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In situ injectable gelling systems have been extensively investigated 

with the aim of being applied for minimally invasive drug delivery or 

injectable tissue engineering. This article explores the injectable in-situ 

gelling system for prolonged release parenteral drug delivery system 

and their strategies of preparation. Here, we describe in situ-forming 

injectable hydrogel systems, prepared usinga variety of chemical cross 

linkers or physical interactions, for application in drug delivery. There 

are many newer approaches for in situ injectable hydrogels that can be 

delivered in minimally invasive techniques such as injection, ocular or 

nasal administration while protecting drugs or cells from the hostile 

environment. Recently, the Michael addition reaction between thiol and 

vinyl groups, the click reaction between bis (yne) molecules and multi 

arm azides, and the Schiff base reaction have been investigated for 

generation of injectable hydrogels, due to the high selectivity and 

biocompatibility of these reactions. Non-covalent physical interactions 

have also been proposed as cross linking mechanisms for in situ 

forming injectable hydrogels. Hydrophobic interactions, ionic 

interactions, stereo-complex formation, complementary pair formation, 

and host-guest interactions drive the formation of 3D polymeric 

networks. In particular, supramolecular hydrogels have been developed 

using the host-guest chemistry of cyclodextrin (CD), which allows 

highly selective, simple, and biocompatible cross linking.  Finally, we 

review the current state of the art of injectable hydrogel systems for 

application in drug delivery, cell therapy and tissue regeneration.  

 
Copy Right, IJAR, 2018,. All rights reserved. 

…………………………………………………………………………………………………….... 

Introduction:- 
Hydrogels are the polymeric materials with three dimensional networks, which have gained much attention in 

biomedical fields as carriers for drugs, protein, cells, and others because of their good biocompatibility, solute 

permeability and tunable release characteristics [1].The retaining ability of a large amount of water within their 

structures which results in high water content and soft-surface properties is the character that makes them 

compromised on the surrounding tissues and leads to a good biocompatibility. Since the development of hydrogels 

in 1960s, numerous studies on adapting hydrogels as biomaterials have been reported. Especially, the in situ forming 

hydrogels which usually show sol-to-gel transition at the in-situ site where they are administrated into the body, 
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exhibit promising potentials for clinic applications. It is more practicable to apply in-situ forming hydrogels to 

tropical drug delivery, injectable implant, tissue engineering scaffold and so on [2-4]. The drug/cell can be mixed 

with the aqueous sol for convenient administration. The development of injectable in situ forming drug delivery 

systems has received a considerable interest over the last decade. In situ gelling systems could potentially alleviate 

several drawbacks associated with contemporary regenerative medicine approaches and scaffolds. Primarily, they 

minimize the invasiveness of the open surgical technique and can conform to complex 3D geometries, which is 

critical in implant drug delivery system, repair of trauma, and regeneration post-tumor resection. More importantly, 

this allows for delivery of cells and growth factors locally, which could potentially lead to faster and complete 

regeneration [5]. 

 

Injectable hydrogels which can form a gel state after injection into the body are advantageous in biomedical 

applications due to their high shape ability which can fill irregular defect sites [6], and minimally invasive delivery 

of a large amount of hydrogel together with bioactive molecules/cells [7] that can eliminate large incision and 

reduce recovery time, risk of infection, and pain to the patient [8]. Injectable polymers have drawn considerable 

attention as promising biomaterial for drug delivery and regenerative medicine. Multiple biocompatible and 

biodegradable polymers are routinely employed as carriers of injectable DDS in order to diminish the drug side-

effect, especially for local administration and delivery when used for anticancer chemotherapy. 

 

Many polymeric materials for injectable DDS, such as nanoparticle [9-11], microsphere [12, 13], polymeric micelles 

[14-15], liposomes [16-18], and hydrogel system [19-20], have been investigated and developed. Although some 

formations of them have succeeded in clinical applications there still remain many problems that need to be 

addressed. One of the recent manifestations of stimuli responsive polymers lies in in-situ forming DDS by sol-gel 

transition for in-situ forming hydrogel because it is feasible to use them as carrier for local administration [21]. As 

representatives of stimuli-responsive polymer for in-situ forming hydrogel, there are several candidates that include 

thermoresponsive polymers such as N-isopropyl acrylamide copolymer [22], polyethylene glycol–polypropylene 

glycol–polyethylene glycol (PEG–PPG–PEG) triblock copolymer [23], and polyethylene glycol–poly L-lactic acid–

polyethylene glycol (PEG–PLLA–PEG) triblock copolymer [24]. These thermoresponsive polymers exhibit thermo-

dependent sol–gel transition in aqueous solution via hydrophobic interaction. The advantage of these kinds of 

polymers is in their ability to avoid toxic cross-linkers which are usually employed to form hydrogel. 

 

However, local injection of thermoresponsive polymers is operationally difficult. Their thermoresponsiveness is too 

sensitive for injection by syringe pump and for this reason they must be cooled down to below the transition 

temperature before they can be injected. Furthermore, ion-mediated cross-linked hydrogels, such as alginates, which 

form a gel upon contact with divalent cations, have been widely researched as injectable in-situ forming DDS and 

tissue engineering because of their biocompatibility [25, 26]. Many alginate derivatives such as lectin-modified 

alginate [27] and RGD containing alginate [28] have also been synthesized. Despite many of their applications, 

alginate hydrogels have limited use because of their low shelf lives. 

 

In- situ gels are smart polymeric systems which are capable of undergoing rapid sol-to-gel transformation triggered 

by external stimulus such as temperature modulation, pH change or ionic exchange etc. on instillation from which 

the drug gets released in a controlled and sustained manner to obtain defined blood levels over a specified time, as 

well as by avoiding the systemic circulation it reduces toxicity in normal tissues [29, 30]. These are liquid at room 

temperature but undergo gelation when there is environmental changes like change in pH or temperature, ionic 

concentration, osmolarity or irradiation[31], magnetic field, ultrasound or visible wavelength in case of 

photosensitive systems in responsive systems [32, 33].  

 

In contrast to very strong gels, they can be easily applied in liquid form to the site of drug absorption. At the site of 

drug absorption they swell to form a strong gel that is capable of prolonging the residence time of the active 

substance. Mostly, biodegradable polymeric materials such as natural polymers including polysaccharides and 

polypeptides, and synthetic polymers such as PLA and PLGA are used for its formulation [34]. 

 

A key requirement of in-situ depot-forming systems for local delivery is the injectability using standard gauge 

needles either in a vial/syringe or a pre-filled syringe configuration [35]. Ideally,  an  in -

situ  gelling  system  should  be  a  low  viscous,  free flowing  liquid  to  allow  for  reproducible administration. In-

situ gels are administered by injectable as well as oral, ocular, rectal, vaginal and intra peritoneal routes. [36]. 
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Need of In-situ gelling system:- 
In recent years, the development of in situ gel systems has received a considerable attention as polymeric drug 

delivery systems. The importance of in situ forming matrix systems is related to several advantages such as, for 

instance, easy application, use of non-toxic carriers, simple and economical elaboration, prolonged residence time 

and controlled drug release. Moreover these systems avoid painful surgical procedures to insert solid implants [37]. 

The in situ forming gel systems are designed such that they are fluid prior to injection. Once injected, the 

formulation responds to a change in the environment to give a high viscosity or solid depot at the injection site. The 

most studied thermo sensitive polymers are the pluronics which are poly (ethylene oxide)-poly (propylene oxide)-

poly (ethylene oxide) block copolymers. Those polymers exist as a mobile viscous liquid at reduced temperatures 

but form a rigid semisolid gel network with an increase in temperature. Unfortunately, pluronic gels are obtained at 

high polymer concentrations only (between 20 and 30%) and have been shown to erode rapidly [38]. Traditional 

drug delivery system has got many disadvantages such as high plasma concentration in the systemic circulation 

when the drug is administered parenterally that result in undesirable side effects [39, 40]. Additionally, many drugs 

undergo high first pass metabolism and therefore show less bioavailability when given orally. In situ gel 

formulations offer an interesting alternative for achieving systemic drug effects of parenteral routes, which can be 

inconvenient for oral route, which can result in unacceptably low bioavailability and passes the hepatic first-pass 

metabolism, in particular of proteins and peptides[41]. Although, parenteral route offers rapid onset of action with 

rapid declines of systemic drug level, it requires frequent administration which ultimately leads to patient 

discomfort.Novel technologies have been developed to overcome these problems by reducing total no of injection 

throughout the effective treatment. In-situ drug delivery system is one of the most effective controlled release drug 

delivery systems that have been formulated using injectable and biocompatible smart polymer. This system offers 

attractive opportunities and provides sustained release of drug with less pain and less invasive technique thereby 

reducing frequency of administration and improving patient compliance. 

 

Advantage:- 

1. In–situ gel offers sustained and prolonged action in comparison to conventional drug delivery 

2. Production of such device is simple and thus minimizes manufacturing costs and associated investments. 

3. Ease of administration and improved patient compliance. 

4. Deliverance of accurate dose 

5. In situ gels can also be engineered to exhibit bioadhesiveness to facilitate drug targeting, especially through 

mucus membranes, for non-invasive drug administration. 

6. In situ gels offer an important “stealth” characteristic in vivo, owing to their hydrophilicity which increases the 

in vivo circulation time of the delivery device by evading the host immune response and decreasing phagocytic 

activities. 

7. Reduced toxic and side effects as the drug is delivered locally at the site of action therefore no harms to the 

healthy tissues can be seen. 

 

Disadvantage:- 

1. It requires high level of fluids. 

2. It leads to degradation due to storage problems. 

 

Approaches In The Design Of In Situ-Forming Injectable Hydrogels:- 

Injectable hydrogels prepared by chemical cross linking:- 

Michael addition for formation of injectable hydrogels:- 

Michael addition is the nucleophilic addition of a carbanion or a nucleophile, such as thiols and amines, to an α, β 

unsaturated carbonyl compound [42]. The reaction is highly selective under physiological conditions, without 

involving toxic reagents and side products. Accordingly, this reaction has been widely exploited for the preparation 

of injectable hydrogels for biomedical applications. For example, the Michael addition reaction can occur between 

thiol and vinyl sulfone (VS) or aminoethylmethacrylate (AEMA). As a polymer backbone, synthetic and natural 

polymers have been used for the preparation of hydrogels, such as poly (ethylene glycol) (PEG), collagen, HA, and 

heparin [43-47]. Cells and biopharmaceuticals can be encapsulated within such a hydrogel by simple mixing with 

the polymer precursor solutions. Extracel
TM

 is one of the typical injectable hydrogels created by Michael addition 

between a thiol modified carboxymethyl HA and gelatin modified with diacrylated PEG [43, 48-50].  
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Click reaction for formation of injectable hydrogels:- 

Click chemistry is a Cu (I)-catalyzed reaction between azide and terminal acetylene groups, forming 1, 2, 3-triazoles 

[51, 52]. This reaction is widely employed for biomedical applications, because of the high yield, region specificity, 

absence of toxic byproducts, and rapid reactivity under physiological conditions. Using click chemistry, various 

hydrogels have been developed for drug delivery and tissue engineering applications [53-56]. A polymeric 3D 

network has been fabricated using a dipolar cyclo addition reaction between the two types of derivatives in the 

presence of a catalytic amount of Cu (I), at room temperature. Recently, copper-free click chemistry has also been 

developed using azide-alkyne cyclo addition between difluorinated cyclo octyne (DIFO3) and azide, and applied to 

in situ hydrogel formation [57, 60]. Simple mixing of the polymer precursor solutions with a cell suspension resulted 

in hydrogel formation via the highly specific click reaction of azide with acetylene, encapsulating the cells. In 

addition, post-modification of the hydrogel on demand, can be performed by subsequent functionalization of the 

remaining azide or acetylene group. 

 

Schiff base reaction for formation of injectable hydrogels:- 

Injectable hydrogels can be prepared by a Schiff base reaction between an amine group and an aldehyde group, 

without additional chemical cross linking reagents. The residual functional groups within the hydrogel can be used 

for covalent conjugation of therapeutic molecules or additional cross linking. HA, chitosan, dextran, chondroitin 

sulfate, and poly (vinyl alcohol) have been used for the preparation of hydrogels via the Schiff base reaction [59-61]. 

The gelation time and physical properties of these hydrogels are dependent on the ratio of the amine and aldehyde 

groups. Although the cells entrapped in these hydrogels have been reported to maintain their normal morphology, 

aldehyde groups can react with other amine groups in biomolecules of cells in the body during the cross linking 

reaction.  

 

Enzyme-mediated injectable hydrogels:- 

Tyramine-conjugated polymers have been used for in situ hydrogel formation in the presence of H2O2and 

horseradish peroxidase [62-65]. The enzymatically crosslinked hydrogels can be prepared within10 min, depending 

on the polymer concentration and the enzyme/tyramine ratio. Polymer-tyramine hydrogels with high elasticity have 

been used as drug delivery depot systems [63] and tissue engineering scaffolds [61-65]. 

 

Photo-cross linked injectable hydrogels:- 

Methacrylated polymers have been used for in situ hydrogel formation by photo-crosslinking with a photo initiator 

[66]. The hydrogel precursor solution is injected into the body and is then exposed to visible or ultraviolet (UV) 

light. Photo-crosslinking has also been used to improve the mechanical properties and stability of physically 

crosslinked hydrogels [67, 68]. For example, methacrylic acid was introduced into thermosensitive polymers or 

electrostatically crosslinked hydrogels. The thermosensitive photopolymerized hydrogels demonstrated improved 

mechanical properties. However, the practical applications of photo-cross linked hydrogels are limited due to the 

possible toxicity of photoinitiators, the long exposure time, and the short penetration depth of light sources [69, 70]. 

 

Injectable hydrogels prepared by electrostatic interaction:- 

Alginate-based injectable hydrogels:- 

Alginate is an anionic polysaccharide derived from sea algae. Alginate hydrogels are formed by simple mixing of 

alginate solutions with divalent cations, such as Ca
2+,

 Mg
2+

 and Ba
2+

. Alginate based hydrogels have been widely 

used for drug delivery [71], cell therapy [72, 73], and tissue engineering [62-65]. They have been used in clinical 

trials and are a component of FDA approved medical products. The formation and the mechanical strength of 

alginate-based hydrogels can be controlled by changing the concentration and the type of cation added. For example, 

the rate of alginate hydrogel formation increased with increasing total calcium content in the case of CaCO3/d-

glucono-δ-lactone (GDL) and CaSO4/CaCO3/GDL systems [74]. The mechanical properties of the alginate 

hydrogels were improved with increasing alginate concentration, total calcium content, molecular weight, and 

glucuronic acid content of the alginate. However, alginate hydrogels formed by ionic interaction are not stable in the 

body, because ionic molecules diffuse out from the hydrogels into the body fluid [73-75]. In addition, the formation 

of alginate hydrogel is difficult to control, and the hydrogel has poor cell adhesion [76]. To improve the stability and 

mechanical properties of this type of hydrogel, highly stretchable and tough alginate hydrogels have been prepared 

by additional covalent cross linking [77, 78]. 
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Chitosan-based injectable hydrogels:- 

Chitosan is an alternating copolymer of 2-acetamido-2-deoxy-β-d-glucopyranose and 2-amino-2-deoxy-d-

glucopyranose derived from naturally occurring chitin. Chitosan can form a hydrogel complex with polyanionic 

molecules via electrostatic interaction [79].Temperature and pH-responsive chitosan-based hydrogels have been 

prepared with polyol-salts possessing a single anionic head, such as glycerol-, sorbitol-, fructose-, or glucose-

phosphate salts (polyol- or sugar-phosphate) [80-83]. The driving force behind hydrogel formation includes 

hydrogen bonding, electrostatic interaction, and hydrophobic interaction between chitosan and polyol-phosphate 

salts. The chitosan solution remains liquid at physiological pH and turns into a hydrogel at body temperature. Drugs 

and cells can be easily entrapped within the hydrogel by mixing them with the precursor solution at low temperature 

prior to injection. 

 

Stimuli-responsive injectable hydrogels:- 

Temperature-responsive injectable hydrogels:- 

Some polymers undergo solubility changes and phase transitions in response to environmental temperature [84, 85]. 

This threshold is referred to as the lower critical solution temperature (LCST) [86]. For example, poly (N-

isopropylacrylamide) (PNIPAAm) undergoes phase transition at temperatures above 32
◦
C in an aqueous solution. 

Because the LCST of PNIPAAm is increased by copolymerization with a hydrophilic polymer, in situ gelation 

temperature can be adjusted to body temperature [84]. In addition, some amphiphilic polymers were used for 

hydrogel formation, by micellar packing, in response to temperature changes [87]. Linear and star shaped block 

copolymers composed of central hydrophilic polyethylene oxide (PEO) and terminal PNIPAAm, showed a 

temperature-responsive behavior, forming relatively strong injectable hydrogels [86]. Recently, biodegradable 

temperature-responsive hydrogels were developed for biomedical applications by combining non-biodegradable 

PNIPAAm and biodegradable polymers [88-90]. The HA-g-PNIPAAm conjugate forms a hydrogel network, 

exhibiting reversible temperature-responsive solubility [89]. The degradation rate, swelling ratio, and 

cytocompatibility of the hydrogels can be controlled by changing the weight ratio of PNIPAAm to HA for tissue 

engineering applications. A PEO-PPO-PEO triblock copolymer, under the tradename of Pluronic®, is one of the 

most commonly used thermosensitive hydrogels for biomedical applications. Dehydration and increasing 

hydrophobicity of the PPO block with increasing temperature results in micelle formation, which is the driving force 

for in situ hydro-gel formation. This hydrogel formation is dependent on the concentration and temperature of the 

polymer precursor solution. Pluronic® with a different composition and molecular weight of copolymer has been 

used for applications in drug delivery, gene delivery, tissue adhesion prevention, and tissue engineering [91]. 

However, Pluronic® systems have the disadvantages of having weak mechanical strength and being non-

biodegradable. Biodegradable PEG-PLGA-PEG also forms a thermoresponsive hydrogel similar to the PEO-PPO-

PEO triblockcopolymer systems [92]. Despite the wide clinical exploitation of PLGA based copolymers with FDA 

approval, they are known to cause harmful side effects to biomolecules, cells, and tissues in some cases after they 

are degraded to acidic monomers [93, 94]. To overcome these issues, porous devices, microparticles, and hydrogels 

have been developed using this type of polymers [94]. 

 

Dual-responsive injectable hydrogels:- 

The main disadvantage of physically cross linked thermo sensitive hydrogels is their weak stability and mechanical 

properties in the body. Accordingly, dual-responsive hydrogels have been developed to alleviate these problems. For 

example, temperature and pH-responsive hydrogels have been developed using PNIPAAm-based copolymers. 

PNIPAAm is copolymerized with pH-responsive segments, such as poly (propylacrylic acid) (PPAA), poly (N-

isopropylmaleamic acid) (PNIPMAA), and poly (methacrylic acid) (PMAA) [95]. These synthetic polymers are not 

only temperature responsive but also significantly pH responsive due to the presence of carboxyl groups. In 

addition, temperature and pH-responsive hydrogels have been prepared with multiblock copolymers [96]. The pH-

responsive sulfamethazine oligomers (SMO) have been conjugated to both ends of thermoresponsive poly (ε-

caprolactone-co-lactide)-PEG-poly (ε-caprolactone-co-lactide). The resulting SMO–PCLA–PEG–PCLA–SMO 

multiblock copolymer solution shows a reversible sol-gel transition at pH 7.2 and body temperature. The mechanism 

of hydrogel formation is the hydrophobic interaction between SMO and PCLA blocks. These temperature and pH 

(dual) responsive hydrogels have enhanced mechanical strength and prevent gelation of the precursor solution in the 

needle during injection into the body. Other dual-responsive hydrogel systems that enhance the mechanical 

properties of physically cross linked hydrogels have also been developed using photo and temperature responsive 

hydrogel systems [97, 98]. 
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Supramolecular injectable hydrogels prepared by self-assembly:- 

Self-assembling injectable hydrogels by complementary binding:- 

Self-assembling hydrogels have been developed using various complementary bindings, such as ligand-receptor 

pairs [99-101], antigen-antibody pairs [102-104], and base-pairing interactions [105-107]. Because ligand-receptor 

pairs have an extremely high binding affinity, the formation of a complex between a receptor and a ligand can be 

used to drive formation of injectable hydrogels. For example, a streptavidin-biotin pair has been used for the 

preparation of injectable hydrogels. PLA-PEG–biotin microparticles have been cross linked with avidin to generate 

3D porous matrices that self-assemble at the injection site. In addition, multiple repeats of tryptophan rich domains 

and proline rich peptide domains have been used for hydrogel formation [102]. The amount of crosslinking protein 

affected the hydrogel formation rate, as well as the physical strength of the hydrogels. Moreover, growth factors 

could be added to the hydrogel precursor solution to promote cellular functions within the hydrogel. Antibody-

antigen interaction has also been used for the formation of an injectable 3D network [104-106]. Simple mixing of 

antibody-conjugated polymer and antigen-grafted polymer solutions can result in hydrogel formation. Treatment 

with free antigen or free antibody also affects the physical properties of these hydrogels. In addition, self-assembling 

hydrogels have been prepared using three complementary branched DNA sequences [105-107]. However, the 

relative difficulties in mass production and chemical modification of biomolecules, as well as the potential safety 

issues involved, should be addressed to expand the applications of these hydrogels to therapeutic purposes. 

 

Self-assembling injectable hydrogels by host-guest interaction of cyclodextrin:- 

As an alternative to biological complementary binding pairs, self-assembling hydrogels have been developed using 

host-guest interaction of the cyclodextrin (CD) family. CDs are series of natural cyclic oligosaccharides composed 

of six, seven, or eight d-glucopyranoside units (α, β, and γ-CD). They have a hydrophobic inner cavity, by which 

they can generate an inclusion complex with other guest molecules, such as PEG, adamantane, and cholesterol 

[108]. Recently, injectable hydrogels that make use of an inclusion complex of CD have emerged as another series 

of promising physical hydrogels that can be used in various biomedical applications [109-111].  PEG can penetrate 

the inner cavity of α-CD to generate an inclusion complex. Injectable hydrogels have been created by mixing high 

molecular weight PEG and α-CD in aqueous solution [109]. This type of hydrogel is reversibly thixotropic and non-

degradable high molecular weight PEG is not ideal for in vivo applications. To improve the stability of the hydrogel, 

PEO-PPO-PEO was used to make a complex with α-CD. β-CD and adamantane, and β-CD and cholesterol pairs 

have also been investigated for the preparation of injectable hydrogels [110-112]. However, CD-based hydrogels 

have an intrinsic limitation in in-vivo applications, due to the low binding affinity of CD to guest molecules and the 

low stability of the resulting hydrogels in the body [112]. 

 

Evaluation And Characterization Parameters For Injectable In-Situ Gels:- 

Clarity:- 

The clarity of formulated solutions determined by visual inspection under black and white background [32, 113] 

 

Texture analysis:- 

The consistency, firmness &cohesiveness of in situ gel are assessed by using texture profile analyzer which mainly 

indicated gel strength & easiness in administration in vivo higher value of adhesiveness of gel are needed to 

maintain an intimate contact with mucus surface [32, 113]. 

 

pH of gel:- 

The pH can be determined using pH meter. The formulation is taken in beaker & 1ml NaOH added drop wise with 

continuous stirring and pH is checked by using pH meter [114]. 

 

Inner morphology of the dual cross linked hydrogels:- 

The inner morphology of the dual cross linked hydrogels are investigated using scanning electron microscope. 

Briefly, the lyophilized hydrogel samples are surface gold sprayed and observed using SEM at an accelerating 

voltage of 10 kV. At last, average pore diameter and pore area are quantified using Image software [115].  

 

Gel-Strength:- 

This parameter can be evaluated using a rheometer. Depending on the mechanism of the gelling of gelling agent 

used, a specified amount of gel is prepared in a beaker, from the sol form. This gel containing beaker is raised at a 

certain rate, so pushing a probe slowly through the gel. The changes in the load on the probe can be measured as a 

function of depth of immersion of the probe below the gel surface [116].  
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Gelling capacity:- 

In-situ gel is mixed with tissue fluid in the specific proportion to find out gelling capacity of injectable product. The 

gelation assessed visually by noting the time for & time taken for dissolution of the formed gel [117]. 

 

Gelation temperature and in situ gel formation studies:- 

One millilitre of the polymeric system is transferred in a small bottle; 1ml deionized water is added and incubated at 

37.4 ºC. Separately 1 ml of the polymeric system is introduced to dialysis against PBS pH 7.4 in cellulose tube at 

37.4 ºC for 120 min. The system is monitored every 15 min to see if gelation has occurred. For the in vivo 

evaluation of the system, 0.1-0.3 ml of the polymeric composition is injected subcutaneously into the back of the 

neck or abdominal area of the rats. After 120 min the marked area is opened through a surgery operation and the fate 

of the hydrogels are evaluated [118]. 

 

Rheological studies:- 

The viscosity measured by using Brookfield viscometer, cone & plate viscometer [119]. 

 

Water content and swelling studies:- 

The prepared dual crosslinked hydrogels are transferred to beakers that containing 37 ºC distilled water to 

investigate their water content. The swollen hydrogels are taken out and surface water blotted at determined time 

point to weigh their mass until reaching a constant mass. The swollen hydrogels are lyophilized and the dry gel is 

also weighed. Equilibrium water content (EWC) and swelling ratio are determined by the following equations [120, 

121]:  

 

EWC (%) = We-Wd/We x 100 ……………………..(1) 

Swelling Ratio (%) = WS-Wd/Wd x 100…………..(2) 

 

In equation (1) We is weight at equilibrium swollen state and Wd is dry weight. In equation (2) Ws is the swollen 

weight at given time and Wd is dry weight. 

 

In vitro degradation studies:- 

Degradation of hydrogels is assessed at 37ºC with continuous shaking in a shaking water bath and simulated body 

fluid (SBF) is changed every two days. At predetermined time intervals (1-6 weeks), hydrogels are rinsed with SBF 

and lyophilized. The vacuum dried hydrogels are weighed and weight loss percentage is calculated by the formula 

[122]:  

Weight Loss (%) = Wi -Wd/ Wi  x 100 

Here Wi is initial weight of the sample, Wd is dry weight of the sample. 

 

In-Vitro Drug Release Studies:- 

The drug release studies are carried out by using the plastic dialysis cell. The cell is made up of two half cells, donor 

compartment and a receptor compartment. Both half cells are separated with the help of cellulose membrane. The 

sol form of the formulation is placed in the donor compartment. The assembled cell is then shaken horizontally in an 

incubator. The total volume of the receptor solution can be removed at intervals and replaced with the fresh media. 

This receptor solution is analyzed for the drug release using analytical technique [123, 124]  

 

Histopathological studies:- 

For the histological studies, the animals are sacrificed and the intact shaved skin of injection area and the left and 

right testicles are isolated and washed with normal saline to remove blood and are fixed for 24 h at 4 ºC, and then 

dehydrated with a 50-100% v/v ethanol series with a final change in xylene, before embedding in paraffin. Five 

micrometers sections are cut and mounted onto positively charged slides, which is heated at 55 ºC to ensure 

adherence of the sections. For staining, sections are dewaxed in xylene, then rehydrated in a 100-50% ethanol series, 

and quickly rinsed in distilled water. The sections are observed under high magnification (_100/x400) light 

microscope to check histopathological changes [125, 126]. 

 

Sterility testing:- 

Sterility testing is carried out as per the IP 1996. The formulation is incubating for not less than 14 days at 30-35ºC 

in the fluid thioglycolate medium to find the growth of bacteria & at 20-25ºC in Soya bean casein digest medium to 

find the growth of fungi in formulation [127]. 
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Accelerated stability Studies:- 

Formulations are placed in ambient colour vials and sealed with aluminium foil for a short term accelerated stability 

study at 40±2°C and 75±5% RH as per International Conference on Harmonization (ICH) states Guidelines. 

Samples are analyzed every month for clarity, pH, gelling capacity, drug content, rheological evaluation, and in vitro 

dissolution [128] 

 

In vivo studies:- 

The experiment is performed in accordance to the guidelines of international animal studies approved by the ethics 

committee. Male rats 8 weeks old, 250-300 gram weight that are given food and water ad libitum are used. During 

the whole study, uniform feed and free water is supplied. In this study the serum testosterone level of four groups 

(A, B, C, and D) of male rats (n = 6) at each time intervals after treatment is compared with the initial base line of 

the same group. Group A received no injection to verify the natural fluctuation of serum testosterone concentration 

during the study. Group B received µl injection of drug in pure form. Group C received µl injection of the in situ gel 

forming system containing drug. Group D received 100 µl injection of the drug free in situ gel forming system as 

placebo. All samples are injected subcutaneously at the back of the neck of the rats. The level of serum testosterone 

is determined for 3 days as testosterone base line in each group before starting the study. Blood samples are 

collected at 3 and 6 h in the first day and on days 2, 3, 7, 14, 21, 28, 35, 42 directly from the heart of the animals. 

The blood samples are centrifuged for 15 min at 14,000 rpm to separate serum. The serum testosterone level is 

determined by Liaison testosterone kit as direct chemiluminescence immunoassay [129, 130]. Results are expressed 

as mean ± standard error (SE), or mean ± standard deviation (SD), and significance between two groups is 

determined by Student t-test.  

 

Conclusion:- 
In this review, we have summarized recent progress in the art of design of in situ injectable gelling systems. The 

gelling process should occur under mild conditions for biomedical applications without damaging incorporated 

pharmaceuticals and cells. Therefore, cross links have been prepared in aqueous systems by benign chemical 

reactions such as redox/photo-polymerization, Michael addition, click reactions, enzymatic reactions; or 

physicochemical association of the molecules including thermo gelation, ion-induced gelation, inclusion complex 

formation, stereo complex formation, and complementary binding processes. Compared to the conventional therapy, 

the injectable hydrogel systems provide some advantages, such as reduced toxicity in normal tissues, localized and 

sustained delivery of the drugs in the tumor vicinity, more efficient cell apoptosis, as well as tumor growth 

inhibition. Injectable hydrogels prepared by chemical cross linking demonstrate good mechanical properties, but in 

vivo applications have been limited due to the possible cytotoxicity of the reactive chemical cross linkers. In 

contrast, injectable hydrogels prepared by physical cross linking can be formed easily without reactive chemical 

reagents, but the hydrogels have poor stability and mechanical properties in the body. Supramolecular injectable 

hydrogels are fabricated by self-assembly of receptor-ligand pairs, complementary pairs, and host-guest pairs.  

 

Future Scope:- 

This smart polymeric injectable gelling system has come out as a promising drug delivery system mainly for the 

very potent drugs like anticancer molecules and protein and peptide drugs. The manufacturing process is very simple 

which lessen the cost of the product which are otherwise very expensive. Also they possess the tremendous 

capability to deliver the drug effectively to the site with minimal or no systemic side effects. It can be formulated 

into a suitable formulation for easy injection prior to in-situ gelation and show controlled release. Therefore it can be 

used for effective delivery of anti cancer molecules to the site with no or very less systemic bioavailability and no 

harm to the healthy organs.  Future use of biodegradable and water soluble polymers for the in-situ gel formulations 

can make them more acceptable and excellent drug delivery systems for use of injectable drug depots for 

systemically active compounds. The extensive work demonstrating the use of these materials for delivery of insulin, 

a signaling hormone that acts on systemic sites in the liver and skeletal muscle, points to an obvious application for 

skin-associated delivery of depots containing systemically active drugs. In particular, there is logical application for 

these technologies in the delivery of biologics, which remain very difficult to administer orally, in order to enable 

therapeutic use by patients at home that would otherwise require infusion in a clinic. Another application for 

injectable biomaterials that aligns with standard practice is in vaccination. Hormonal therapy has been the main 

treatment of advanced and metastatic prostate and breast cancers. Initially luteinizing hormone-releasing hormone 

(LHRH) agonist therapy consisted of daily subcutaneous injections of LHRH agonists (e.g., leuprolide, goserelin, 

triptorelin) are successful line of therapy.  
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