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Motivation: Multiple sequence alignment is a key problem to most 

bioinformatics applications, from evolutionary studies to prediction of 
protein structure, molecular function, intermolecular interactions, gene 

finding and phylogenitic analysis. The last ten years have witnessed a big 

improvement to existing multiple alignment tools and the development of 

new ones. Varieties of parallel architectures have been experimented such as 

supercomputer, cluster, grid, cloud, and multi-core machine for the purpose 

of reaching the highest level of accuracy and speed.   

Results:  This paper surveys most popular tools to clarify how parallelism 

accelerates the processing of large biological data set and improve alignment 

accuracy. It also introduces a comparative study that aims at guiding 

biologists to choose the appropriate software depending on their 

requirements and their hardware potentials. 

 
                   Copy Right, IJAR, 2016,. All rights reserved.

 

Introduction:-  

Bioinformatics [1] is the interface between biological and computational sciences. Its focus is on developing and 

applying computationally intensive techniques to increase the understanding of biological processes. It offers a 

plethora of challenging problems that require tremendous computational resources to be solved accurately. One of 

the most important and basic challenges in bioinformatics is the sequence alignment. It is used to extract functional 

and evolutionary information of genes and proteins. Thus it has become a fundamental tool in many different 

domains such as molecular function prediction [2], intermolecular interactions, residue selection [3] and 

phylogenitic analysis [4]. 

 

Sequence alignment is the problem of comparing biological sequences by searching for a series of characters 

(nucleotides for DNA sequences or amino acids for protein sequences) that appear in the same order in the input 
sequences, possibly introducing gaps into them. When the number of sequences is two then it is referred to pair-wise 

sequence alignment, otherwise its multiple sequence alignment (MSA). The most important types of sequence 

alignment problems are global and local. Global alignment is to find the best match between the entire sequences. 

While local alignment must find the best match between certain regions of the sequences.  

 

The algorithms used for alignment problem can be either dynamic programming based or heuristic-based or a 

combination of both. Dynamic programming is a general optimization technique that relies on the fact that the 

solution to a problem consists of the combined solutions of the sub-problems. Furthermore, several of the sub-

problems may be the same. Thus, they are solved only once. Dynamic programming based algorithms generate 

optimal solutions. However, they are computationally intensive which makes them impractical for a large number of 

sequence alignments. One the other hand, heuristics are approximation algorithms. They generate a near optimal 
solution but they are more practical. In the case of sequence alignment, these heuristics often use a combination of a 

restricted form of dynamic programming and other approximations in order to reduce the search space of possible 

solutions. 

http://www.journalijar.com/
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Most MSA methods are based on one of the two most public pair-wise alignment algorithms. The first is an optimal 

algorithm proposed by Needleman and Wunsh (NW) [5] for global alignment. And the second is an improvement to 

the NW algorithm proposed by Smith and Waterman (SW) [6] to obtain the local alignment. Both algorithms are 

exact, based on dynamic programming, and composed of three phases: initialization, similarity matrix computation 

and trace back. Nevertheless, they differ in their applied techniques at each phase. 

 
The main problem of MSA from the computer science point of view is the huge number of residue-to-residue 

comparisons that are needed when searching for similarities. Not only the logical definition of the problem makes it 

time consuming but also the fact that in practice, a single genome may contain in the order of billions of residues. 

Therefore, researchers were directed to High Performance Computing (HPC) due to the tremendous and steadily 

growing amount of molecular data [7]. 

 

Advances in HPC platforms provide high computational capability and uniform high-speed memory access to multi-

terabyte data structures. The technique they use for obtaining high performance is to parallelize the task to be run 

simultaneously by multiple vector execution units with SIMD and by multiple processors with MIMD. Many 

different hardware architectures have been experimented by various MSA tools such as cluster [8], multi-core 

machine [9], grid [10], cloud [11], and supercomputer [12].  

This paper introduces a comprehensive coverage of the most efficient and popular parallel MSA tools. The objective 
is to emphasis each tool’s requirements, limitations, capabilities, advantages and disadvantages. 

 

MSA methods:- 

High quality MSA is an essential task in bioinformatics. It helps in many criteria such as identifying diagnostic 

patterns or motif to characterize protein families, demonstrating homology between new sequences and existing 

families of sequences, and predicting the secondary and tertiary structures of the new sequences [7]. Nevertheless, it 

is NP-complete problem [13] with the computational cost growing exponentially with the number of sequences. 

Therefore, many algorithms have been developed aiming to reach the most accurate and efficient alignment. Most 

commonly used algorithms are classified into two categories, progressive and iterative. 

 

Progressive Method:- 

Most widely used MSA tools utilize the progressive method that was first introduced in [14]. For aligning N 

sequences, it first generates all possible N(N-1)/2 pair-wise sequence alignment in order to calculate a distance 

matrix giving the divergence of each pair of sequences. Second it creates a guide tree constructed from pair-wise 

sequence distances using a clustering method such as UPGMA [15] or Neighbor-Joining [16]. Third it builds up the 

final multiple alignments by progressive inclusion of the N sequences profile alignment according to the order given 

by the guide tree. While progressive sequence alignment is computationally efficient, it doesn’t guarantee a global 

optimal alignment, and suffers from some shortcomings.  The main drawback is that any errors happening at a 

certain alignment step will propagate and possibly affect the final multiple alignment. 

 

Iterative Method:- 
The first iterative algorithm dates back to the origin of MSA in 1987 [17]. It was proposed in order to circumvent 

the inherent errors in progressive alignment method. It refines the alignment by making an initial alignment of 

groups of sequences and then revising the alignment to achieve a more reasonable result. 

Many iterative methods have been developed to refine alignment. They can be deterministic or stochastic, depending 

on the strategy used to improve the alignment. Deterministic method involves extracting the sequence one by one 

from multiple alignments and realigning them to the remaining sequences. This procedure is terminated when no 

improvement can be made. On the other hand, stochastic iterative methods include Hidden Markov Models (HMMs) 

[18], simulated annealing [19] and evolutionary computation such as genetic algorithms (GAs) [20] and evolution 

strategies [21]. Their main advantage is to allow for a good separation between the optimization process and 

evaluation criteria [22]. 

 

MSA parallel tools evolution:- 
Various parallel tools have been developed for MSA problem. They concentrate on parallelizing the most time 

consuming task; the computation of pair-wise sequence distance. Parallelism is achieved by considering the two 

different granularity alternatives: fine–grained and coarse-grained. The performance of each tool depends on the 
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used alignment method, the proposed strategy to apply parallel computing, and the chosen platform for 

implementation. The most important MSA tools are summarized below with a brief overview of each tool series. 

 

FASTA series:- 

FASTA series [23, 24] was the first widely used program for database similarity searching. FASTP was the most 

extensively used program for protein. FASTA exploits refinements that result in a significant improvement in 

sensitivity. It takes a given nucleotide (DNA/RNA) or amino-acid sequence and searches a corresponding sequence 

database by using local sequence alignment to find matches of similar database sequences. It aligns multiple 

sequences and thereafter computes pair of match and mismatch between the sequences. It uses a heuristic algorithm 

which is an efficient implementation of an AltiVec-enabled SW. Its source code features optimizations targeted at 

modern processors to be faster without losing much sensitivity.  

 

A variety of research work has been done to study the performance of parallel FASTA. On Sun servers [25], the 

parallel efficiency of FASTA programs was quite high, especially for large searches. It shows a 54-fold speedup 

when it runs on 62 CPUs of the Sun Enterprise 10000 (64400 MHz CPUs with 8MB L2 cache). 

 
On a parallel cluster of workstations [26], it executes very quickly when a small query or database is chosen. The 

parallel FASTA ported using Sun-MPI libraries was run on Fast Ethernet across 64 processors and a speedup of 44 

fold was observed. Better speedup was observed when searching a longer query sequence against a huge database. 

 

On a grid [27], FASTA has been implemented in the Grid Application Development Software (GrADS) project. The 

GrADS adapts the master-worker paradigm, scheduling and rescheduling the tasks on an appropriate set of 

resources, launching and monitoring the execution. Its scheduler makes a static schedule for its application where 

the whole or a portion of sequence databases are replicated on some or all of the grid nodes. The master informs 

each worker which portions of database should be loaded into memory, sends the input query sequence and collects 

the results. This paradigm provides a plausible method for providing large amounts of computing power applicable 

with the rapid growth of large biology data collections. FASTA have been implemented by many other 
bioinformatics grid projects [10]. 

 

On Cell B.E. [28], the AltiVec APIs are converted to the synergistic processing unit (SPU) APIs, and those that are 

not available on the SPU have been implemented. Results show that the Cell B.E. is a promising power-efficient 

platform considering that the total power consumption of the Cell is less than half of a contemporary superscalar 

processor. Also superior results have been achieved in [8] mainly due to the vector execution on the eight SPU 

cores. And profiling indicates that the computation dominates the total runtime (up to 99.9% considering a 

bandwidth of 18 Gbytes/s for the SPU). 

 

On a hybrid cloud environment [11] which consisted of services provided by the public Amazon cloud (S3 and 

SQS), with computing nodes residing on the Intel cluster running Eucalyptus software, the SW similarity search 

program from the FASTA package were implemented. A component-based approach to computational science 
applications on cloud infrastructures was used. It considers virtual machines running on the cloud as components 

and the cloud as a large-scale distributed container for hosting these components. The experiments demonstrated 

that this approach can be effective and overhead incurred by the component startup time as well as the performance 

penalty caused by virtualization are reasonable. 

 

BLAST series:- 

BLAST [29, 30] is most noted heuristic-based tool for protein and DNA sequence homology search because of its 

impressive speed. It works on the principle of hashing small matching sequences and then extending the hash 

matches to create high scoring segment pairs until attend the highest score possible (HSP). Several variations of the 

original BLAST algorithm were developed to accommodate different types of sequence alignments [31]. The 

original BLAST uses the two-hit alignment method to increases speed. Gapped BLAST adds the ability to generate 
gapped alignments.  PHI-BLAST combines pattern search with the search for statistically significant sequence 

similarity to detect subtle similarities. PSI-BLAST executes the BLAST algorithm iteratively and updates the used 

position-specific scoring matrix for detecting weak sequence similarities. MEGABLAST employs the XDrop 

alignment greedy algorithm to particularly align DNA sequences that are highly similar. NCBI-BLAST performs an 

accurate gapped alignment using two-hit alignment method with far fewer HSPs statistics that leads to much 

increased sensitivity and speed. GPU_BLAST [32] is the most recent accelerated version of the popular NCBI-
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BLAST using a general-purpose graphics processing unit (GPU). The speedups achieved range mostly between 3 

and 4.  

 

There have been a number of efforts to parallelize BLAST for achieving higher performance. TurboBLAST [33] is 

an accelerated, parallel deployment of NCBI BLAST which delivers high performance on networked clusters of 

heterogeneous PCs, workstations, or Macintosh computers. A speedup was 10.8 obtained by using a distributed Java 
“harness” that splits BLAST jobs into multiple small pieces, processes the pieces in parallel, and integrates the 

results into a unified output. 

 

Soap-HT-BLAST [34] is a high throughput web-based system that runs NCBI BLAST/PSI-BLAST in a distributed, 

parallel environment through the Internet. Its hardware architecture includes one head node and three compute 

nodes; each has four Ultraspac III 900MHz CPUs and 8GB memory. It is implemented using Perl and its module 

SOAP::Lite for Web services.  At one time, the CPU loads of all working compute nodes are limited to 85% and the 

maximum number of submissions is six. 

 

PARACEL-BLAST [35] is the most advanced BLAST software written specifically for large-scale cluster systems. 

It is an integrated native-parallel application of NCBI BLAST. It develops a costumer scheduler and makes database 

splitting dynamically which improve performance, efficiency, and scalability. It provides optimizations, 
enhancements, and features not available in any other BLAST system.  

 

mpiBLAST [36] uses MPI to parallelize BLAST by querying segments of the target database simultaneously on a 

computing cluster. It preprocesses the target database by dividing it into unique segments for use by individual 

nodes in the cluster. The segment is copied to the cluster node for reducing communication with shared storage 

during the computation. mpiBLAST achieved super-linear speedup on up to 128 nodes of a 240 node Linux 

Beowulf cluster. But efficiency decreased as the number of nodes increased. 

 

pioBLAST [37] was produced as an improvement to mpiBLAST through an optimization of the I/O and 

communication. It features online dynamic partitioning of the database, parallel I/O through the use of an MPI-IO, 

and efficient merging of results. It gains additional performance during sorting of results by overlapping the writing 
of sets of results as computational nodes report back to the master node. It has been tested on the IBM Blade Cluster 

using up to 32 nodes offering a total of 128 Intel Xeon 2.8-3.0 GHz Processors; each is equipped with 4 GB memory 

and 40 GB disk place. Results show time decrease to 64% which is considerably milder than that of mpiBLAST 

(14%). 

 

ScalaBLAST [38] is a parallel implementation of the original NCBI BLAST for high-throughput calculations in a 

cluster or supercomputer. It accommodates very large databases and scales linearly to as many as thousands of 

processors on both distributed memory and shared memory architectures. It relies on distributing the target database 

over available memory, multilevel parallelism to exploit concurrency, parallel I/O, latency hiding through data 

prefetching combined with effective task scheduling to achieve high-performance and scalability. It has been used to 

perform multiple genome BLAST calculations against a variety of databases on commodity clusters or high-

performance architectures. When using 1500 processors, it was up to 1500 times faster on real datasets compared to 
BLAST and makes distributed memory perform like true shared memory.  

 

G-BLAST [39] was developed during designing and implementing a BioGrid framework. It performs genomic 

sequence alignments using Grid computing environments and accessible mpiBLAST applications. G-BLAST is also 

suitable for cluster computing environments with a server node and several client nodes. It is able to select the most 

appropriate work nodes, dynamically fragment genomic databases, and self-adjust according to performance data. 

It’s more efficient than mpiBLAST due to its GUI friendly interface, flexibility and speedup. A number of other 

grid/cloud-enabled applications have been developed for BLAST [10, 40].  

 

Clustal series:- 

The Clustal series [41] are the most widely used programs for global multiple sequence alignment. The first Clustal 
program [42] combined the progressive alignment strategy with dynamic programming using a guided tree. Then 

ClustalV featured the ability to produce phylogenetic trees from alignments, using the neighbor-joining method and 

bootstrap confidence measures. The third generation, ClustalW incorporated a number of improvements to the 

alignment algorithm, including sequence weighting, position-specific gap penalties and the automatic choice of a 



ISSN 2320-5407                               International Journal of Advanced Research (2016), Volume 4, Issue 5, 345-356 
 

349 

 

suitable residue comparison matrix at each stage in the multiple alignment. It was also developed to ClustalX with a 

more user-friendly graphical interface. 

 

MULTICLUSTAL [43] was introduced as a multithreaded optimization version of the ClustalW. Its alignment gives 

a domain structure, which is more consistent with the 3D structures of proteins. It searches for the best combination 

of ClustalW input parameters. Its performance gives speedups range from 1.5 to 3.0 when compared with the 
original one. 

 

SGI parallel Clustal [44] was the first attempt to accelerate ClustalW by parallelizing all three stages on a shared 

memory SGI Origin machine using OpenMP. It shows speedup of up to 10 folds when running ClustalW on 16 

CPUs. So as HT ClustalW the other parallel programming approach that adopts high-throughput (HT) automation. It 

obtains similar time on smaller number of, therefore freeing additional computer resources without performance 

degradation. 

 

ClustalW-MPI [45] uses MPI with dynamic scheduling proposes and runs on distributed workstation clusters. The 

calculations of pairwise distances scale up to 15.8 using 16 processors. And speedup of 4.3 can be achieved with its 

mixed fine and coarse grained approach using 16 processors for the essentially not parallelizable progressive 

alignment. 
 

pCLUSTAL [46] is another parallel version of ClustalW using MPI. In contrast to the commercial SGI parallel 

Clustal version, which requires an expensive SGI multiprocessor system, pCLUSTAL can be run on a range of 

distributed and shared memory parallel machines, from high-end parallel multiprocessors to PC clusters, to simple 

networks of workstations and achieve relative speedup. Another acceleration of ClustalW have been developed in 

[47] on multiprocessor SMP cluster using a hybrid MPI/OpenMP method with mixed fine and coarse grained 

parallelization approach in the third stage. A speedup of 80 and 9.2 was obtained for the first and third stages 

respectively, and an overall speedup of 35 using 40 nodes and 80 processors. 

 

MT-ClustalW [48] presented a fully multithreading optimized version of ClustalW which utilize the machine 

resources and achieve higher throughput on multicore computers. It achieves over 2 times faster than the sequential 
ClustalW with 8 threads. 

 

GPU-ClustalW [49] was the first to publish MSA acceleration on GPUs. A single GPU card (GeForce 7800 GTX) 

was programmed with OpenGL Shading Language (GLSL). It achieved a stage 1 speedup of 11.7 compared with a 

3.0 GHz Pentium 4 processor. Stages 2 and 3 were executed sequentially for an overall speedup of 7.2. Then MSA-

CUDA [50] parallelizes all three stages of the ClustalW processing pipeline by the GPU using CUDA.  It 

demonstrates average speedups of 36.91 for long protein sequences on a GeForce GTX 280 GPU compared to the 

sequential ClustalW running on a Pentium 4 3.0 GHz processor. 

 

While on Cell BE [51], acceleration has been achieved in an overall speedup by 9.1. It speeds up the pairwise 

alignment phase of ClustalW with a factor of 51.2 by making extensive use of vectorization and by scheduling the 

application across all cores. Also the progressive alignment phase is sped up by a factor of 5.7 when applying loop 
unrolling and loop skewing optimizations. On the other hand, [52] achieved a peak speedup of 9.03 for 1000 protein 

sequences with an average length of 446. It accelerates the distance matrix computation by using Playstation3 

powered by Cell BE. 

 

Then [53] demonstrate a speedup of 24.4 times when using 16 synergistic processor units on a QS21 Cell Blade 

compared to single-thread execution on the power processing unit. Its highly optimized implementation is just 3.8 

times faster than a 3-thread version running on an Intel Core2 Duo. 

 

ClustalXeed [54] has incremental improvements over previous versions. It can compute a large volume of biological 

sequence data sets, which were not tractable before. It uses both physical RAM and a distributed file-allocation 

system for distance matrix construction and pair-align computation to solve the conventional memory-dependency 
problem. It markedly improves the computation efficiency of disk-storage system by implementing INSTA load-

balancing algorithm. Performance tests on data set comprised of 52,750 protein sequences from the cytochrome 

P450 superfamily show that the average speed-up for 50 nodes was about 19.6 with INSTA and 14.8 without 

INSTA on 100×CPU AMD Opteron 244 (1.8 GHz) 64-bit cluster system with Linux (Fedora 4 Core). The master 
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node consists of a 10-terabyte HDD and 8 GB DRAM. Each node is a dual-core Opteron system with 4 GB DRAM 

and a 1-terabyte HDD. 

 

Clustal Omega [55] is the latest version. It can align virtually any number of protein sequences quickly and that 

delivers accurate alignments. It uses the OpenMP library to enable multithreaded computation of pairwise distances 

and alignment match states. The accuracy of the package on smaller test cases is similar to that of the high-quality 
aligners. On larger data sets, Clustal Omega outperforms other packages in terms of execution time and quality.  

 

In [56] a new multithreaded algorithm was proposed to eliminate the synchronization delays bottlenecks by using 

threads and different scheduling approach. It was incorporated in ClustalW-MPI and enables a better use of CPU 

cycles and also a better memory usage. Tests involved cases with 500 sequences with sizes of 1000, 2000, 3000, 

4000 and 5000 residues, and shows speedup improvement. 

 

In [57] a new parallel implementation of distance matrix computations of ClustalW is based on MPI and OpenMP 

mechanism. It achieves speedup of about 9 on 50 sequences of average length of 161.000 nucleotide, with 32 nodes 

each nodes content two Intel Quad core Xeon 2.83 GHz of processor, 64 bit technology.  

 

A parallel optimized algorithm of second stage of ClutalW by [58]. This paper introduces a new algorithm based on 
converting used matrices in NJ into vectors and eliminating redundant computations, while preserving the accuracy. 

The results show reductions of the time and space complexities while the accuracy is preserved. It implemented on a 

2.0 GHz core i7 Intel CPU in C++ and tested on various real DNA and RNA sequences. Results show how the 

proposed vectorization approach greatly improves the performance and achieves more than 2.5-fold speedup when 

aligning 8000 sequences compared to ClustalW- MPI. 

 

T-COFEE series:- 

T-Coffee [59] (Tree-based Consistency Objective Function For alignment Evaluation) was the first MSA software 

that uses a consistency-based objective function optimized using progressive alignment. It tries to maximize the 
score between the final multiple alignment and a library of pair-wise residue-by-residue scores derived from a 

mixture of local and global pair-wise alignments. Then 3DCoffee [60] used a mixture of pair-wise sequence 

alignments and pair-wise structure comparison methods to generate multiple sequence alignments. It combines 

TCoffee with the threading program Fugue that improves the accuracy by four percentage points when using one 

structure only per dataset. Nevertheless M-Coffee (meta-method for assembling MSA) [61] extends T-Coffee by 

using consistency to estimate a consensus alignment. It was twice as likely to deliver the best alignment as any 

individual method. Also R-Coffee [62] was designed to align RNA sequences while exploiting secondary structure 

information. It used an alignment-scoring scheme that incorporates secondary structure information within the 

alignment. 

 

Parallel T-Coffee (PTC) [63] was the first parallel implementation of T-Coffee. It is based on MPI and RMA 

mechanisms. It realized a speedup of about 3 with 80 processors on Cluster consisting of dual Intel Xeon 3GHz 
nodes. Most of the speedup comes from parallelizing and distributing pair-wise alignment tasks dynamic scheduling 

for a near linear speedup during library generation. Since most of the potential users of this tool are not familiar with 

the use of grids or supercomputers, a web portal was created with Rapid in [64] that deploy PTC on different HPC 

environments. It allows users to upload a large number of sequences and provides a user-friendly solution. 

 

Cloud-Coffee [65] is another parallel implementation of T-Coffee. Its approach is different; it is based on shared-

memory architectures, like multi-core or multi-processors. It was benchmarked on the Amazon Elastic Cloud (EC2) 

and showed that the parallelization procedure is reasonably effective. As for a web server with moderate usage (10K 

hits/month) the cloud provides a cost-effective alternative to in-house deployment. For instance, the medium 

instance (5 EC2 Computation Units, ECU) runs 3.7 times faster than its small counterpart (1 ECU). 

 

MAFFT series:- 

MAFFT [66] is another popular MSA program. It included two novel techniques that reduce the CPU time. It 

rapidly identified homologous regions by the fast Fourier transform FFT. It was modified to improve the accuracy at 

[67]. Then it was updated in [68] with two new techniques. The PartTree algorithm improves the scalability of 

progressive alignment and the Four-way consistency objective function improves the accuracy of ncRNA alignment. 
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All stages of MAFEET have been parallelized in [69] using the POSIX Threads library with the best-first and simple 

hill-climbing parallelization strategies. This approach achieved a peak speedup of 10 times with different random 

numbers on a 16 core PC (4×Quad-Core AMD Opteron Processor 8378). 

 

Muscle series:- 

MUSCLE [70] (Multiple Sequence Comparison by Log-Expectation) is a widely used tool in MSA. It has achieved 

a highest rank in accuracy and the fastest speed compared to others. Because it includes fast distance estimation 

using kmer counting, progressive alignment uses a new profile function, and refinement using tree-dependent 

restricted partitioning. 

 

MUSCLE-SMP [71] was the first parallel attempt of MUSCLE on shared memory system. It achieves an overall 

speedup of 15.2 on a 16 processors SMP system using OperMP for 50-150 proteins of average length 330. 

 

MUSCLE-based multiscale simulations [72] have been presented in the two types of infrastructures: local HPC 

cluster and Amazon AWS cloud solutions. And presented solution has been integrated with Grid Space virtual 

laboratory that enables users to develop and execute virtual experiments on the underlying computational and 
storage resources through its website based interface.  

 

Also the multithreaded algorithm in [56] was incorporated in Muscle-SMP and achieved superior results. The 

absolute time needed for each execution is lower than the time needed by the original version, sometimes using less 

than half. 

 

DIALIGN series:- 

DIALIGN was proposed in [73]. Its algorithm compares every pair of sequences, generating a set of ungapped 

fragments with high score. These fragments are used to, incrementally and iteratively, generate the final alignment. 
DIALIGN 2.0 [74] introduced an optimization that was able to generate less fragments of longer sizes. DIALIGN-

TX [75] used greedy and progressive approaches for segment-based MSA. It incorporated optimizations such as 

anchors and a guide tree to generate more accurate alignments. 

 

DIALIGN-P [76] the parallel version of DIALIGN 2.0 was proposed for homogenous clusters. It achieved speedup 

of 19.32, 10.87 and 4.15 on (20, 55 and 100 seqs.) respectively by using 64 processors.  

 

DIALIGN-TX-MPI [77] is the parallel version of DIALIGN-TX. It used an iterative heuristic method for MSA that 

is based on DP and generates alignments by concatenating ungapped regions with high similarity. It was 

implemented using both OpenMP and MPI on a heterogeneous multi-core cluster composed by 3 nodes with 4, 8 

and 16 cores, respectively. The best speedup (3.13) was obtained when comparing set of (324) seq. with an average 

length of (1029) with HWF allocation policy. 

 

Others:- 

Sample-Align-D [78] another parallel algorithm was proposed. It was based on partitioning the set of sequences into 

smaller subset using k-mer count based similarity index (k-mer rank). Then each subset is independently aligned in 

parallel. The algorithm has been implemented on a cluster of workstation on 16 node using MPI library. It was able 

also to align 2000 randomly selected sequences from the Methanosarcina acetivorans genome in less than 10 

minutes, compared to over 23 hours on sequential MUSCLE [70] system running on a single cluster node. Also it 

was able to align 20000 sequences in just around 25 seconds. 

 
ProbCons [79] is a practical tool for progressive protein MSA based on probabilistic consistency. It introduces a 

pair-HMM progressive alignment algorithm that uses maximum expected accuracy rather than Viterbi highest 

probability alignment, and the probabilistic consistency transformation to incorporate multiple sequence 

conservation information during pair-wise alignment. It achieves statistically significant improvement over other 

methods, containing an average of 7% more correctly aligned columns than those of T-Coffee, 11% more than 

CLUSTAL W, and 14% more than DIALIGN. 
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Probalign [80] adopts a very similar strategy to ProbCons, but employs a partition function to calculate posterior 

probabilities instead of using a pair-HMM. Results indicate that Probalign alignments are generally more accurate 

than Probcons, MAFFT and MUSCLE. 

 

MSAProbs [81] is a new and practical multiple protein sequence alignment algorithm designed by combining a pair-

HMM and a partition function to calculate posterior probabilities. It also investigates two critical bioinformatics 
techniques, namely weighted probabilistic consistency transformation and weighted profile-profile alignment, to 

achieve high alignment accuracy. In addition, it is optimized for modern multi-core CPUs by employing a multi-

threaded design in order to reduce execution time. It statistically demonstrates dramatic accuracy improvements over 

several top performing aligners: ClustalW 2.0.12, MAFFT 6.717, MUSCLE 3.8.31, ProbCons 1.12, and Probalign 

1.3 

 

ParaAT [82] is a recent parallel tool that is capable of constructing multiple protein-coding DNA alignments for a 

large number of homologs. It is well suited for large-scale data analysis in the high-throughput era. It assigns each 

homolog to one of the slave threads, customizes by user one of multiple sequence aligners (including ClustalW, 

Mafft, Muscle, T-Coffee), consolidates the results from all slave threads, then parallel back-translates multiple 

protein sequence alignments into the corresponding DNA alignments. Tests were performed on a 64 bit x86 Intel_ 

Xeon_ machine with 24 cores (X5650) and provides good scalability and exhibits high parallel efficiency. 
 

BLASR, in [83] advocate high-level programming methodology for next generation sequencers (NGS) alignment 

tools for both productivity and absolute performance. The paper analyse the problem of parallel alignment and 

review the parallelisation strategies of the most popular alignment tools, which can all be abstracted to a single 

parallel paradigm. By using a SIMD/SSE architecture to obtain an overall speedup of about 12 on a system with an 

Intel Sandy Bridge has two 8-core sockets (2 HyperThreads) @2.2 GHz, 20 MB L3 cache with Linux x86_64. 

 

Discussion:- 
Despite the frequent use of the MSA tools by biologists and scientists, the decision about which tool to use is a 

difficult problem. Lately some researches [84, 85, 86] have been produced for surveying, comparing and evaluating 

sequential tools to address this critical issue and highlight a number of specific strengths and weaknesses of them. 
 

But with parallel tools the situation is much difficult. There are a lot of them as surveyed above. The assessment and 

the choice of the most convenient tool are subjected to variant metrics. Most important metrics that affect the 

usability and popularity of the aligner were selected and summarized below. Also a comprehensive comparison of 

the available most popular and efficient parallel MSA software tools against these metrics emphasizing their 

advantages and disadvantages is presented in table 1. 

 Availability: The ease to obtain and use the software. The program needs to be publicly available and user-

friendly, so that anyone can apply it and compare its results with others. 

 Portability: The ability to run the program with different operating systems (OS). This is very significance as 

most scientists intend to run it on their PCs rather than web interfaces. 

 Hardware architecture: The parallel platform needed to operate the tool such as supercomputers, clusters, grids, 
clouds, and multi-cores. Of Course its cost, availability and accessibility must be considered. 

 Database size: the allowed limit of the sequences number and length. Since the maximum number of sequences 

(MaxNo) and the sequence maximum length (MaxL) are deeply important to biologists. It is limited by the 

storage available by the used platform. 

 Speedup: The acceleration gained by using the parallel tool compared to the sequential one. It is an essential 

metric in measuring the performance. It clarifies the tool’s high computational capability and high-speed 

memory access. 

 

Conclusion:- 
The aim of this paper is to direct both biologists and scientists to choosing the most appropriate MSA tool for their 

specific needs, thus enabling more efficient research. The general and central considerations of the MSA methods 
have been reviewed, to clarify their main differences. The most popular and widely used tools have been surveyed 

with a study of their evolution from the first appearance till now. A detailed discussion of existing parallel tools has 

been introduced supported by a comparative study according to variant metrics, emphasizing their main 

characteristics. 
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