (2.37) 

 

 Where CBB´ is given by eqn ( 2.35 ) 

 

And                                              Iχ = 
 

    
   ∫

           

      
 

 

 
                                            (2.38) 

 

Following the discussions given in ref [22] the baryon-meson coupling constant       . Pion exchange interaction 

acts only between light quarks where as η- exchange is allowed in all quark pair states .The kaon exchange 

interaction takes place in u   s and d   s pair states.  

 

II.2C. One Gluon Exchange Correction:- 

The individual quarks in a baryon core have been considered so far to be experiencing the only force coming from 

the average effective potential       in equation (2.1), which is assumed to provide a suitable phenomenological 

description of the non-perturbative gluon interaction including the gluon self-couplings. All that remains inside the 

quark core is the hopefully weak one-gluon-exchange interaction provided by the interaction Lagrangian density 

 

                                                        
 
 =  

1 



    
  

(x)   
                                                             (2.39) 

 

Where   
     are the eight – vector gluon fields and   

  
(x) is the ith quark color current. Since at small distances the 

quarks should be almost free, it is reasonable to calculate the energy shift in the mass spectrum arising out of the 

quark interaction energy due to their coupling to the colored gluons, using a first order perturbation theory. Taking 

into account the specific quark flavour and spin configurations in various ground state baryons and using the 

relations 
  (   

  )
2
  =  

  

 
   and 

   
    

   i j  =  - 
 

 
  for baryons, in general one can write the 

energy correction due to one - gluon- exchange as per our earlier work[2]. 
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    =    (       

  +       
  +       

  )                             (2.40) 

                                                       
      (       

  +       
  +       

  ) 

 

where  aij  and  bij are the numerical coefficient depending on each baryons listed in Table -2.1 and the  terms    
   

 

are 

                                            
  = 

                    

                          
                                                        (2.41) 

                                                 
  

                   

                          
    

       (2.42) 

 

From table 2.1 one can note that the color – electric contribution for the baryon masses vanishes when all the 

constituent quark masses in a baryon are equal, where as it is non-zero otherwise. However, even in the case of 

strange baryons, it would subsequently be seen that the colour – electric contribution is quite small. Therefore, the 

degeneracy among the baryons is essentially removed the spin – spin interaction energy in the colour magnetic part. 

 

Table-1:-The coefficients aij and bij used in calculation of the color- electric and  color –magnetic energy 

contributions due to one-gluon exchange:                                                               

Baryons                         

N 0 0 0 -3 0 0 

  0 0 0 3 0 0 

  1 -2 1 -3 0 0 

Σ 1 -2 1 1 -4 0 

Σ
*
 1 -2 1 0 -4 1 

Ξ 1 -2 1 1 2 0 

Ξ
*
 1 -2 1 0 2 1 

Ω
 -
 0 0 0 0 0 +3 

 

Table 2:-The calculated values of     
   

 and    , Required respectively for OGE and GBE Contributions in Mev . 

    
     

     

    
     

     
     

     
     

           

1S 73.85 64.63 62.90 375.67 402.20 443.76 431.90 26.29 20.49 

2S 5.47 5.16 5.20 279.25 291.54 306.08 43.81 1.83 1.38 

1P 13.72 12.70 12.55 328.93 345.20 364.96 124.88 6.42 4.90 

1D 4.61 4.34 4.31 274.28 285.66 298.96 40.26 1.65 1.23 

1F 2.11 1.99 1.96 235.97 244.78 254.89 16.47 0.54 0.390 

 

Table-3:-GBE Corrections         ( χ = π, η, K )  for the 1S, 2S, and 1P States of Light-and Strange- 

Baryons in Mev. 

LS Multiplet                                                    

         
         

         
   Total  

N -236.60 0 313.30 0 0 313.30 76.70 

∆ -136.98 0 284.12 0 0 284.12 147.14 

  -149.43 199.46 1 14.86 46.92 0 61.78 111.81 

Σ -83.02 188.88 14.86 46.92 0 61.78 167.64 

Σ
* 

-83.02 188.88 14.86 46.92 0 61.78 167.64 

Ξ -37.35 84.99 0 46.91 74 .06 120.97 168.61 

Ξ
* 

-37.35 84.99 0 46.91 74.06 120.97 168.51 

Ω
 -
 0 0 0 0 222.18 222.18 222.18 

    
 

 

 

         
-23.99 0 -204.37 0 0 -204.37 -228.30 

   
 

 

 

          

 

 

-68.41 

0 -5.08 0 0 -5.08 -73.49 
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, ∆ (1600)         -13.89 0 -70.88 0 0 -70.88 -84.77 

   
 

 

 
, ∆ 

(1620): 

 

   
 

 

 
, ∆ 

(1700) 

 

-39.60 

0 57.94 0 0 57.94 18.34 

   
 

 

 
, Λ 

(1405): 

 

    
 

 

 
, 

Λ(1520) 

 

-43.20 

-216.58 -2.19 -6.32 0 -8.51 -268.29 

   
 

 

 
, Λ 

(1660)
 

-15.16 -152.59 -6.40 -20.20 0 -26.60 -194.35 

   
 

 

 
, Λ 

(1670): 

 

   
 

 

 
, Λ 

(1690) 

 

-43.20 

-2.22 -2.19 -6.32 0 -8.51 -53.93 

   
 

 

 
, Σ 

(1660) 

-8.42 -99.51 -6.40 -20.20 0 -26.60 -134.53 

   
 

 

 
, Ξ 

(1820) 

-10.80 -49.47 0 7.18 0 7.18 -53.09 

 

Table-4:-Energy Corrections         ,        ,        and Physical Masses (   ) of 1S, 2S and 1P States of 

Light- and Strange Baryons in MeV. 

        
                           

LS Muliplet         
        

  Total  Cal. Expt. 

N 1068.83 -94.75 -110.78 0 -110.78 76.70 940 940 

∆ 1068.83 -94.75 110.78 0 110.78 147.14 1232 1232 

Λ 1198.21 -90.75 -110.78 7.51 -103.27 111.81 1116 1116 

Σ 1198.21 -90.75 -92.34 7.51 -84.82 167.64 1190.27 1193 

Σ
*
 1198.21 -90.75 101.56 7.50 109.06 167.64 1384.16 1385 

Ξ 1327.60 -87.60 -97.81 7.51 -90.30 168.61 1318.31 1321 

Ξ
*
 1327.60 -87.60 96.08 7.50 103.58 168.61 1512.21 1533 

Ω
 -
 1456.95 -85.04 94.35 0 94.35 222.18 1688.44 1672 

    
 

 

 

         
1798.69 -122.12 -8.21 0 -8.21 -228.36 1440.00 1440 

   
 

 

 

          

 

 
 

 

 

          

1722.12 -101.04 -20.58 0 -20.58 -73.49 1527.01 1527 

   
 

 

 
, ∆ (1600) 1798.69 -122.12 8.20 0 8.20 -84.77 1600.00 1600 

   
 

 

 
, ∆ (1620): 

 

   
 

 

 
, ∆ (1700) 

1722.12 -101.04 20.58 0 20.58 18.34 1660.00 1660 
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, Λ (1405): 

 

    
 

 

 
, Λ(1520) 

1850.64 -99.51 -20.58 1.74 -18.84 -268.29 1464.00 1462 

   
 

 

 
  Λ (1600) 1921.94 -120.51 -8.21 1.13 -7.08 -194.35 1600.00 1600 

   
 

 

 
, Λ 

(1670): 

 

   
 

 

 
, Λ (1690) 

1850.64 -99.51 -20.58 1.74 -18.84 -53.93 1678.36 1680 

   
 

 

 
, Σ (1660) 1921.94 -120.50 -7.59 1.13 -6.64 -134.53 1660.45 1660 

   
 

 

 
,  Ξ (1820) 1979.16 -98.20 -19.12 1.74 -17.38 -53.09 1810.47 1820 

 

Result and conclusion:- 
In the previous chapter it has been shown that the zeroth order mass   

  =    of ground state baryon arising out of 

the binding energies of the constituent quarks confined independently by a phenomenological average potential 

      which presumably represents the dominant non-perturbative multigluon interactions is subjected to certain 

corrections due to the residual quark gluon interaction and GBE interaction between the constituent quarks, together  

with that due to the spurious center-of-mass motion. All of these corrections can be treated independently, as though 

they are of the same order of magnitude, so that the physical mass of baryon can be obtained as 

 

             =   
  +         +        +          

  +       
        (3.1) 

 

where          is the c.m correction to baryon mass (eqn. 2.28),        with χ = (π, η, k) is the GBE correction 

(eqn. 2.37), and [      
  +       

 ] is the colour magnetic and electric interaction energies arising out of OGE 

interactions [eqn. (2.41) and eqn.(2.42)]. 

 

The quantitative evaluation of the zeroth order energy   
  of the baryon core, the c.m correction         , the GBE 

correction        and OGE correction       with in the frame-work of the model primarily involves the potential 

parameters (a,   ), the quark masses    and the corresponding binding energy    
 

 along with relevant model 

quantities. In the present model, The quark masses    and the potential parameter „a‟ are suitable chosen and 

different values of the potential parameter “   
   ” are appropriately fixed for 1s, 2s, and 1p states of baryons so as to 

obtain a reasonable fit to the baryon resonance spectra taking into account the energy  corrections due to GBE and 

OGE interactions between the constituent quarks together with that due to c.m motion. Here, we choose the quark 

masses    and the potential parameter „a‟ as (  =    ,   )  =  (278, 447)Mev and  „a‟ = 200 Mev and fix the 

values of the parameters    
   

 

(   
      

      
                             (3.2) 

 

For 1s, 2s , & 1p baryon states respectively. With these values of the parameters the solution of the energy eigen 

values of eqn (2.5) yields the individual quark binding energies    
 

 for 1s, 2s, and 1p states respectively as   

                                          (    
  =     

       
      =  (346, 286.3)MeV 

                                                       
  =     

       
      =  (598, 713.62)MeV                   (3.3)               

                                        
  =     

       
     =   (574, 692.3)MeV 

We then evaluate with the help of a standard numerical method and calculate the term    
   from (2.41) and (2.42) 

which are necessary for computing the corrections due to OGE and GBE interactions respectively. These 

expressions are calculated for 1s, 2s and 1p states and are displaced in Table ( 2 ). 

 

Indeed, in the chiral limit there is only one coupling constant for all Goldstone bosons. Due to explicit chiral 

symmetry breaking the coupling constant for π, η and k may become different. 
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However, in order to prevent a proliferation of the free parameters we try to keep the number of free parameters as 

small as possible and assume a single phenomenological pion coupling constant     = 0.283 for all mesons (π, η, k) 

and this value is used here to compute GBE corrections. The calculated results for the contribution from the GBE 

interaction to baryon resonance spectra are presented in Table (3). The energy corrections and the results obtained 

for the baryon resonance spectra are displaced in Table (4 ). The calculated values of baryon resonance spectra are 

found to agree reasonably well with the experiment. It is found that the OGE corrections require a value of quark-

gluon coupling constant    = 0.50 which is consistent with the idea of treating OGE effects in low order 

perturbation theory. Extension of this work to the study the mass spectra for other four
*
 and three star

*
 resonances of 

the particle data group. 
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