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Abstract - Neurological disease diagnosis through MRI imaging is vital for early detection and treatment. 6 

This study utilized a combined dataset of 12,121 MRI images across 12 classes from three major neurological 7 

disorders: Brain Tumors, Alzheimer's Disease, and Parkinson's Disease. The dataset was divided into 9,894 8 

images for training and 2,227 for validation. Six YOLOv10 models (N, S, M, B, L, and X) were trained for 9 

multi-class classification and localization, with the YOLOv10-X model achieving superior diagnostic 10 

accuracy. Post-detection segmentation using the Segment Anything Model (SAM) 2.1 generated precise 11 

masks for detected bounding boxes, with plasma colormap visualization enhancing interpretability. 12 

Comparative analysis demonstrated significant improvements in diagnostic performance, underscoring the 13 

integration of segmentation and explainable AI as a robust framework for clinical decision support. This 14 

research lays the groundwork for advanced, interpretable AI-powered tools for neurological disease 15 

diagnosis. 16 
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1. Introduction 20 

The diagnosis of neurological diseases such as Brain Tumors, Alzheimer's Disease, and Parkinson's Disease is 21 
critical for early intervention and improved patient outcomes. Magnetic Resonance Imaging (MRI) serves as a 22 
cornerstone for identifying these conditions due to its ability to provide detailed anatomical and pathological 23 
information. However, interpreting MRI scans manually is time-intensive and prone to variability, making 24 
automated diagnostic systems an essential area of research. Recent advancements in machine learning (ML) and 25 
deep learning have demonstrated remarkable success in medical image analysis, particularly in classification, object 26 
detection, and segmentation tasks [1, 2]. This study explores a novel framework that leverages state-of-the-art object 27 
detection and segmentation models to enhance the diagnostic process for neurological diseases using MRI data. 28 

1.1. Leveraging Deep Learning for Improved Diagnosis 29 

Deep learning techniques have revolutionized medical imaging by enabling automated and accurate analysis of 30 
complex data. Object detection models such as the YOLO series have gained prominence for their speed and 31 
accuracy, while segmentation models like the Segment Anything Model (SAM) have improved interpretability 32 
through precise region identification [3, 4]. This study integrates six YOLOv10 models (N, S, M, B, L, and X) for 33 
classifying MRI images into 12 classes, representing Brain Tumors, Alzheimer's Disease, and Parkinson's Disease. 34 
Further, the SAM 2.1 model enhances segmentation and interpretability, applying masks to detected bounding boxes 35 
and visualizing the results using plasma colormaps. By combining these advanced techniques, the framework aims 36 
to improve diagnostic precision and reliability. 37 

1.2. Research Motivation and Proposed Approach 38 

The increasing prevalence of neurological disorders, coupled with the need for accurate and explainable diagnostic 39 
systems, drives the motivation for this research. Traditional diagnostic methods heavily rely on radiologist expertise, 40 
which can be subjective and limited by human capacity [5]. In this study, a combined dataset of 12,121 MRI images 41 
is used, encompassing 12 distinct classes across three disorders. The YOLOv10 models are trained to perform multi-42 



 

 

class classification and localization tasks, followed by segmentation using SAM 2.1. The interpretability of the 43 
results is enhanced through plasma colormap visualization, which aids in clinical decision-making by providing 44 
clear and interpretable outputs. The proposed approach addresses the challenges of traditional methods by 45 
integrating detection, segmentation, and explainable AI in a single framework. 46 

1.3. Research Contribution 47 

This study introduces a series of significant advancements in the field of medical imaging and neurological disease 48 
diagnosis: 49 

● A novel diagnostic framework integrating six YOLOv10 models for multi-class classification and localization of 50 
Brain Tumors, Alzheimer's Disease, and Parkinson's Disease across 12 distinct classes. 51 

● Utilization of the SAM 2.1 model for precise segmentation of detected bounding boxes, enhancing the 52 
interpretability of the results 53 

● Visualization of segmented regions using plasma colormaps, providing clearer insights for clinical decision-54 
making. 55 

● Comprehensive evaluation of six YOLOv10 models on a diverse neurological MRI dataset, demonstrating the 56 
superior diagnostic accuracy of the YOLOv10-X model. 57 

● A unified methodology bridging object detection, segmentation, and explainable AI to create a robust, automated 58 
framework for medical applications. 59 

This research represents a novel contribution to medical image analysis by presenting a multi-class classification and 60 
localization framework specifically tailored for neurological disease diagnosis. Unlike prior studies that focus on 61 
single conditions, this work encompasses the integrated diagnosis of three major neurological disorders, including 62 
12 distinct classes. Through the application of six YOLOv10 variants, the YOLOv10-X model emerged as the most 63 
effective in handling the complexity of multi-class tasks. 64 

 65 
Moreover, the inclusion of SAM 2.1 for post-detection segmentation, coupled with plasma colormap visualization, 66 
establishes a new standard for creating interpretable AI-driven diagnostic tools. To the best of our knowledge, this is 67 
the first attempt to apply a YOLO model to such a comprehensive dataset covering Brain Tumors, Alzheimer's 68 
Disease, and Parkinson's Disease, underscoring the innovation and potential impact of this work on clinical 69 
diagnostics. 70 

2. Related Works 71 

Brain tumor classification and segmentation presents several advanced methodologies and models. Nanda et al. [6] 72 
introduced a Saliency-K-mean-SSO-RBNN model, achieving high classification accuracies across multiple datasets. 73 
Saboor et al. [7] developed an AI-based CAD system using attention-gated recurrent units (A-GRU), which 74 
demonstrated superior accuracy on the BTD dataset. Srinivasan et al. [8] proposed three CNN models for multi-75 
classification of brain tumors, each showing impressive detection and classification performance. Roy et al. [9] 76 
utilized a Dual-GAN mechanism in an ensemble-based pipeline, achieving notable accuracy in brain tumor 77 
classification. Khalighi et al. [10] reviewed the transformative role of AI in neuro-oncology, emphasizing its 78 
precision in brain tumor management. 79 

 80 
Further advancements include Almufareh et al. [11] evaluating YOLOv5 and YOLOv7 models for segmentation and 81 
classification, with high precision and recall scores. Sarada et al. [12] presented a modified ResNet50V2 model, 82 
enhancing classification accuracy through various optimizations. Ashafuddula et al. [13] introduced ContourTL-Net 83 
for early-stage detection, achieving high sensitivity and specificity. Rajeswari et al. [14] developed the DFMN 84 
model for severity prediction, demonstrating robust performance metrics. Zakariah et al. [15] proposed the Dual 85 
Vision Transformer-DSUNET model, achieving high Dice Coefficient values for segmentation tasks. 86 
Musthafa et al. [16]  combined ResNet50 with Grad-CAM for enhanced interpretability and accuracy in brain tumor 87 
detection. Yu et al. [17] introduced HSA-Net, which significantly improved segmentation and classification 88 
outcomes. Aboussaleh et al. [18] developed Inception-UDet, an improved U-Net architecture, achieving high Dice 89 
Similarity Coefficients. Malakouti et al. [19] utilized machine learning and transfer learning techniques, achieving 90 



 

 

high accuracies with LightGBM and GoogLeNet models. Yalamanchili et al. [20] proposed VGG-16 and Efficient 91 
NetB7 models, demonstrating high classification accuracy. 92 
 93 
Priyadarshini et al. [21] proposed a fine-tuned EfficientNetV2S model for multigrade classification, achieving high 94 
precision and recall. Haque et al. [22] developed NeuroNet19, achieving high accuracy and robust performance 95 
metrics. Rasool et al. [23] introduced TransResUNet, combining ResNet U-Net with Transformer blocks for glioma 96 
segmentation, achieving high dice scores. Hossain et al. [24]  proposed the IVX16 ensemble model, achieving high 97 
accuracy in multiclass classification. Finally, Iriawan et al. [25] combined YOLO and UNet architectures for 98 
effective detection and segmentation of MRI brain tumor images, achieving a high correct classification ratio. 99 

 100 
Alzheimer's disease diagnosis and classification showcases several innovative approaches and models. Ozdemir and 101 
Dogan [26] developed a CNN model for early Alzheimer's diagnosis, achieving an impressive accuracy of 99.84% 102 
by integrating compression and excitation blocks, Avg-TopK pooling, and SMOTE to handle data imbalance. 103 
Biswas and Gini J [27] proposed a multi-class classification system using 3D MRI images, with the RandomForest 104 
classifier achieving 99% accuracy on the OASIS dataset. Ayus and Gupta [28] introduced hybrid models, CNN-105 
Conv1D-LSTM and HReENet, for Alzheimer's identification, with HReENet achieving a remarkable 99.97% 106 
accuracy. Nour et al. [29] proposed a Deep Ensemble Learning (DEL) model using 2D-CNNs for diagnosing 107 
Alzheimer's via EEG signals, achieving 97.9% accuracy. Ali et al. [30] developed an integrated approach combining 108 
Improved Fuzzy C-means clustering and a hybrid CNN-LSTM classifier, achieving 98.13% accuracy. 109 
 110 
Tripathy et al. [31] proposed an improved spatial attention guided depth separable CNN for Alzheimer's detection, 111 
achieving 99.75% accuracy on the OASIS dataset. Mahmood et al. [32] introduced the D3LM-LAN and MLM-112 
MCSVM models for Alzheimer's classification, achieving up to 98.59% accuracy. Mahmud et al. [33] proposed an 113 
explainable AI-based approach using deep transfer learning and ensemble modeling, achieving up to 96% accuracy. 114 
Matlani [34] developed a hybrid BiLSTM-ANN model for early Alzheimer's diagnosis, achieving 99.22% accuracy 115 
on the ADNI dataset. Malu et al. [35] introduced CirMNet, a hybrid feature extraction technique, achieving 97.34% 116 
accuracy in Alzheimer's classification. 117 
 118 
Bringas et al. [36] proposed CLADSI, a continual learning algorithm using accelerometer data, achieving up to 119 
86.94% accuracy. Zia-ur-Rehman et al. [37] employed DenseNet-201 for Alzheimer's diagnosis using MRI scans, 120 
achieving 98.24% accuracy. Sorour et al. [38] proposed a CNN-LSTM model for early Alzheimer's detection using 121 
MRI data, achieving 99.92% accuracy. Yu et al. [39] integrated EEG signals and genetic data for Alzheimer's 122 
classification, with SVM achieving 92% accuracy. Song and Yoshida [40] applied Grad-CAM to a 3D-VGG16 123 
network for Alzheimer's diagnosis using fMRI data, achieving 96.4% accuracy. 124 
 125 
Alp et al. [41] proposed using Vision Transformer (ViT) for MRI processing in Alzheimer's diagnosis, achieving 126 
over 99% accuracy. Qian and Wang [42] developed MMANet for Alzheimer's classification and brain age 127 
prediction, achieving 96.02% accuracy. Finally, Mahim et al. [43] proposed a ViT-GRU model for Alzheimer's 128 
detection from MRI images, achieving up to 99.69% accuracy. These studies collectively highlight the 129 
advancements in AI and deep learning techniques for improving the diagnosis and classification of Alzheimer's 130 
disease. 131 
 132 
Parkinson's disease diagnosis and classification presents several advanced methodologies and models. Magesh et al. 133 
[44] developed a machine learning model using LIME for early detection of Parkinson’s from DaTSCAN images, 134 
achieving 95.2% accuracy. Bhandari et al. [45] integrated gene expression data with machine learning and 135 
explainable AI, identifying key gene biomarkers for Parkinson’s diagnosis. Kumar et al. [46] utilized miRNA 136 
biomarkers and deep learning, achieving 95.65% accuracy in diagnosing Parkinson’s. Priyadharshini et al. [47] 137 
combined 3D MRI imaging with Gradient Boosting, achieving 96.8% accuracy in Parkinson’s detection. Yildirim et 138 
al. [48] proposed a hybrid model (PDD-AOA-CNN) using sound data, achieving 98.19% accuracy in detecting 139 
Parkinson’s. 140 
 141 
Saleh et al. [49] developed a hybrid CNN-KNN ensemble classifier for predicting Parkinson’s from hand sketching 142 
images, achieving 96.67% accuracy. Teo et al. [50] introduced a multilayer BiLSTM network with explainable AI to 143 
distinguish Parkinson’s from essential tremor, achieving 90% accuracy. Islam et al. [51] integrated clinical 144 
assessments and neuroimaging data, achieving 98.44% accuracy with clinical data for Parkinson’s detection. Veetil 145 
et al. [52] investigated data leakage in MRI-based Parkinson’s classification using 2D CNNs, identifying VGG19 as 146 



 

 

the most robust model. Mahendran and Visalakshi [53] used ResNet50 for Parkinson’s classification from spiral 147 
sketches, achieving 96.67% accuracy. 148 
 149 
Palakayala and Kuppusamy [54] introduced AttentionLUNet for Parkinson’s detection using MRI, achieving 150 
99.58% accuracy. Yang et al. [55] applied deep learning to video of finger tapping for Parkinson’s detection, 151 
achieving a test accuracy of 0.69. Wang et al. [56] proposed a deep learning method for cross-modality striatum 152 
segmentation using DaT SPECT and MR images, achieving strong performance metrics. Dentamaro et al. [57] 153 
investigated multimodal deep learning for early Parkinson’s detection using the PPMI database, achieving 96.6% 154 
accuracy. Al-Tam et al. [58] proposed a stacking ensemble approach for Parkinson’s diagnosis, achieving up to 155 
96.18% accuracy. Desai et al. [59] developed a deep learning model using 3D MRI scans for Parkinson’s 156 
classification, achieving 90.13% accuracy with data augmentation. These studies collectively highlight the 157 
advancements in AI and deep learning techniques for improving the diagnosis and classification of Parkinson’s 158 
disease. 159 
 160 
3. Material and Methods 161 
 162 
In this work, the workflow illustrated in Fig.1 is followed. The process for diagnosing neurological diseases using 163 
MRI images involves several structured steps. Initially, the MRI dataset, which includes 12 classes, is pre-processed 164 
by resizing, normalizing, and denoising the images. To enhance the dataset's robustness, data augmentations such as 165 
blurring, grayscale conversion, and contrast enhancement using CLAHE are applied [61]. 166 

 167 
Next, six versions of YOLOv10 models (N, S, M, B, L, X) are initialized with pre-trained weights and trained on the 168 
augmented dataset [60]. Following training, the models are rigorously evaluated using metrics like accuracy, 169 
precision, recall, mAP50, etc [61]. Post-training, the SAM 2.1-tiny model is utilized for segmentation, generating 170 
precise masks for the detected bounding boxes [62]. 171 

 172 
To interpret the results, colormap visualizations, such as plasma colormaps, are applied, providing insights into the 173 
model’s decision-making process [61]. The final outputs include segmented and visualized predictions, which are 174 
validated to ensure accuracy and reliability [62]. This systematic approach integrates detection, segmentation, and 175 
interpretation for a comprehensive analysis of neurological diseases [61]. 176 

 177 

Fig.1. Workflow of Proposed Methodology.  178 

3.1. Neurological Disease MRI Image Dataset 179 

The proposed Neurological Disease MRI Image Dataset, shown in Fig. 2, is a curated combination of three publicly 180 
available datasets sourced from Roboflow: the Brain Tumor Dataset [63], Alzheimer’s Disease Detection Dataset 181 



 

 

[64], and Parkinson Disease Dataset [65]. This comprehensive dataset has been refined and pre-processed to meet 182 
the specific requirements of neurological disease classification, ensuring consistency and utility for the study.  183 

 184 
The dataset comprises 12,121 MRI images categorized into 12 classes: 4 classes for Brain Tumor (Glioma, 185 
Meningioma, No Tumor, Pituitary), 5 for Alzheimer’s Disease (Mild Demented, Moderate Demented, Non 186 
Demented, Severe Demented, Very Mild Demented), and 3 for Parkinson’s Disease (PD Control, PD, Prodromal). 187 
The dataset attributes are detailed in Table 2. The data is split into 9,894 images (81.6%) for training and 2,227 188 
images (18.4%) for validation, ensuring balanced model training and robust performance evaluation. This curated 189 
dataset provides a robust foundation for achieving high classification accuracy in the diagnosis of neurological 190 
diseases. 191 

 192 

Fig. 2. Neurological Disease MRI Image Dataset. 193 

Index Class Index Class 

0 Glioma 6 Non Demented 

1 Meningioma 7 Severe Demented 

2 No Tumor 8 Very Mild Demented 

3 Pituitary 9 PD Control 

4 Mild Demented 10 PD 

5 Moderate Demented 11 Prodromal 

Table 1. Details of Proposed Dataset Attributes. 194 

3.2. Data Pre-Processing 195 

To ensure the quality and uniformity of the MRI images while optimizing computational efficiency, the following 196 
pre-processing steps were applied: 197 

1. Resizing: The original image dimensions (640 × 640 pixels) were resized to 320 × 320 pixels. This resizing was 198 
performed to reduce computational intensity while maintaining compatibility with YOLOv10 models [61]. 199 



 

 

2. Normalization: All pixel values were normalized to the range [0, 1], ensuring standardized data input and 200 
facilitating improved convergence during model training [60]. 201 

3. Denoising: Noise within the MRI images was reduced using Gaussian blur and median filtering techniques. 202 
These methods significantly enhanced image clarity, thereby improving the feature extraction capability of the 203 
YOLOv10 models [66]. 204 

3.3. Data Augmentations 205 

As shown in Table 2, the following augmentation techniques were applied to enhance the robustness and 206 
generalizability of the models: 207 
 208 

 209 

Augmentation Techniques Significance 

Blur Effects 
Gaussian blur and median blur simulate 

variations in image quality. 

Grayscale Conversion 

Converts images to grayscale to emphasize 

structural features and reduce computational 

complexity. 

Contrast Limited Adaptive Histogram Equalization 

(CLAHE) 

Enhances image contrast while preventing 

over-enhancement. 

Random Flipping and Rotation 
Introduces variability in the dataset and reduces 

the risk of overfitting. 

Table 2. Data Augmentation Techniques and Their Significance [66-69]. 210 

3.4. YOLOv10 Models 211 

As shown in Table 3, Six versions of YOLOv10 (N, S, M, B, L, and X) [84] were initialized with pre-trained 212 
weights for transfer learning to leverage feature representations learned from large datasets. 213 
 214 

 215 



 

 

Model Total No. Parameters FLOPs (G) 

YOLOv10-N 2.71 M (2,711,720) 8.4 

YOLOv10-S 8.08 M (8,075,640) 24.8 

YOLOv10-M 16.50 M (16,498,024) 64.0 

YOLOv10-B 20.47 M (20,469,528) 98.8 

YOLOv10-L 25.78 M (25,783,832) 127.3 

YOLOv10-X 31.68 M (31,677,992) 171.1 

Table 3. An overview of YOLOv10 Models used in Proposed Work. 216 

4. Results and Discussion 217 

All YOLOv10 models were implemented on Google Colab, utilizing the Ultralytics version 8.3.51 framework, 218 
Python 3.10.12, and PyTorch 2.5.1+cu121. The experimental setup included a Tesla T4 GPU with 15,102 MB 219 
memory and CUDA:0 acceleration. The optimizer used was AdamW with a learning rate of 0.000625 and 220 
momentum set at 0.9 [70]. Each model was trained for 50 epochs using images resized to 320×320 for both the 221 
training and validation datasets. 222 

 223 
The performance of the YOLOv10 models was evaluated using various metrics. These include precision, which 224 
measures the accuracy of positive predictions, and recall, which assesses the ability to identify all relevant instances 225 
[71]. The F1-score, a harmonic mean of precision and recall, was calculated to provide a balanced performance 226 
measure [72]. The models were also assessed using mean Average Precision (mAP) at IoU thresholds of 50% 227 
(mAP50) and a range of IoUs from 50% to 95% (mAP50–95), offering insights into detection accuracy across 228 
different overlap thresholds [73]. 229 
For latency analysis, the average latency per image was calculated using 2,227 images from the validation set. This 230 
metric represents the average time required to detect objects or classes  in a single image, providing a measure of 231 
computational efficiency [74]. 232 

4.1. YOLOv10-N Model 233 

The YOLOv10-N model, with the smallest architecture of 2.71 million parameters, achieved a precision of 86.89% 234 
and recall of 87.07%, resulting in an F1-Score of 86.98%. It attained a mAP50 of 89.94% and a mAP50–95 of 235 
72.98%, with the lowest average latency of 25.1 milliseconds, making it computationally efficient for lightweight 236 
applications. 237 

 238 

Model 
Image 
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Epochs 

Total No. 

Parameters 

FLOPs 

(G) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

mAP 50 

(Val) (%) 

mAP 50-95 

(Val) (%) 

Avg. Latency 

(Val) (ms) 



 

 

Table 4. 239 
Performance 240 
Analysis for 241 

YOLOv10-N 242 
model. 243 

       244 

 245 

 246 

 247 

Fig. 3. Confusion Matrix (Normalized) for YOLOv10-N model. 248 

YOLOv10-N 320 50 
2.71 M 

(2,711,720) 
8.4 86.89 87.07 86.98 89.94 72.98 25.10 



 

 

 249 

Fig. 4. F1 vs. Confidence Curve for YOLOv10-N model. 250 

 251 

Fig. 5. Precision vs. Recall Curve for YOLOv10-N model. 252 



 

 

 253 

Fig. 6. Graphical Representation of Performance Analysis for YOLOv10-N model. 254 

4.2. YOLOv10-S Model 255 

The YOLOv10-S model, containing 8.08 million parameters, demonstrated improved recall at 90.4% and slightly 256 
lower precision at 86.32%. Its F1-Score was 88.31%, with mAP50 reaching 91.81% and mAP50–95 at 75.89%. The 257 
average latency per image was similar to YOLOv10-N at 25.08 milliseconds, offering a balanced trade-off between 258 
accuracy and efficiency. 259 
 260 

Table 5. 261 
Performance 262 
Analysis for 263 
YOLOv10-S 264 

model.  265 

 266 

Model 
Image 

Size 
Epochs 

Total No. 

Parameters 

FLOPs 

(G) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

mAP 50 

(Val) (%) 

mAP 50-95 

(Val) (%) 

Avg. Latency 

(Val) (ms) 

YOLOv10-S 320 50 
8.08 M 

(8,075,640) 
24.8 86.32 90.40 88.31 91.81 75.89 25.08 
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 Fig. 7. Confusion Matrix (Normalized) for YOLOv10-S model. 268 

 269 

Fig. 8. F1 vs. Confidence Curve for YOLOv10-S model. 270 



 

 

 271 

Fig. 9. Precision vs. Recall Curve for YOLOv10-S model. 272 

 273 

Fig. 10. Graphical Representation of Performance Analysis for YOLOv10-S model. 274 

4.3. YOLOv10-M Model: 275 

The YOLOv10-M model, comprising 16.50 million parameters, achieved a high precision of 90.08% but slightly 276 
reduced recall at 86.66%. Its F1-Score stood at 88.34%, with a mAP50 of 91.63% and mAP50–95 at 75.45%. The 277 
model exhibited an average latency of 27.67 milliseconds, indicating its suitability for applications requiring 278 
moderate computational power. 279 
 280 



 

 

Table 6. 281 
Performance 282 
Analysis for 283 

YOLOv10-M 284 
model.  285 

 286 

 287 

Fig. 11. Confusion Matrix (Normalized) for YOLOv10-M model. 288 

Model 
Image 

Size 
Epochs 

Total No. 

Parameters 

FLOPs 

(G) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

mAP 50 

(Val) (%) 

mAP 50-95 

(Val) (%) 

Avg. Latency 

(Val) (ms) 

YOLOv10-M 320 50 
16.50 M 

(16,498,024) 
64.0 90.08 86.66 88.34 91.63 75.45 27.67 



 

 

 289 

Fig. 12. F1 vs. Confidence Curve for YOLOv10-M model. 290 

 291 

Fig. 13. Precision vs. Recall Curve for YOLOv10-M model. 292 



 

 

 293 

Fig. 14. Graphical Representation of Performance Analysis for YOLOv10-M model. 294 

4.4. YOLOv10-B Model: 295 

The YOLOv10-B model, with 20.47 million parameters, balanced its performance with a precision of 87.52% and a 296 
recall of 89.18%. It achieved an F1-Score of 88.34%, a mAP50 of 91.71%, and a mAP50–95 of 76.09%. The latency 297 
was measured at 27.59 milliseconds, making it an efficient option for slightly larger workloads. 298 

 299 

Table 7. 300 
Performance 301 
Analysis for 302 
YOLOv10-B 303 

model. 304 

 305 

Model 
Image 

Size 
Epochs 

Total No. 

Parameters 

FLOPs 

(G) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

mAP 50 

(Val) (%) 

mAP 50-95 

(Val) (%) 

Avg. Latency 

(Val) (ms) 

YOLOv10-B 320 50 
20.47 M 

(20,469,528) 
98.8 87.52 89.18 88.34 91.71 76.09 27.59 
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Fig. 15. Confusion Matrix (Normalized) for YOLOv10-B model. 307 

 308 

Fig. 16. F1 vs. Confidence Curve for YOLOv10-B model. 309 
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Fig. 17. Precision vs. Recall Curve for YOLOv10-B model. 311 

 312 

Fig. 18. Graphical Representation of Performance Analysis for YOLOv10-B model.  313 

4.5. YOLOv10-L Model: 314 

The YOLOv10-L model, featuring 25.78 million parameters, exhibited precision of 87.01% and the highest recall 315 
among models at 90.84%. It delivered an F1-Score of 88.88%, a mAP50 of 92.05%, and a mAP50–95 of 76.34%. 316 
The average latency of 32.20 milliseconds reflected its computational complexity. 317 

 318 



 

 

Table 8. 319 
Performance 320 
Analysis for 321 
YOLOv10-L 322 

model.  323 

 324 

 325 

Fig. 19. Confusion Matrix (Normalized) for YOLOv10-L model. 326 

Model 
Image 

Size 
Epochs 

Total No. 

Parameters 

FLOPs 

(G) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

mAP 50 

(Val) (%) 

mAP 50-95 

(Val) (%) 

Avg. Latency 

(Val) (ms) 

YOLOv10-L 320 50 
25.78 M 

(25,783,832) 
127.3 87.01 90.84 88.88 92.05 76.34 32.20 
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Fig. 20. F1 vs. Confidence Curve for YOLOv10-L model. 328 

 329 

Fig. 21. Precision vs. Recall Curve for YOLOv10-L model. 330 



 

 

 331 

Fig. 22. Graphical Representation of Performance Analysis for YOLOv10-L model. 332 

4.6. YOLOv10-X Model: 333 

The YOLOv10-X model, the largest with 31.68 million parameters, achieved the highest precision (89.94%), recall 334 
(89.02%), and F1-Score (89.48%). It also recorded the best mAP50 (92.95%) and mAP50–95 (77.31%). However, 335 
its average latency was the highest at 34.49 milliseconds, making it ideal for accuracy-critical tasks with sufficient 336 
computational resources. 337 
 338 

Table 9. 339 
Performance 340 
Analysis for 341 
YOLOv10-X 342 

model. 343 

 344 

 345 

Model 
Image 

Size 
Epochs 

Total No. 

Parameters 

FLOPs 

(G) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

mAP 50 

(Val) (%) 

mAP 50-95 

(Val) (%) 

Avg. Latency 

(Val) (ms) 

YOLOv10-X 320 50 
31.68 M 

(31,677,992) 
171.1 89.94 89.02 89.48 92.95 77.31 34.49 



 

 

 346 

Fig. 23. Confusion Matrix (Normalized) for YOLOv10-X model. 347 

 348 

Fig. 24. F1 vs. Confidence Curve for YOLOv10-X model. 349 



 

 

 350 

Fig. 25. Precision vs. Recall Curve for YOLOv10-X model. 351 

 352 

Fig. 26. Graphical Representation of Performance Analysis for YOLOv10-X model. 353 

4.7. Comparative Performance Analysis of YOLOv10 Models for Neurological Disease Diagnosis 354 

The YOLOv10 models demonstrate varying performance levels in diagnosing neurological diseases from MRI 355 
images, depending on their complexity. YOLOv10-X achieves the highest diagnostic accuracy, with precision 356 
(89.94%), recall (89.02%), and F1-score (89.48%), making it the most effective for detecting and localizing 357 
abnormalities such as gliomas, meningiomas, and pituitary tumors. The lighter models, YOLOv10-N and 358 
YOLOv10-S, still provide reliable results with an mAP@50 of 89.94% and 91.81%, respectively, while maintaining 359 



 

 

significantly lower computational demands. These models are particularly suitable for real-time diagnostic 360 
workflows in resource-constrained clinical settings, offering a balance of performance and efficiency [79-81]. 361 

 362 
 363 

Table 10. An 364 
overview of 365 

evaluation results 366 
and Performance 367 
Analysis for all 368 

YOLOv10 369 
Models used in 370 
Proposed Work. 371 

 372 

Fig. 27. Graphical 373 
Representation of 374 

Comparison of 375 
Precision, Recall, 376 
and F1-Score for 377 

all YOLOv10 378 
models. 379 

4.8. Performance Efficiency Trade-Off Analysis of YOLOv10 Models in Medical Diagnostics 380 

In the context of medical image analysis for neurological diseases, the performance-efficiency trade-off of 381 
YOLOv10 models is critical. Lighter models, such as YOLOv10-N and YOLOv10-S, exhibit low latency (25.10 ms 382 
and 25.08 ms, respectively), enabling faster diagnostic decisions while maintaining moderate accuracy, making them 383 
ideal for rapid screening in emergency or mobile healthcare units. On the other hand, YOLOv10-X, with its higher 384 
computational complexity and latency (34.49 ms), provides the most accurate segmentation and localization of 385 
disease-specific regions in MRI images, suitable for detailed diagnostic analysis and treatment planning in 386 
specialized healthcare centers. This trade-off underscores the importance of selecting the appropriate model based 387 
on the diagnostic requirements and available computational resources [1,82,83]. 388 

Model 
Image 

Size 
Epochs 

Total No. 

Parameters 

FLOPs 

(G) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

mAP 50 

(Val) (%) 

mAP 50-95 

(Val) (%) 

Avg. Latency 

(Val) (ms) 

YOLOv10-N 320 50 
2.71 M 

(2,711,720) 
8.4 86.89 87.07 86.98 89.94 72.98 25.10 

YOLOv10-S 320 50 
8.08 M 

(8,075,640) 
24.8 86.32 90.40 88.31 91.81 75.89 25.08 

YOLOv10-M 320 50 
16.50 M 

(16,498,024) 
64.0 90.08 86.66 88.34 91.63 75.45 27.67 

YOLOv10-B 320 50 
20.47 M 

(20,469,528) 
98.8 87.52 89.18 88.34 91.71 76.09 27.59 

YOLOv10-L 320 50 
25.78 M 

(25,783,832) 
127.3 87.01 90.84 88.88 92.05 76.34 32.20 

YOLOv10-X 320 50 
31.68 M 

(31,677,992) 
171.1 89.94 89.02 89.48 92.95 77.31 34.49 



 

 

 389 
 390 

 391 

Fig. 28. Graphical Representation of FLOPs (G) vs. mAP50 for all YOLOv10 models. 392 

 393 

Fig. 29. Graphical Representation of Parameter (in Millions) vs. Latency (in ms) for all YOLOv10 models. 394 



 

 

4.9. Segmentation and Interpretation 395 

1. Input Image: Raw MRI images from various classes are used as the primary input for analysis. These images 396 
undergo preprocessing to prepare them for detection and segmentation tasks [75]. 397 

2. Bounding Box Detection: The YOLOv10-X model detects regions of interest by generating bounding boxes 398 
around potential abnormalities or class-specific features. Its high performance ensures precise localization, 399 
making it suitable for complex medical imaging tasks [76]. 400 

3. Detection Details: Each bounding box includes a class label and a confidence score, which aids in the accurate 401 
prediction and localization of the detected region. These details are crucial for validating the reliability of the 402 
model's predictions [76]. 403 

4. SAM 2.1 Output: The "Segment Anything Model (SAM) 2.1-tiny" refines the detection process by creating 404 
segmentation masks for the bounding boxes. These masks enhance the precision of the detected regions by 405 
outlining the exact areas of abnormalities or class-specific features [77]. 406 

5. Colormap Visualization (Plasma): The segmented regions are visualized using a Plasma Colormap. This step 407 
highlights activated areas, providing an interpretable representation of the model’s predictions for better 408 
understanding in medical diagnostics [78]. 409 

 410 

 411 

Fig. 30. Segmentation and Interpretation for Brain Tumor Classes. 412 



 

 

 413 

Fig. 31. Segmentation and Interpretation for Alzheimer’s Disease Classes. 414 

 415 

Fig. 32. Segmentation and Interpretation for Parkinson’s Disease Classes. 416 



 

 

5. Conclusion and Future Scope 417 

This research highlights the potential of deep learning models, specifically YOLOv10 variants, in the automated 418 
detection and classification of neurological diseases from MRI images. By leveraging the strengths of YOLOv10-X 419 
for high accuracy and lighter models such as YOLOv10-N and YOLOv10-S for efficiency, the study establishes a 420 
trade-off between performance and computational requirements. The integration of advanced segmentation 421 
techniques, such as the SAM 2.1 model, further enhances the interpretability of the detected regions, which is 422 
critical for medical diagnostics. The use of colormap visualizations like Plasma further aids in the clinical 423 
understanding of disease-specific regions, making these methods practical for real-world medical applications. 424 

 425 
For future work, we aim to expand the scope of this research by incorporating multimodal medical imaging data, 426 
such as CT and PET scans, to develop a more comprehensive diagnostic system. Additionally, incorporating 427 
explainable AI techniques such as SHAP and LIME could improve the transparency of predictions, fostering greater 428 
trust among medical practitioners. Furthermore, deploying these models in real-time diagnostic systems with 429 
hardware optimizations for edge devices can bring the benefits of deep learning to resource-constrained clinical 430 
environments. This future direction will focus on enhancing the scalability, robustness, and accessibility of AI-431 
driven medical diagnostics to assist healthcare professionals in delivering timely and accurate care. 432 
 433 
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