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Here we reported the synthesis of CdSe quantum dots (QDs) sensitized 

Zr-1,3,5-benzene tricarboxylic acid (ZrBTC) metal-organic frameworks 

(MOFs) hetero-structure. The photo-catalytic activity of CdSe QDs-

ZrBTC MOFs is examined for Phloxine B dye degradation under 

visible light illumination. The CdSe semiconductor QDs presence on 

ZrBTC MOFs is confirmed by x-ray diffraction (XRD), field emission 

scanning electron microscopy (FESEM) and transition electron 

microscopy (TEM) characterizations. The XRD spectrum of CdSe QDs 

demonstrates the cubic crystalline phase for CdSe QDs. The high 

crystallinity and bulk phase of ZrBTC MOFs is evinced by XRD 

pattern of ZrBTC. Surface morphological (FESEM and HRTEM) 

observations realise that ZrBTC MOFs formed into 2D sheets and 

sensitized with CdSe QDs. The UV-visible absorption spectrum reveals 

that the CdSe QDs-ZrBTC hetero-structure absorbs the light at 520 nm 

wavelength. The 2D ZrBTC MOFs provide platform for CdSe QDs to 

hinder the effective electron-hole pair recombination under photo-

excitation. The photo-catalytic Phloxine B dye degradation experiments 

reveals that the CdSe QDs-ZrBTC hetero-structure demonstrated 

enhanced potential to make use of visible light absorption of CdSe 

semiconductor quantum dots in the solar spectrum.   
 

                  Copy Right, IJAR, 2017,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
One of the attractive research fields in recent years is the photo-assisted catalysis using semiconductors as an 

advanced oxidation process for the elimination of many organic pollutants in wastewater systems[1]. Photo-catalyst 

based degradation process has been considered as an alternative technique among various physical[2], chemical[3] 

and biological[4] techniques for water treatment due to its advantages over the traditional techniques, such as 

simplicity, quick oxidation, high efficiency and no formation of polycyclic products. Using semiconductors such as 

metal oxides and sulfides, such as TiO2[5], ZnO[6], Fe2O3[7] and WO3[8], for photo-catalytic decolorization of 

pollutants has received much attention because of possible practical applications. In the past decades there has been 

a growing interest in the synthesis of various sizes and shapes of semiconductor material nanoparticles as doped 

with different dopants[9-11].   
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Especially, the semiconductor nanocrystals, the so-called quantum dots (QDs), well-known multifunctional 

materials, are a newly emerging nanomaterial for degradation of pollutants [12-14]. S.Muthulingam et al [12] 

synthesized carbon quantum dots/N-doped zinc oxide (CQD/N-ZnO) photo-catalyst successfully and the excellent 

efficiency of the photo-catalyst towards degradation of dyes was perceived. H.R. Rajabi et al [13] applied a simple 

and efficient chemical precipitation method for the synthesis of pure and iron doped zinc sulfide quantum dots as 

novel semiconductor nanoparticles and malachite green was degraded by photo-catalytic process. Zhang et al[14] 

synthesized highly ordered TiO2 nanotube arrays (TiO2-NTAs), with a uniform tube size on titanium substrate by 

means of  reoxidation and annealing and also fabricated a composite structure, by assembling CdSe quantum dots 

into TiO2-NTAs via cyclic voltammetry electrochemical deposition and its photo-catalytic activity is measured for 

methyl orange by varying the amounts of CdSe QDs. Furthermore, QDs get more and more attention because their 

confinement by the excited electrons and holes leads to optical and electronic properties different from those in bulk 

semiconductors [15]. Moreover, QDs as new semiconductor particles in the nanosized scales possess a higher 

surface area-to-volume ratio than their bulk counterparts, and thus allows for greater photon absorption on the 

photo-catalyst surface [16]. Furthermore, recombination of the electron–hole pair within the semiconductor particle 

drastically reduces as particle size decreases [17]. Therefore, the nanoscale semiconductor is expected to have higher 

photo-catalytic activity than its bulk. This material has been proved as a better photo-catalyst due to rapid generation 

of electron–hole pairs with photo-excitation as it is a direct wide band gap semiconductor material [18]. 

Furthermore, it possesses high negative reduction potential of excited electrons due to its higher conduction band 

(CB) position in aqueous solution as compared to other extensively studied photo-catalysts. 

 

Metal-organic frameworks (MOFs), also known as nanoporous coordination networks, are highly ordered, that are 

derived from metallic centers bonded by terminal organic linkers [19]. MOFs have attracted a great deal of attention 

in both biological and industrial areas due to their numerous potential applications in the fields of gas storage [20], 

sensing [21], drug delivery [22], and catalysis [23]. In addition to these attractive applications, MOFs are active 

structures having high porosity [24] yielding large internal surface relatively and thereby facilitating enhanced 

catalytic reactivity [25]. If a MOF is employed as light-sensitive semiconductor, the central metal-oxide cluster can 

be considered as a discrete QD, which is stabilized and interconnected by the organic linkers acting as photon 

antenna [26]. Compared with traditional semiconductor photo-catalysts, the superiority of MOFs originates from 

their ultrahigh surface area and narrow micropore distribution, which may lead to the formation of mono-disperse 

photoactive species supported on MOFs [27-28]. However, the photo-activity of MOF was not as effective as that of 

inorganic semiconductor NPs. Using semiconductor QDs and MOFs as photo-catalysts have their own advantages 

and disadvantages [29]. By integrating such semiconductor QDs–MOF hybrid materials, they are expected to 

possess advanced properties originating from the two different components and also overcome their individual 

shortages [30-32]. To date, there has been progress on the studies of semiconductor– MOF heterostructures for 

photo-catalytic activity. 

 

For the assessment of photo-catalytic activity, Phloxine B dye was preferred because of its intense use in biological 

applications such as antimicrobial substance [33], industrial applications [34] etc. Phloxine B dye is extensively used 

in different applications but the literature on the research of its degradation is inadequate [35-36]. Mir et al [35] 

proved that heterogeneous photo-catalysis using TiO2as photo-catalyst to be an effective method for the 

decolorization of Phloxine B. 

 

Here, we demonstrated the synthesis of CdSe quantum dots (QDs) sensitized Zr-1,3,5-benzene tricarboxylic acid 

(ZrBTC) metal-organic frameworks (MOFs) hetero-structure. CdSe QDs having small band gap therefore absorbing 

visible light illumination served their better photo-catalytic activity. The photo-catalytic degradation of Phloxine B 

dye using CdSe QDs-ZrBTC heterostructure is discussed in detail in this paper. 

 

Experimental Section:- 
Chemicals:- 

All the chemicals were purchased from Sigma-Aldrich and the details are as follows. Cadmium Acetate 

(Cd(CH₃CO₂)₂, 99%), Sodium sulphite (Na2SO3, 99%), Selenium (Se, 98%), Tartaric acid (C4H6O6, 99%), 

Triethanolamine (C5H15NO3, ≥99%), Sodium hydroxide (NaOH, 99%) , Mercaptopropanoic acid (HSCH2CH2CO2H, 

≥99%), Zirconium nitrate (Zr(NO3)4, 99%),   Benzene-1,3,5-tricarboxylic acid (H3BTC, 99%), Methanol(98%), 

Acetone(99.8%), Toluene (99.8%), Ethanol (98%), and Distilled water (18.3 Ω). 
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Synthesis of ZrBTC:- 
Zr-MOF was synthesized by the following procedure. First, Zr (NO3)4 (80 mg) was dissolved in distilled water (10 

ml) under stirring. Further, Benzene-1,3,5-tricarboxylic acid (H3BTC, 99%) (40 mg) in ethanol (5 ml) solution was 

prepared and added the above solution at vigorous stirring at room temperature for the period of 6 h. A white colour 

precipitate was formed and separated by centrifugation at 4000 rpm and further washed with ethanol several times. 

The final product was dried in an oven at 90 
0
C under vacuum overnight and allowed for characterization. 

 

Synthesis of CdSe QDs:- 

The CdSe QDs were synthesized using green synthesis employing chemical bath deposition (CBD) method [37]. 

Here the sources of Cd and Se are Cadmium acetate (CdAc) and sodium seleno sulphate (Na2SeSO3) respectively. 

First, 10 g of sodium sulphite (Na2SO3) was dissolved in 50 ml of deionised water at room temperature (RT) until 

the solution became clear. To this solution, 0.5 g of elemental selenium was added and refluxed at 65 °C for 6 h. On 

other hand, 2.66 g of CdAc was dissolved in 50 ml of deionised water. To this, 8 ml of 1 M Tartaric acid (TA) and 

10 ml of Triethanolamine (TEA) was added until the pH reaches to 8. Later, the solutions CdAc + TA+TEA and 

Na2SeSO3 were mixed in 1:1 v/v ratio and heated at 65 °C for 1 h. In order to control the pH, 4ml of 5 M NaOH 

solution was added to the above solution. The resulted CdSe QDs were washed with methanol-acetone (v/v-1:2) 

solutions by centrifugation at 8000 rpm and then stored in toluene.  

 

Synthesis of CdSe QDs-ZrBTC:- 

MPA capped CdSe QDs were prepared by the exchange of TA on the surface of QDs. For this, TA and TEA capped 

CdSe were washed with ethanol and water by centrifugation and stored in toluene.  100 mg of ZrBTC (MPA) mixed 

in 5 ml of ethanol and stirred for 2 h and to this, 50 mg CdSe QDs are added. A pale-red color precipitate was 

formed. A pale-red color powder was obtained after solvent evaporation. The product was washed in water-ethanol 

(2 x 10 ml) solution several times by centrifugation at 8000 rpm to remove the impurities and dried in oven at 90°C. 

The resulted powder allowed characterizations to verify the CdSe QDs-ZrBTC structure. 

 

Characterization:- 

The phase and crystallinity of prepared samples were recorded on the X-ray diffraction technique (XRD, Bruker, 

D8-Advanced, Germany) with Cu−Kα irradiation in the range of 2θ from 10° to 80°. The optical properties of 

prepared samples were investigated using an ultraviolet visible spectrophotometer (UV-Vis, Speccord 200 plus, 

range 200-1000 nm). The prepared samples were sputter coated with Au for 100 s and the morphology was 

examined using a field emission scanning electron microscopy (FESEM, Carl Zeiss SUPRA 55VP, Germany).  The 

surface morphology variations of CdSe QDs and ZrBTC composites are analysed by HRTEM.  Lattice fringes and 

SAED patterns of synthesized powders were examined using high resolution transmission electron microscope 

(HRTEM, FEI make, Tecnai F20 S-TWIN TMP, Netherlands) with 0.144 nm resolution. Photo-catalytic dye 

degradation experiments were carried out with 300 W Xe -lamp. The variations in dye degradation are measured 

UV-visible spectrometer. Dye degradation % is calculated as per following equation 

 

Dye degradation % = {(C0-C)/ C0}* 100 

Where, C0 is initial concentration and C is final concentration. 

 

The photo-catalyst is recycled as per follows. After the completion of initial dye degradation experiment, the total 

solution was centrifuged at 4000 rpm and the photo-catalyst is separated and washed with ethanol-water solution 

and dried. The recycled catalyst weight is measured and used further dye degradation experiments.   

 

Results and Discussion:- 
X-ray diffraction Analysis:- 

The nature of phase purity and crystallinity of CdSe QDs and ZrBTC MOFs are examined using x-ray diffraction 

analysis and presented in Figure 1a and 1b. In figure 1a, the planes (111), (220) and (311) corresponds to CdSe 

semiconductor QDs and demonstrate crystalline cubic phase for  CdSe QDs  , which have strong match with 

reported procedures[38]. In figure 1b, the sharp peaks for ZrBTC at 2θ values of 17.26
0
, 19.11

0
, 25.53

0
, 27.23

0
, 

29.06
0
, 34.89

0
 and 40.42

0
 demonstrate high crystallinity and bulk phase of ZrBTC MOFs are well attached with 

previous reports[39]. The broad spectrum indicates nanosize structures of MOFs.  
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Figure 1a:- X-ray diffraction spectrum of ZrBTC metal-organic frameworks. 

 

 
Figure 1b:- X-ray diffraction spectrum of CdSe QDs. 

 

Surface morphological observations:-  

FESEM:- 

The surface morphological observations of ZrBTC MOFs are presented in Figure 2. Figure 2 show that ZrBTC 

MOFs formed into 2D sheets. 
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Figure 2:- FESEM image represents the surface morphology of  ZrBTC. 

 

HRTEM:- 

The transition electron microscopy images of CdSe QDs-ZrBTC compound are shown in Figure 3. As we observed 

in Figure 3a, the structure of MOFs is 2D sheets. Figure 3b shows the presence of CdSe QDs and ZrBTC MOFs. 

Figure 3c represents the surface morphology of CdSe semiconductor quantum dots and the corresponding SAED 

pattern is shown in Figure 3d. From the Figure 3, it is observed that MOFs are formed as 2D sheets and CdSe 

semiconductor quantum dots are in spherical shape. In Figure 3b, it is clearly seen that the CdSe semiconductor 

quantum dots are sensitized on ZrBTC MOFs.    
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3. 

 
Figure 3:- HRTEM images of CdSe QDs-ZrBTC(a&b), (c) ZrBTC (d) CdSe semiconductor quantum dots and (e) 

SAED. 
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UV-visible spectroscopic Studies:-  
The UV-visible spectrum of CdSe QDs sensitized ZrBTC indicates the absorption peaks at 520 nm. The sharp 

absorption peak below 300 nm in the UV-visible spectrum of ZrBTC demonstrates that pure ZrBTC MOFs have an 

absorption in the UV light region. The broad absorption peak at 520 nm is imputed to absorbance spectra of ZrBTC 

MOFs and the corresponding QDs-sensitized MOFs proclaiming the visible light absorption properties of CdSe 

semiconductor quantum dots. As shown, absorption edge for CdSe QDs-ZrBTC heterostructure shifts to longer 

wavelength, indicating the visible light absorption of CdSe. Comparatively, after deposited with CdSe, the 

heterostructures exhibited higher light absorption in visible light regions. These results indicate that the deposition 

of CdSe extended the absorption of the CdSe QDs-ZrBTC into the visible light region. The ordered ZrBTC MOFs 

have interior surfaces on which CdSe nanoparticles can be deposited, resulting in an enhancing absorption capacity 

in the visible light region while collecting and transmitting electrons through the ZrBTC. The formation of CdSe 

QDs-ZrBTC hetero-structure compound is also revealed here.  

 

 
Figure  4:- UV-visible spectrum of CdSe QDs sensitized ZrBTC and ZrBTC 

 

Photo-catalytic dye degradation studies:- 
The photo-catalytic activity of the CdSe QDs-ZrBTC hetero-structure was operated using a xenon lamp (300 W) at 

room temperature as reported in literature [40]. The experiments were carried out in a 250 ml capacity beaker at 

ambient temperature between 25
o
C and 30

o
C. In each experiment, 100 mg samples were measured into 20 mL of 

Phloxine B solution (initial concentration, Co = 10 mgL
−1

). Prior to irradiation the suspension was stirred for 30 min 

in the dark to attain adsorption–desorption equilibrium. Then the concentration of dye in the solution was measured 

and no change in the concentration was perceived here. The degradation of Phloxine B was evaluated in the 

presence of CdSe QDs-ZrBTC under visible light illumination. Regulated experiments were operated to confirm that 

Phloxine B was not photo-degraded without photo-catalyst in the dark. Figure 5(a) interprets the time dependent 

UV-Vis spectra for Phloxine B dye degradation curves of CdSe QDs-ZrBTC MOFs under visible light illumination. 

The relative intensity of the maximum absorbance at 550 nm in UV-Vis spectra evaluates the amount of Phloxine B 

dye degradation over the surface of CdSe QDs-ZrBTC heterostructure. The intensity of UV absorbance of Phloxine 

B dye molecules decreases continuously with the increase of time interval from 0 min to 100 min, evincing the 

degradation of Phloxine B dye over the surface of CdSe QDs-ZrBTC. Figure 5(b) accentuates the concentration 

changes of Phloxine B concentration (C/C0) in the presence and absence of photo-catalyst with increase of photo-

degradation time. A separate catalytic experiment is performed under dark condition for 60 min in order to confirm 

any external effect on the Phloxine B degradation. This shows the negligible decrease in the concentration of 

Phloxine B dye. Furthermore, the Phloxine B degradation without catalyst shows very low degradation within the 

time interval of 100 min, indicating that the Phloxine B dye cannot degrade by itself under light illumination. The 

relative concentration(C/C0) of Phloxine B dye molecules decreases with the enhanced time interval of 0 min to 100 
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min in the presence of CdSe QDs-ZrBTC catalyst demonstrating the better photo-catalytic dye degradation of 

Phloxine B. 
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Figure 5:- Time dependent UV-vis spectra for Phloxine B dye degradation curves of CdSe QDs-ZrBTC MOFs 

under visible light illumination (a). Photo-degradation curves of Phloxine B dye with respect to irradiation time (b) 

 

Photo-catalytic Mechanism:- 

The Photo-catalytic mechanism of CdSe QDs-ZrBTC for the degradation of Phloxine B dye was investigated here. 

The CdSe QDs have a relatively small band gap, and therefore have the potential to make use of visible light in the 

solar spectrum. CdSe quantum dots have strong fluorescence in the visible region. The 2D ZrBTC MOFs provide 
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platform for CdSe QDs and hinder the effective electron-hole pair recombination under photo-excitation.  

Fluorescence is the emission of a photon from a molecule as an electron goes from an excited state to a ground state. 

The color of the emission depends on the energy difference between states. The light can be absorbed efficiently by 

both the QD and the pollutant molecule (P). According to the proposed pathway for the photo-catalytic activity of 

the QDs, when the irradiation energy exceeds the energy difference between the valence and conduction bands 

(band gap) of a semiconductor, electrons in the valence band of QDs could be excited to the conduction band and 

electron–hole pairs are generated (Eq. (1)). 

 

CdSe QDs + hν → CdSe QDs (e
-
) + CdSe QDs (h

+
)                                                    (1) 

 

This is referred to as the photo-excited state of the semiconductor. The photo-generated charges (i.e., e
−
 and h

+
 

carriers) cause oxidation reactions on the particle surface, giving rise to free radicals, which in turn degrade the 

organic molecules. Then the molecular oxygen (O2) near the interface photo-catalyst could be quickly reduced to the 

superoxide radical (O2•
−
) and hydrogen peroxide radical (•OOH) by the photo-generated electrons (Eqs. (2) – (5)), 

whereas the valence band holes can directly oxidize organic pollutants adsorbed on the surface of catalyst (QDs) or 

mineralized them indirectly through hydroxyl radicals (•OH) generated by the reaction of holes and water molecules 

(H2O) or chemisorbed (OH
−
) (Eqs. (6) – (8)) [12-14]. Then, under visible-light irradiation, some photo-generated 

electrons can transfer from excited-state of adsorbed molecules to the conduction band (CB) of QDs and can reduce 

molecular oxygen to superoxide anion, then the superoxide anion can react with H2O to form other photo-induced 

active species (e.g., O2•
−
, •OOH, •OH) to oxidize or degrade the surface-absorbed organic pollutants.  

 

QDs (e
-
) + O2  →  QDs + O2

. -
                                                           (2) 

O2
. - 

+  H
+
   →   HO2

.
                                                                          (3) 

2HO2
.
     →   H2O2 + O2                                                                     (4) 

H2O2  +  e
-
   →   OH

-
  +  OH

.
                                                             (5) 

QDs (h
+
)  +  H2O  →  QDs + HO

.
 + H

+
                                            (6) 

QDs (h
+
) + OH

-
 → QDs + OH

.
                                                         (7) 

QDs (h
+
, O2

. -
, 

.
 OOH, 

.
 OH) + Phloxine B → Products                    (8) 

 

On the other hand, because of CdSe QDs sensitized ZrBTC, a strong band exists between the CdSe QDs and the 

surface groups of ZrBTC. Thus the excited electrons can be effectively used to obtain more super oxide ions, 

increasing the photo-degradation rate.Therefore the holes, electrons, hydroxyl radicals, super oxide radicals and 

oxygen play an important role in the photo-catalytic reaction mechanism. Therefore, the produced hydroxyl radicals 

can cause organic matter mineralization. 

 

In our case, the remarkable photo-catalytic activity of CdSe QDs sensitized with ZrBTC is due to the efficient 

transfer of the energy from absorbed photons to the impurity, quickly localizing the excitation and suppressing 

undesirable reactions on the nanocrystal surface. In the present paper the Phloxine B dye has effectively degraded by 

97% within 100 min. 

 

Conclusion:- 
The visible light effectual CdSe QDs and 2D ZrBTC sheets are synthesized in a multistep procedure and 

demonstrated the augmented photo-catalytic degradation studies of Phloxine B dye under visible light illumination.  
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