

RESEARCH ARTICLE

TUNABLE MIXED DECIMATION MULTIPATH DELAY FEEDBACK FOR RADIX 2^K FFT.

G. Ganga bhavani¹ and Dr. G. r. l. v. n srinivasa raju².

.....

- 1. Pg scholar, dept. Of ece, shri vishnu engg. College for women, bhimavaram.
- 2. Professor & head, dept. Of ece, shri vishnu engg. College for women, bhimavaram.

Manuscript Info

Abstract

Manuscript History

Received: 14 April 2018 Final Accepted: 16 May 2018 Published: June 2018

Keywords:-

Decimation in Frequency (DIF), Decimation in Time (DIT), Multipath Delay Feedback (MDF), Mixed Decimation Multi Path Delay Feedback (M²DF), Pipelined-Parallel Architecture. The Decimation Multipath Delay Feedback (M^2DF) is a technique for the radix 2^k FFT, which eliminates the stand by time of arithmetic modules in computing units. In this paper tunable M^2DF architecture is proposed. In this, tunable arithmetic units are utilized in place of conventional arithmetic units to overcome the under utilization of arithmetic units in conventional M^2DF architecture. The results show that, the tunable M^2DF technique utilizes the lesser number of LUTs and slice registers than the conventional M^2DF technique. In addition, the proposed technique having advantage of high throughput with reduced delay and area compared with conventional M^2DF .

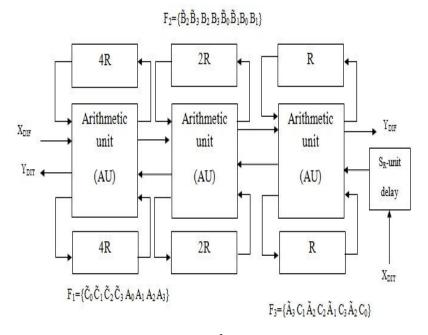
.....

Copy Right, IJAR, 2018,. All rights reserved.

Introduction:-

Fast Fourier Transform (FFT) is mostly used algorithm for Discrete Fourier Transform computation in the field of signal processing. The area efficient and high performance FFT implementation throws a challenge on the designers. Hardware designers are putting effort to design effectual architectures for the computation of the FFT to meet required specificatons and real-time fulfillment of present applications. Various techniques have proposed over the years to tradeoff the area and performance of the FFT. Pipelined architectures [1] are extensively used because they will achieve more throughputs and small latencies relevant for today's applications to achieve small area and to dissipate less power. The single path delay commutator (SDC) [2] is the most popular technique in the serial input and serial output scenarios. Single path delay feedback (SDF) architecture is proposed to reduce the memory banks in the pipelines [3]. The SDF concept extended to radix 2 to radix 2^k [4-6]. The high throughput requirements of communication services encouraged to multipath delay commutators [7] and multipath delay feedback (MDF) [8].

.....


The MDF structures are formed using multiple interconnected SDFs. The MDF scheme is utilized in various applications due to its efficient memory usage, but suffers from arithmetic resource utilization and it is rectified in M^2DF architecture [9], which utilizes the folding transformation technique for the significant reduction of arithmetic resources.

In this work, tunable M²DF architecture is proposed to further reduce the arithmetic operations in terms of number of LUTs and registers.

Construction of M²DF Architecture:-

Design of parallel radix- 2^k FFT processor based on folding transformations to derive the folding matrices of DIF and DIT of SDF structures. The pipelined structure is rescheduled by incorporating DIF blocks into DIT blocks to form M²DF architecture from the SDF architecture. The M²DF mainly focus on horizontal processing in relevant to the hardware implantations and is shown in Fig.1

Address:- Pg scholar, dept. Of ece, shri vishnu engg. College for women, bhimavaram.

Fig.1:-M²DF Architecture

Arithmetic Unit:-

The M²DF architecture mainly consists of control circuit and arithmetic unit and mathematics unit. Among them arithmetic unit plays an important role.

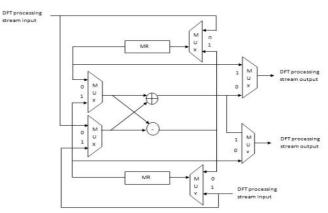


Fig. 2:-(a) Type I structure, complex adders are shared only

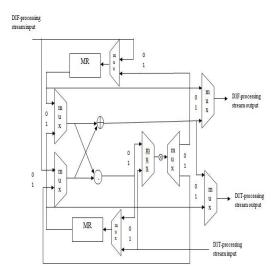


Fig. 2:-(b) Type II structure, both complex multipliers and complex adders are shared.

Conventionally two different structures are used. One is Type-I, In this adders are shared by means of streams and is shown in Fig. 2(a). Another type of arithmetic unit is Type – II, In this type adders and multipliers are reused to pick up the equipment effectiveness and is shown in Fig. 2(b).

Proposed M²DF Architecture using the tunable Arithmetic Unit:-

In the modified M^2DF architecture the conventional arithmetic units are modified using tunable arithmetic units, while maintaining the feedback structure of conventional architecture.

Tunable Arithmetic unit:-

Fig. 3 shows the tunable arithmetic unit. In this 4-stage pipelined technique is adopted. This unit consists of 6 butterfly units and 3 complex multipliers. Compared to type I and type II AUs the proposed AU having high throughput and consumes less area. Due to the tunable arithmetic unit,

the inexact multiplier configurations have much higher sensitivities than the most of the inexact adder configurations and the pipelined technique is effectively utilized. Due to these advantages tunable arithmetic unit has a double impact on the quality of solutions.

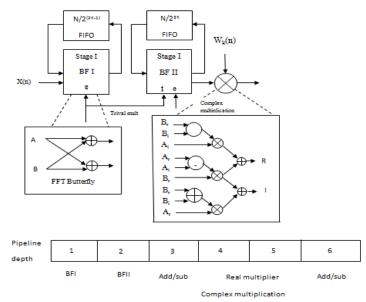


Fig. 3;-Tunable Arithmetic unit

Simulation Results:-

The simulation of the proposed M^2DF architecture and the conventional M^2DF architectures are carried out using Xilinx ISE 14.5.The simulation results are shown in Fig.4. (These Two parallel 512 point FFT designed using proposed tunable arithmetic unit).

Name		е	Value		1,482,530 ns	1,482,540 ns	1,482,550 ns	1,482,560 ns	1,482,570 ns 1,4	482,5
	7	data_out[31:0]	00000000000	0000000000000	000000000000000000000000000000000000000	0001001111011111	000000000000000000000000000000000000000	0001001111010100	000000000000000000000000000000000000000	01
	16	clk	1							
	Q	data_in[511:0]	00000000000	0000000000000	000000000000000000000000000000000000000	00000000000000	000000000000000000000000000000000000000	000000000000000)	000000000000000000000000000000000000000	00
	Ę	data_in_a(511:0	00000000000	0000000000000	000000000000000000000000000000000000000	00000000000000	000000000000000000000000000000000000000	000000000000000)	000000000000000000000000000000000000000	00
		data_in_b(511:0	00000000000	0000000000000	000000000000000000000000000000000000000	00000000000000	000000000000000000000000000000000000000	000000000000000)	000000000000000000000000000000000000000	00
	Q	data_out_1[511	00000000000	0000000000000	000000000000000000000000000000000000000	00000000000000	000000000000000000000000000000000000000	000000000000000)	000000000000000000000000000000000000000	00
		j i[31:0]	00000000000	0000000000000	000000000000000000000000000000000000000	0010000110001100	000000000000000000000000000000000000000	0010000110001101	000000000000000000000000000000000000000	10

Fig. 4:-Simulation results for Tunable M²DF Architecture for radix-2 512 point FFT.

Here data_in _a and data_in_b are inputs indicates the iteration loops and data_out is the required output. The corresponding RTL schematic of radix-2 two parallel 512 point FFT architecture is shown in Fig. 5.

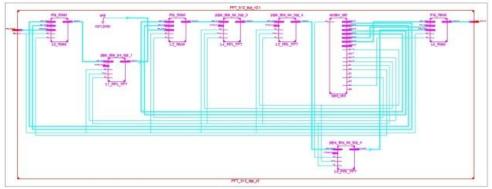


Fig. 5:-RTL Schematic for tunable M²DF of radix-2 for 512 point FFT.

Similarly, the two parallel 1024 point FFT, two parallel 2048 point FFT and their RTL schematics are shown in Fig. 6 to Fig. 9.

Name	Value		4,766,600 ns	4,766,610 ns	4,766,620 ns
🕨 😽 data_out[31:0]	00000000000	000000000000	0001110010000	0000000000000000000011	100 100000 10 10000)
🔥 cik	1				
🕨 😽 data_in[1023:0]	00000000000	00000000000	0000000000000	000000000000000000000000000000000000000	00000000000000)
🕨 😽 data_in_a[1023:	00000000000	00000000000	0000000000000	000000000000000000000000000000000000000	00000000000000)
🕨 🕷 data_in_b[1023:	00000000000	000000000000	0000000000000	000000000000000000000000000000000000000	00000000000000)
🕨 🕷 data_out_1(102	00000000000	00000000000	0000000000000	000000000000000000000000000000000000000	00000000000000)
🕨 📷 i[31:0]	00000000000	00000000000	0001110100010	000000000000000000000000000000000000000	1010001011111000)

Fig. 6:-Simulation results for tunable M²DF Architecture for radix-2 1024 point FFT.

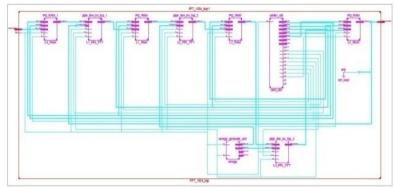
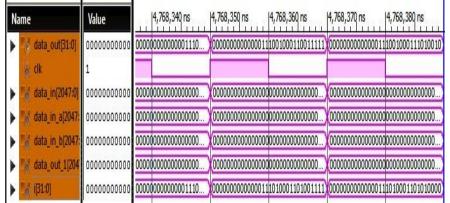



Fig. 7:-RTL Schematic for tunable M²DF of radix-2 for 1024 point FFT

Fig. 8:-Simulation results for tunable M²DF Architecture for radix-2 2048 point FFT.

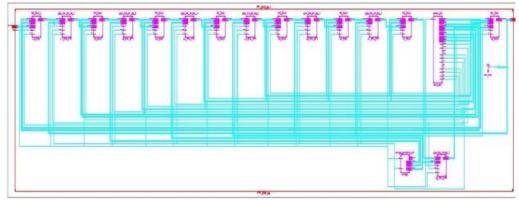


Fig.9:-RTL Schematic for M²DF of radix-2 2048 point Fast Fourier Transform.

Configuration	Structures	Slice	Slice	DSP48E1s	latency	throughput
		LUTs	registers			
Radix-2, 2/512	M ² DF FFT	2417	2077	24	524	612
	Architecture					
	Tunable M ² DF	1140	1219	20	516	618
	FFT Architecture					
Radix-2, 4/1024	M ² DF FFT	3154	3881	36	533	1196
	Architecture					
	Tunable M ² DF	2060	2139	30	523	1238
	FFT Architecture					

Table 1:-Comparison of proposed structure with existing structures

Radix-2, 8/2048	M ² DF FFT	6833	8860	84	542	2368
Kaulx-2, 8/2048		0855	8800	84	342	2308
	Architecture	4012	4670		520	2162
	Tunable M ² DF	4012	4678	70	530	2463
	FFT Architecture					
Radix-2 ² , 2/512	M ² DF FFT	3345	2790	24	524	612
	Architecture					
	Tunable M ² DF	1565	1780	24	513	613
	FFT Architecture					
Radix- 2^2 , $4/1024$	M ² DF FFT	3885	3112	36	533	1196
,	Architecture					
	Tunable M ² DF	2451	2696	32	519	1224
	FFT Architecture	_		-		
Radix-2 ² , 8/2048	M ² DF FFT	8753	5631	84	540	2368
	Architecture					
	Tunable M ² DF	11207	14836	176	531	2398
	FFT Architecture					
Radix-2 ³ , 2/512	M ² DF FFT	3436	3033	24	526	596
	Architecture					
	Tunable M ² DF	1682	1717	24	518	613
	FFT Architecture					
Radix-2 ³ , 4/1024	M ² DF FFT	5112	4225	48	536	1186
,	Architecture					
	Tunable M ² DF	3505	3992	44	528	1224
	FFT Architecture					
Radix-2 ³ , 8/2048	M ² DF FFT	9062	10265	286	540	2372
	Architecture					
	Tunable M ² DF	8446	8542	280	532	2398
	FFT Architecture					
	FFI Architecture					

Conclusion:-

The Radix-2 M^2DF based Fast Fourier Transform is most significant architecture in the DSP and various Communication systems. The FFT architecture used in the mixed decimation Multipath Delay feedback (M^2DF) eliminates the stand by time of arithmetic modules in FB architectures by integrating Discrete In Time process into the Discrete In Frequency operated computing units. Still arithmetic resources are under utilization in order to overcome this problem uses the tunable FFT is used in the place of type I and type II of arithmetic units (AUs).

References:-

- 1. M. Garrido, J. Grajal, M. A. Sanchez, and O. Gustafsson, "Pipelined radix-2^k feed forward FFT architectures," IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 21, no. 1, pp. 23–32, Jan. 2013.
- 2. Jian Wang, ChunlinXiong, Kangli Zhang, and Jibo Wei, "A Mixed-Decimation MDF Architecture for Radix-2^k Parallel FFT" IEEE transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 1, january 2016.
- 3. A. Cortes, I. Velez, and J. F. Sevillano, "Radix r^k FFTs: Matrical representation and SDC/SDF pipeline implementation," IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2824–2839, Jul. 2009.
- 4. S. He and M. Torkelson, "Design and implementation of a I024-pointpipeline FFT processor," in Proc. IEEE Custom Integr. Circuits Conf., May 1998, pp. 131–134.
- 5. M. Ayinala, M. Brown, and K. K. Parhi, "Pipelined parallel FFT architectures via folding transformation," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 6, pp. 1068–1081, Jun. 2012.
- 6. K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation. Hoboken, NJ, USA: Wiley, 1999.
- 7. N. Li and N. P. Van Der Meijs, "A radix-22 based parallel pipeline FFT processor for MB-OFDM UWB system," in Proc. IEEE Int. SOC Conf., Sep. 2009, pp. 383–386.
- S.-N. Tang, J.-W. Tsai, and Z. Wang, X. Liu, B. He, and F. Yu.: A combined SDC-SDF architecture for normal I/O pipelined radix-2 FFT.IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 23, no. 5, pp. 973–977, May 2015.
- 9. S.N. Tang, C.H.Liao, and T.-Y. Chang, "An area- and energy-efficient multimode FFT processor for WPAN/WLAN/WMAN systems," IEEEJ. Solid-State Circuits, vol. 47, no. 6, pp. 1419–1435, Jun. 2012.
- 10. E. H. Wold and A. M. Despain, "Pipeline and parallel-pipeline FFT processors for VLSI implementations," IEEE Trans. Comput., vol. C-33, no. 5, pp. 414–426, May 1984.
- 11. J. E. Volder, "The CORDIC trigonometric computing technique," IRE Trans. Electron. Comput., vol. EC-8, pp. 330-334, Sept. 1959.
- K.-J. Yang, S.H.Tsai, and G. C. H. Huang, "MDC FFT/IFFT processor with variable length for MIMO-OFDM systems," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 4, pp. 720–731, Apr. 2013.