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A study of the effect of drag force on anmicropolar flow past a sphere 

specifying uniform velocity away from the boundaries. We find a 

similarity solution, assuming the fluid outside the sphere and satisfies 

the Eringen’s micro polar equations and applying no slip condition at 

the sphere of the surface. An appearance for drag force is obtained.  It 

is found that the increase in the coupling parameter with fixed coupling 

stress parameter is to decreases drag. Further a reversed behavior is 

noticed that the drag is increases andthe same is represented 

graphically. 
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Introduction:- 
The earliest formulation of a general theory of microcontinua is accredited to Eringen [1] has considered as fluids 

with deformable microelements. Eringen’s [2] ‘micropolar fluid theory’ is based on the assumptions that the 

deformation of the fluid microelements is very small. This theory is still capable of taking into account the effect of 

microrotational surface and body couples. The evaluation of uniform flow past a spherical shell in Newtonian stokes 

flow has been extensively investigated in the literature, because of its application in lubrication theory, transpiration 

cooling and other important applications. The stokes uniform flow past a porous sphere has also been investigated 

by several authors with the assumsion of axisymmtric flow (  Padmavati et al [3], Berman [4], Rudraiah et al [5]). 

However in environmental pollution problems, particularly in water pollution problem, it is central to consider the 

effects of suspended particles on the flow past a sphere. The effect of these suspended particles may be taken into 

account either using Eringen’smicropolar fluid model or using Saffman dusty fluid model. The Saffman dusty fluid 

model does not much importance of the effect of micro rotation of balanced particles unless we consider principal of 

angular momentum in addition to linear momentum. The micropolar fluid model has built in mechanism of taking 

care of micro rotation. 

 

The recently K. Ramalashmi and PankajShukla[6] investigated Drag on a porous sphere embedded in micropolar 

fluid.Jize Sui, et al [7] is investigation for the shear flow and heat transfer of a micropolar fluid by means of novel 

constitutive models is valuable .Jian-Jun Shu and JennShiun Lee [8] they obtain fundamental Stokes and Oseen 

solutions for micropolar flow in three dimensions, so that the point force and point couple can be prescribed in any 

direction. Karl-Heinz Hoffmann et al [9] they studied the resistant force exerted on a sphere moving with a constant 

velocity in a micro-polar fluid. 
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Presently the analytical study of micropolar fluid flow past an impermeable sphere specifying identical Velocity far 

From the Boundaries. The expression for drag force is determined. The evaluation of drag coefficient on non - 

dimensional coupling parameter N1 and coupling stress parameter N3 is discussed and presented graphically.  

  

2. Mathematical Formulation  

Consider a steady incompressible micropolar fluid flow past an impervious sphere of radius ‘a’ embedded in a 

sparsely packed porous medium. The schematic representation is show in diagram under assumptions and 

approximations made together with governing by the equations of continuity, conservation of momentum and   

Conservation of angular momentum                    
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                    Fig.1: Physical configuration of problem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Physical configuration 

where 


q is the velocity,   is the coupling viscosity ,


 is the angular velocity, p  is the pressure,    is the 

coupling viscosity,    is the bulk viscosity co-efficients and  is the shear viscosity co-efficients  is the bulk 

spin viscosity co-efficients and   is the shear spin viscosity co-efficients.   
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Stream function   ,r  is introduced, such that the equation of continuity is satisfied in spherical polar co-ordinate 

system for porous regions and defined as:  
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By removing the pressure term from equations (2) and (3) will obtained as:  
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We now assume 10     , equation (5) using this resolution we get  
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3. Boundary conditions 

To solve the above governing equation we considered the boundary conditions are no-slip condition given by    
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The  flow has uniform velocity when Far away from the sphere given by 

  ,sin
2

~, 2
2


r

r as   r .                                                                                                                           (9)  
 

 

4. Method of solution 

The boundary condition from equation (9) suggests the following similarity solution  
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Substituting equation (10) in (7), then functions   ,r reduces to fourth order ordinary differential equation in 

 rf  as follows: 
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The corresponding  rf , from equation (8) and (9) reduces to: No-slip condition of solid sphere at the surface is 

given by
 

  01 f ,         01 f .  at  r=1                                                                                                                           (12)                                                              

 

Further, the uniform velocity extreme away from the boundary, from equation (10) reduces to: 
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The solution for the equations (11) is obtained analytically by using thetransformation  
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Substituting equation (14) in equation (11), it reduces to second order ordinary differential equation in  rg as,  
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Further, consider the transformation function  rg  as 
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Where  rw  the arbitrary function. Thereby, equation (15) reduces to: 
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Which is the modified Bessel’s differential equation, and its solution in terms of modified Bessel’s function is given 

as: 
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Where, 1C  and 1D  are arbitrary constants. Thus, from equation (18) we have: 
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Further, equation (14) reduces to a second order ordinary differential equation with variable co-efficient as: 
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Equation (20) is an ordinary differential equation of order two with variable co-efficient; its general solution can be 

obtained by the method of variation of parameters and is given by: 
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Where 1A  and 1B  are arbitrary constants.  

as r  then   rNI 23 .  Therefore, the abovesolution is valid if and only if  01 C . Hence equation 

(21) reduces to: 

   .231

2

1
1 rNKrNDrB

r

A
rf                                                                                          (22)         

 

Where
1A ,

1B ,
1D  are constants to be evaluate using the boundary conditions  

 (8) and (9). Determining these constants and on substitution, equation (22) reduces to:      

   Nre
rNNrN

NNr
rf 1

2

22 1
1

2

3

2

133

2














                                                                  (23) 

In terms of stream function, from the equation (10) we get: 
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This equations shows the function of coupling parameter and coupling stress parameter  

The shearing stress is given by 
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On non – dimensionlisingequation  (25) reduces to    
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When the sphere on the surface (i.e r =1), the shearing stress becomes 
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5. Determination of the Drag force  

The drag force F experienced by an impermeable sphere of radius ‘a’ is defined by
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On evaluation, equation (29) reduces to as: 
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Further, the drag coefficient can be written  as 
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Substitution of equation (30) in equation (31), itreduces to: 
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Where Re is the Reynolds number and if S=0, then equation (30) reduces to: 
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One of the result of Happel and Brenner [10] 
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Fig 1:-Dependence of the Drag coefficient on coupling stress parameter N3=1 for various values of coupling 

parameter N1 
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Fig 2:-Dependence of the Drag coefficient on coupling stress parameter N3=5 for various values of coupling 

parameter N1 
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Fig 3:-Dependence of the Drag coefficient on coupling parameter N1 =0.1 for various values of coupling stress 

parameter N3 
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Fig 4:-Dependence of the Drag coefficient on coupling parameter N1 =0.5 for various values of  coupling stress 

parameter N3 
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Results:-  

In this paper we study dependence of drag coefficient with variation of coupling parameter and coupling stress 

parameter for the steady flow of viscous. The drag experienced by a sphere embedded in porous medium, using the 

no-slip condition at the solid surface and uniform shear flow far away from the region as the boundary conditions.   

Also, the expression for the drag co-efficient CD is obtained. 

 

From figures 1 and 2, we noticed that the drag co-efficient CD decreases with increase coupling parameter N1 for 

fixed coupling stress parameter N3 =1 and N3 =5 near the solid surface and maintains asymptotic behavior away 

from the surface.  Further, figures 3 and 4 shows that the increase coupling stress parameter N3, drag co-efficient CD 

is increases  for fixed coupling parameter N1 =0.1 and N1= 0.5. 
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