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A portfolio of is a collection of different types of stocks. This 
diversification is necessary to reduce investment risk. This paper 

presents a state of art review of various nature inspired techniques 

used for portfolio optimization. There are various nature inspired 

techniques like Genetic Algorithm etc., which are successfully used in 

many areas of science, engineering and management.  This paper 

looks for applications of these for portfolio optimization. This also 

presents the gaps, which are present in this research area, and can be 

surveyed further. 
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Introduction:-  
An investment is a commitment of funds made in the expectation of some positive rate of return    (Fischer and 

Jordan, 2009). There are three basic elements of investment (Singh et al., 2010).  

 

1. Return: Expectation of reward motivates the investor to part with his money and take risk. Return is the gain or 

profit which accrues to an investment. 

2. Risk:  Investors’ actual returns may be different than expected. Risk is usually measured by calculating the 

standard deviation of the historic returns.  Risk can also be measured using a parameter beta. Beta is calculated 
by relating the returns on a security with the returns for the market (Fischer and Jordan, 2009). 

3. Time: The different investments are examined over the period of time, and risk and return are measured. Thus 

investment time will dramatically affect the investment vehicle. 

 

The saving of a company will remain under utilized in the absence of stock exchange. Stock exchanges are the 

markets which exist to facilitate purchase and sale of securities of companies or bonds issued by government in 

course of its borrowing operations. In Indian stock market, most of the trading takes place on its two stock 

exchanges: the Bombay Stock Exchange (BSE) and the National Stock Exchange (NSE).  

 

A fundamental principle of investments is diversification, where investors diversify their investments into different 

types of assets. The different stocks can be clubbed in one portfolio. Portfolio diversification minimizes investors’ 
exposure to risks, and maximizes returns on portfolios. Since it is rarely desirable to invest the entire funds of an 

individual or an institution in a single security, it is essential that every security be viewed in a portfolio context. 

Thus it seems logical that the expected return of a portfolio should depend on the expected return of each of the 

security contained in the portfolio. The aggregate characteristics of the constituent securities may or may not be 

accommodated in a portfolio (Bhalla, 2008).  
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The most important investment decision which the owner of a portfolio must make is the portfolio’s asset allocation. 

Asset allocation refers to the percentage invested in various security classes. Designing of a best portfolio that meets 

the needs of the investors can be modeled as an optimization problem (Fabozzi et al., 2007).   In case of portfolio 

optimization, the optimal weights of the securities have to be found in order to meet the satisfaction of the investor. 

The satisfaction of the investors lies in maximizing return and minimizing risk. Constructing an optimal risky profile 

is a high dimensional constrained optimization problem where financial investors look for an optimal combination 
of their investments among different financial assets with the aim of achieving maximum reward to variability ratio. 

In these days, various nature inspired optimization techniques are being applied in this area (Anagnostopoulas and  

Mamanis, 2011). 

 

Optimization is a term used to refer to a branch of computational science concerned with finding the "best" solution 

to a problem. Here, "best" refers to an acceptable (or satisfactory) solution, which may be absolute best over a set of 

candidate solutions.  Optimization algorithms are search methods, where the goal is to find a solution to an 

optimization problem, such that a given quantity is optimized, possibly subject to a set of constraints. Optimization 

provides an elegant blend of theory and applications. The theory uses elements beginning with elementary calculus 

and basic linear algebra and continues with functional and convex analysis. The applications of optimization involve 

science, many areas in engineering, economics, and industry (Goldberg, 1997). 

 
An optimization algorithm searches for an optimum solution by iteratively transforming a current candidate solution 

into a new, hopefully better solution.  An optimization problem can be single or multi-objective depending upon the 

number of objectives to be fulfilled. Further, optimization methods can be classified as deterministic or stochastic. 

Stochastic method make use of random values and probability theory, whereas deterministic do not. The nature 

inspired optimization methods belong to the category of stochastic methods. The nature inspired optimization 

algorithms are optimization algorithms which are inspired from natural processes (Engelbrecht, 2005).  

 

Application of various nature inspired techniques for portfolio optimization:- 
Byrne and Lee (1994) have used modern portfolio theory (MPI) as a more rational approach in the construction of a 

real estate portfolio. This is a process which can be achieved using powerful facilities found in spreadsheets. The use 

of relatively sophisticated analytical methods such as Solver is too easy to use on the problem. Leinweber and 
Arnott (1995) have used Genetic Algorithm for predicting the forecasting performance of financial models. Many 

studies in finance (Colin, 1996; Nelly et al., 1997; Allen and Karjalainen, 1999) use GA particularly in developing 

trading strategy patterns. 

 

Ostermark (2001) has applied Genetic Hybrid Algorithm (GHA) for complex nonlinear programming problems. The 

algorithm combines features from parallel programming, classical non linear optimization and techniques of 

numerical calculus. The test results add significant evidence in solving complicated optimization problems 

successfully. 

 

Kendall and Su (2005) have applied Particle Swarm Optimization for the construction of optimal risky portfolios. A 

particle swarm solver is developed and various restricted and unrestricted risky investment portfolios are tested. The 

particle swarm solver has shown high computational efficiency in constructing optimal risky portfolios of less than 
fifteen assets. 

 

Marinakis et al. (2009) have proposed ant colony optimization and the particle swarm optimization algorithm to 

solve the feature subset selection problem. The proposed algorithm was tested in two financial classification tasks, 

involving credit risk assessment and audit qualifications. This algorithm was found to provide the best results in 

terms of accuracy rates. 

 

Chang et al. (2009) have employed genetic algorithm for solving difficult portfolio optimization problems with 

different risk models and compares its performance to mean-variance model in cardinality constrained efficient 

frontier. Three different risk measures based upon mean-variance by Markowitz, semi-variance, mean absolute 

deviation and variance with skewness are used. Three data sets are collected from main financial markets and solved 
by a genetic algorithm.  
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Anagnostopoulos et al. (2010) have used a greedy randomized adaptive search procedure (GRASP) to solve the 

mixed integer portfolio optimization problem. GRASP is a powerful metaheuristic approach to solve many hard 

optimization problems.  

 

Uryasev et al. (2010) have analyzed that risk aggregation in Internal Capital Adequacy Assessment Process 

(ICAAP) is based on risk adjusted aggregation approaches. It is possible to obtain optimal portfolios with similar 
properties by using different values of confidence level α and variances. 

Gazioglu and Hayfavi (2010) have used stochastic optimization technique to optimize the consumer-investor 

function subject to a self-financing constraint. Bequest is included in the model. The main contribution of this article 

is that the assumption of constant-consumption-wealth ratio, which was assumed in the literature, was dropped. The 

Stochastic optimization model with a self-financing portfolio has been simulated which distinguishes risk neutral 

investors (Y-low) from high risk averse investors (Y-high), both with and with no bequest.  

 

Golmakani  and Fazal (2011) have presented a heuristic approach to solve an extended Markowitz mean-variance 

portfolio selection model. The extended model includes four sets of constraints; bounds on holdings, cardinality, 

minimum transaction lots and sector capitalization constraints. A heuristic based on Particle Swarm optimization 

(PSO) method is compared with GA and PSO effectively out performs GA especially in large scale problems. 

 
Anagnostopoulos and Mamanis (2011) have presented a computational comparison of five state of the art multi 

objective evolutionary algorithms (MOEA’s) on the mean-variance cardinality constrained portfolio optimization 

problem (MVCCPO). The MOEA’s which are considered in this model are the Niched Pareto genetic algorithm2 

(NPGA2), Non-dominated sorting genetic algorithm II (NSGA-II), Pareto envelope based selection algorithm 

(PESA), strength Pareto evolutionary algorithm 2 (SPEA2) and e-multiobjejctive evolutionary algorithm (e-MOEA). 

The computational comparison was performed using data sets which contain up to 2196 assets.  

 

Kremmel et al. (2011) have proposed an algorithm to describe software project portfolios with a set of 

multiobjective criteria for portfolio managers using the constructive cost model (COCOMO II) and introduced 

prototype optimization with improvement steps (POEMS) which has performed comparatively even better than the 

state of the art multiobjective optimization evolutionary algorithms. 
 

Zu et al. (2011) focuses on solving the portfolio optimization problem with particle swarm optimization method, 

where the objective functions and constraints are based on both the Markowitz model and the Sharp Ratio model. 

PSO has become a popular optimization method as one finds the best optimum as compared to other common 

optimization algorithms. PSO model is considered superior as it demonstrates high computations efficiency in 

constructing optimal risky portfolio in comparison to GA.  

 

Lin (2012) introduces a PONSGA model by applying the non-dominated sorting genetic algorithm (NSGA-2) on 

portfolio optimization problems. NSGA is the well known non-linear optimization method. A PONSGA model has 

introduced for portfolio optimization to get the maximum return at minimum risk under different risk measures such 

as mean-variance, semi-variance, mean-variance skewness, mean-absolute-deviation and lower-partial moment. The 

experimental results indicated that the PONSGA is superior to GA in all performances, as it had a lower coefficient 
of variation, a higher sharp index, sortino index and PPI index and relatively higher return with low risk. 

 

Vazhayil and Balasubramanian (2012) have formulated Hierarchical multi-objective policy optimization for the 

planning and design of energy strategy framework and applied to the energy sector planning for India’s 12th five 

year plan for which the objectives of faster growth, better inclusion, energy security and sustainability have been 

identified.  

 

Niu et al. (2012) have proposed a new model using VAR measuring both market and liquidity risk and then 

employed a new swarm intelligence based method, Bacterial foraging optimization (BFO) to solve this model.  

 

Kabundi and Mwamlia (2012) have used genetic algorithm (GA) approach for a South African investor who wants 
to maximize his return but facing exchange rate risk. The performance of GA is compared with the non-linear 

models, namely the quadratic mean-variance (QMV) and the quadratic variance minimization. 
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Ha (2013) has conducted a numerical experiment to see the performance of two well established optimization 

methods-steepest ascent and genetic algorithm , in the solution of an optimal risk-allocation problem in  primary-

insurance portfolio management. The steepest-ascent method was found to be functionally dependent on the initial 

starting policy that is chosen. The genetic algorithm produced superior results as compared to steepest ascent 

method. 

 
Stchedroff  (2013) have examined the effects of evaluating large numbers of proposed solutions in parallel for use 

with direct search optimization. This leads to a method that has considerable performance increase.  Zheng and 

Liang (2013) have presented a robust mean-variance portfolio selection model of tracking error with transaction 

cost that only risky assets exist and expected returns of assets are uncertain and belong to a convex polyhedron. 

 

Conclusions and Future scope:- 
From the present review, the following research gaps have been identified. The optimization of constraint portfolio 

optimization has been done using Genetic Algorithm (GA), different variants of GA, Particle Swarm Optimization 

(PSO),  Ant Colony Optimization (ACO) and Bacterial Foraging Optimization (BFO) algorithms. The new 

computationally efficient nature inspired optimization algorithms like Wind Driven Optimization, Biogeography 

Based Optimization (BBO), Invasive Weed Optimization (IWO), Differential Evolution (DE) optimization, which 

are very effective in solving the optimization problems, are not applied in portfolio optimization. These techniques 

can be used for portfolio optimization. 

 
Portfolio optimization can yield substantial benefits in terms of risk reduction. The recent interest in asset allocation 

methods, including international diversification, has also spurred interest in portfolio optimization. Another factor is 

the increased use of sophisticated nature inspired computing methods in the investment industry, together with 

increased computing power.  There is an increased emphasis on risk control in the investment management industry. 

Thus there is a strong requirement of application of a recent nature inspired technique on the portfolio optimization 

problem. 
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