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YOLOvV10 and SAM 2.1 for Enhanced MRI
Segmentation and Improved Neurological
Disease Diagnosis

Abstract - Neurological disease diagnosis through MRI imaging is vital for early detection and treatment.
This study' ized a combined dataset of 12,121 MRI images across 12 cl@s from three major neurological
disorders: Brain Tumors, Alzheimer's Disease, and Parkinson's Disease. The dataset was divided into 9,894
images for training and 2,227 for validation. Six YOLOv10 models (N, S, M, B, L, and X) were trained for
multi-class classification and localization, with the YOLOv10-X model achieving superior diagnostic
accuracy. Post-detection segmentation using the Segment Anything Model (SAM) 2.1 generated precise
masks for detected bounding boxes, with plasma colormap visualization enhancing interpretability.
Comparative analysis demonstrated significant improvements in diagnostic performance, underscoring the
integration of segmentation and explainable Al as a robust framework for clinical decision support. This
research lays the groundwork for advanced, interpretable Al-powered tools for neurological disease
diagnosis.

Keywords : Neurological Disease Diagnosis, MRI Imaging, YOLOv10, Segment Anything Model (SAM), Medical
Image Segmentation, Explainable AI (XAI).

1. Introduction

The diagnosis of neur()l()gicalm;eases such as Brain Tumors, Alzheimer's Disease, and Parkinson's Disease is
critical for early intervention and improved patient outcomes. Magnetic Resonance Imaging (MRI) serves as a
cornerstone for identifying these cofiilions due to its ability to provide detailed anatomical and pathological
information. However, interpreting MRI ins manually 1s time-intensive and plm to variability, making
automated diagnostic systems an essential area of research. Recent advancements in machine learning (ML) and
deep learning have demonstrated remarkable success in medical image analysis, particularly 1lalelssificallic)|1, object
detection, and segmentation tasks [1, 2]. This study explores a novel framework that leverages state-of-the-art object
detection and segmentation models to enhance the diagnostic process for neurological diseases using MRI data.

1.1. Leveraging Deep Learning for Improved Diagnosis

Deep learning techniques have revolutionized medical imaging by enabling automated and accurate analysis of
complex data. Cmcl detection models such as the YOLO series have gained prominence for their speed and
accuracy, while segmentation models like the Segment Anything Model (SAM) have improved interpretability
through precise region identification [3, 4]. This sludnlegmlcs six YOLOv10 models (N, S, M, B, L, and X) for
classifying MRI images into 12 classes, representing Brain Tumors, Alzheimer's Disease, and Parkinson's Disease.
Further, the SAM 2.1 model enhances segmentation m interpretability, applying masks to detected bounding boxes
and visualizing the results using plasma colormaps. By combining these advanced techniques, the framework aims
to improve diagnostic precision and reliability.

. Research Motivation and Proposed Approach

The increasing prevalence of neurological disorders, coupled with the need for accurate and explainable diagnostic
systems, drives the motivation for this research. Traditional diagnostic methods heavily rely on radiologist expertise,
which can be subjective and limited by human capacity [5]. In this study, a combined dataset of 12,121 MRI images
is used, encompassing 12 distinct classes across three disorders. The YOLOv10 models are trained to perform multi-




class classification and localization tasks, followed by segmentation using SAM 2.1. The interpretability of the
results is enhanced through plasma colormap visualization, which aids in clinical decision-making by providing
clear and interpretable outputs. The proposed approach addresses the challenges of traditional methods by
integrating detection, segmentation, and explainable Al in a single framework.

1.3. Research Contribution
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ant advancements in the field of medical imaging and neurological disease

This study introduces a series of signi
diagnosis:

. .m)vel diagnostic framework integrating six YOLOv10 models for multi-class classification and localization of
Brain Tumors, Alzheimer's Disease. and Parkinson's Disease across 12 distinct cl 3

Utilization of the SAM 2.1 model for precise segmentation of detected b()ul]dll]L boxes, enhancing the

interpretability of the results

Visualization of segmented regions using plasma colormaps, providing clearer insights for clinical decision-

making.

Comprehensive evaluation of six YOLOv10 models on a diverse neurological MRI dataset, demonstrating the

superior diagnostic accuracy of the YOLOv10-X model.

A unified methodology bridging object detection, segmentation, and explainable Al to create a robust, automated

framework for medical applicatiol

This research represents a novel contribution to medical image analysis by presenting a multi- lassification and
localization framework specifically tailored for neurological disease diagnosis. Unlike prior studies that focus on
single conditions, this work encompasses the integrated diagnosis of three major neurological disorders, including
12 distinct classes. Through the application of six YOLOv10 variants, the YOLOv10-X model emerged as the most
effective in handling the complexity of multi-class tasks.

Moreover, the inclusion of SAM 2.1 for post-detection segmentation, coupled mh plasma colormap visualization,
establishes a new standard for creating interpretable Al-driven diagnostic tools. To the bm:d our knowledge, this is
the first attempt to apply a YOLO model to such a comprehensive dataset covering Brain Tumors, Alzheimer's
Disease, and Parkinson's Disease, underscoring the innovation and potential impact of this work on clinical
diagnostics.

2. Related Works

Brain tumor £} cation and segmentation presents several advanced methodologies and models. Nanda et al. [6]
introduced a Saliency-K-mean-SSO-RBNN model, achieving high classification accuracies across multiple datasets.
Saboor et al. [7] devnped an Al-based CAD system using attention-gated recurrent units (A-GRU), which
demonstrated superior accuracy on the BTD dataset. Srinivasan et al. [8] proposed three CNN models for multi-
cl cation of brain tumors, each showing impressive detection and cl ication performance. Roy et al. [9]
utilized a Dual-GAN mechanism in an euswle-bzlsed pipeline. achieving notable accuracy in brain tumor
classification. Khalighi et al. [10] reviewed the transformative role of Al in neuro-oncology, emphasizing its
precision in brain tumor management.

Further advancements include Almufareh et al. [11] evaluating YOLOvVS and YOLOv7 models for segmentation and
classification, with high precision and recall scores. Sarada et al. [12] presented a modified ResNet50V2 model,
enhancing classification accuracy through various optimizations. Ashafuddula et £4§J13] introduced ContourTL-Net
for early-stage detection, achieving high sensitivity and specificity. Rajeswari et al. [14] developed the DFMN

el for severity prediction, demonstrating robust performance metrics. Zakariah et al. [15] proposed the Dual
Vision Transformer-DSUNET c] achieving high Dice Coefficient values for segmentation tasks.
Musthata et al. [16] combined ResNet50 with Grad-CAM for enhanced interpretability and accuracy in brain tumor
detection. Yu et al. .] introduced HSA-Net, which significantly improved segmentation and classification
outcomes. Aboussaleh et al. [18] developed ln:-,puon-UDel an improved U-Net architecture, achieving high Dice
Similarity Coefficients. Malakouti et al. [19] utilized machine learning and transfer learning techniques, achieving
high accuracies with LightGBM and GoogLeNet models. Yalamanchili et al. [20] proposed VGG-16 and Ef
NetB7 models, demonstrating high classification accuracy.




Priyadarshini et al. [21] proposed a fine-tuned EfficientNetV2S model for multigrade classification, achieving high
precision and recall. Haque et al. [22] developed Neur()Netl‘J.ieving high accuracy and robust performance
metrics. Rasool et al. [23] introduced TransResUNet, combining ResNet U-Net with Transformer blocks for glioma
segmentation, achieving high dice scores. H()ss&t al. [24] proposed the IVX16 ensemble model, achieving high
accuracy in multiclass classification. Finally, Iriawan et al. [25] combined YOLO and UNet architectures for
effective detection and segmentation of MRI brain tumor images, achieving a high correct classification ratio.

Alzheimer's disease diagnosis and C1ElSSifiCElli()lE)WCilSeS several innovative approaches and models. Ozdemir and
Do [26] developed a CNN model for early Alzheimer's diagnosis, achieving an impressive accuracy of 99.84%
by integrating compression and excitation blocks, Avg-TopK pooling, and SMOTE to handle data imbalance.
Biswas and Gini J [27] proposed a multi-class classification system using 3D MRI images, with the RandomForest
classifier achieving 99% accuracy on the OASIS dataset. Ayus and Gupta [28] introduced hybrid models, CNN-
Cnnv]D-I_n’M and HReENet, for Alzheimer's identification, with HReENet achieving a remarkable 99.97%
accuracy. Nour et al. [29] proposed a Deep Ensemble Learning (DEL) model using 2D-CNNs for diagnosing
heimer's via EEG signals, achieving 97.9% accuracy. Ali et al. [30] developed an integrated approach combining
Improved Fuzzy C-means clustering and a hybrid CNN-LSTM classifier, achieving 98.13% accuracy.
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Tripathy et al. [31] proposed an '1-mpr()ved spatial attention guided depth separable CNN f] Izheimer's detection,
achieving 99.75% accuracy on the OASIS dataset. Mahmood et al. [32] introduced the D) -LAN and MLM-
MCSVM models for Alzheimer's classification, achieving up to 98.59% accuracy. Mahmud et al. [33] proposed an
explainable Al-based approach using deep transfer learning and ensemble modeling, achieving up to 96% numcy.
Matlani [34] developed a hybrid BiLSTM-ANN model for early Alzheimer's diagnosis, achieving 99.22% accuracy
on the ADNI dataset. Malu et al. [35] introduced CirMNet, a hybrid feature extraction technique, achieving 97.34%
accuracy in Alzheimer's classification.

Bringas et al. [36] proposed CLADSI, a continual learning algorithm using accelerometer data, achieving up to
86.94% accuracy. Zia-ur-Rehman et al. [37] employed anseNel-ZOI for Alzheimer's diagnosis using MRI scans,
achieving 98.24% accuracy. Sorour et al. [38] proposed a CNN-LSTM model for early Alzheimer's detection using
MRI data, achieving 99.92% accuracy. Yu et al. [39] integrated EEG signmzmd genetic data for Alzheimer's
classification, with SVM achieving 92% accuracy. Song and Yoshida [40] applied Grad-CAM to a 3D-VGGI16
network for Alzheimer's diagnosis using fMRI data, achieving 96.4% accuracy.
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Alp et al. [41] proposed using Vision Transformer (ViT) for MRI essing in Alzheimer's diagnosis, achieving
over 99% accuracy. Qian and Wang [42] developed E{ANC[ for Alzheimer's classification and brain age
prediction, achieving 96.02% accuracy. Finally, Mahim et al. [43] pncnscd a ViT-GRU model for Alzheimer's
detection from MRI images, achieving up to 99.69% accuracy. These studies collectively hiffilight the
advancements in Al and deep learning techniques for improving the diagnosis and classification of Alzheimer's
disease.
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Parkinson's disease diagnosis and classification presents several advanced methodologies and models. Magesh et al.
[44] developed a machine learning model using LIME for early detection of Parkinson’s from DaTSCAN images,
achieving 95.2% accuracy. Bhandari et al. [45] integrated gene expression data with machine learning and
explainable Al, identifying key gene biomarkers for Parkinson’s diagnosis. Kumar et al. [46] utilized miRNA
biomarkers and deep learning, achieving 95.65% accuracy in diagnosing Parkinson’s. Priyadharshini et al. [4
combined 3D MRI imaging with Gradient Boosting, achieving 96.8% accuracy in Parkinson’s detection. Yildirim et
al. [48] proposed a hybrid model (PDD-AOA-CNN) using sound data, achieving 98.19% accuracy in detecting
Parkinson’s.
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Saleh et al. [49] developed a hybrid CNN-KNN ensemble classifier for predicting Parkinson’s from hand sketching
images, achieving 96.67% accuracy. Teo et al. [50] introduced a multilayer BILSTM network with explainable Al to
distinguish Parkinson’s from essential tremor, achieving 90% accuracy. Islam et al. [51] integrated clinical
assessments and neuroimaging data, achieving 98.44% accuracy with clinical data for Parkinson’s detection. Veetil
et al. [52] investigated data leakage in MRI-based Parkinson’s classification using 2D CNNs, identifying VGG19 as
the most robust model. Mahendran and Visalakshi [53] used ResNetS0 for Parkinson’s classification from spiral
sketches, achieving 96.67% accuracy.




Palakayala and Kuppusamy [54] introduced AttentionLUNet for Parkinson’s detection using MRI, achieving
99.58% accuracy. Yang et al. [5 plied deep learning to video of finger tapping for Parkinson’s detection,
achieving a test accuracy of 0.69. Wang et al. [56] proposed a deep learning method for cais-mndality striatum
segmentation using DaT SPECT and MR images, achieving strong performance metrics. Dentamaro et al. [57]
investigated mu]tirma] deep learning for early Parkinson’s detection using the PPMI database, achieving 96.6%
accuracy. Al-Tam et al. [58] proposemstacking ensemble approach for Parkinson’s diagnosis, achieving up to
96.18% accuracy. Desai et al. [59] developed a deep learning mcdusing 3D MRI scans for Parkinson’s
classification, achieving 90.13% accuracy with data augmentation. These studies collectively highlight the
advancements in Al and deep learning techniques for improving the diagnosis and classification of Parkinson’s
disease.

3. Material and Methods
54
In this work, the workflow illustrated in Fig.1 is followed. The process for diagnosing neurological diseases using
MRI images involves several structured steps. Initially, the MRI dataset, which includes 12 classes, is pre-processed
by resizing, normalizing, and denoising the images. To enhance the dataset's robustness, data augmentations such as
blurring, grayscale conversion, and contrast enhancement using CLAHE are applied [61].
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Next, six versions of YOLOv10 models (N, S. M, m X) are initialized with pre-trained weights and trained on the
augmented dataset [60]. Following training, the models are rigorously evaluated using metrics like accuracy,
precision, recall, mAPS0, etc [61]. Post-training, the SAM 2.1-tiny model is utilized for segmentation, generating
precise masks for the detected bounding boxes [62].
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To interpret the results, colormap visualizations, such as plasma colormaps, are applied, providing insights into the
model’s decision-making process [61]. The final outputs include segmented and visualized predictions, which are
validated to ensure accuracy and reliability [62]. This systematic approach integrates detection, segmentation, and
interpretation for a comprehensive analysis of neurological diseases [61].

Neurological Disease
MRI Image Dataset

Fig.1. Workflow of Proposed Methodology.

3.1. Neurological Disease MRI Image Dataset
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The proposed Neurological Disease MRI Image Dataset, shown in Fig. 2, is a curated combination of three ﬁ:licly
available datasets sourced from Roboflow: the Brain Tumor Dataset [63], Alzheimer’s Disease Detection Dataset
[64], and Parkinson Disease Dataset [65]. This comprehensive dataset has been refined and pre-processed to meet
the specific requirements of neurological disease classification, ensuring consistency and utility for the study.




The dataset comprises 12,121 MRI ilnalgestlegc)riz,ed into 12 classes: 4 classes for Brain Tumor (Glioma,
Meningioma, No Tumor, Pituitary), 5 for Alzheimer’s Disease (Mild Demented, Moderate Demented, Non
Demented, Severe Demented, Very Mild Demented), and 3 for Parkinson’s Disease (PD Control, PD, Prodromal).
The dataset attributes are detailed in Table 2. The data is split into 9,894 images (81.6%) for training and 2,227
images (18 4%) for validation, ensuring balanced model training and robust performance evaluation. This curated
dataset provides a robust foundation for achieving high classification accuracy in the diagnosis of neurological
diseases.

Brain Tumor
(4 Classes,
2,197 Images)

Glioma i No Tumor

ps Alzheimer’s
Disease
(5 Classes,

4,012 Images)

Very Mild Demented Mild Demented Moderate Demented  Severe Demented No Demented

Parkinson’s
Disease
(3 Classes,
5,912 Images)

Prodromal PD Control

Fig. 2. Neurological Disease MRI Image Dataset.

Index Class Index Class

0 Glioma [ Non Demented

1 Meningioma 7 Severe Demented

2 No Tumor 8 Very Mild Demented
3 Pituitary 9 PD Control

4 Mild Demented 10 PD

5 Moderate Demented 11 Prodromal

Table 1. Details of Proposed Dataset Atiributes.

5
3.2. Data Pre-Processing

To ensure the quality and uniformity of the MRI images while optimizing computational efficiency, the following
pre-processing steps were applied:

1. Resizing: The original image dimensions (640 x 640 pixels) were resized to 320 x 320 pixels. This resizing was
performed to reduce computational intensity while maintaining compatibility with YOLOv10 models [61].

2. Normalization: All pixel values were normalized to the range [0, 1], ensuring standardized data input and
facilitating improved convergence during model training [60].




3. Denoising: Noise within the MRI images was reduced using Gaussian blur and median filtering techniques.
These methods significantly enhanced image clarity, thereby improving the feature extraction capability of the
YOLOv10 models [66].

3.3. Data Augmentations .
26

As shown in Table 2, the following augmentation techniques were applied to enhance the robustness and
generalizability of the models:

A tation Techni Significance

Gaussian  blur and median blur simulate
variations in image quality.

Blur Effects

Converts images lgr;lyscale to emphasize
Grayscale Conversion structural features and reduce computational
complexity.

Contrast Limited Adaptive Histogram Equalization | Enhances image contrast while preventing
(CLAHE) over-enhancement.

Introduces variability in the dataset and reduces

Random Flipping and Rotation . - -
‘ PPINg 8 : the risk of overfitting.

Table 2. Data Augmentation Techniques and Their Significance [66-69].

3.4. YOLOv10 Models

As shown in Table 3, Six versions of YOLOv10 (N, S, M, B. L, and X) [84] were initialized with pre-trained
weights for transfer learning to leverage feature representations learned from large datasets.




Model Total No. Parameters | FLOPs (G)
YOLOv10-N 271 M (2,711,720) 84
YOLOv10-S 8.08 M (8,075,640) 24.8
YOLOv10-M 16.50 M (16,498,024) 64.0
YOLOv10-B 20.47 M (20,469 ,528) 08.8
YOLOv10-L 25.78 M (25,783 832) 1273
YOLOv10-X 31.68 M (31,677.992) 171.1

Table 3. An overview of YOLOv 10 Models used in Proposed Work.
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4. Results and Discussion

All YOLOvV10 models were implemented on Google Colab, utilizing the Ultralytics version 8.351 framework,
Python 3.10.12, and PyTorch 2.5.1+cul2l. The experimental setup ‘mcltad a Tesla T4 GPU with 15,102 MB
memory and CUDA:0 ;lccelerat The optimizer used was AdamW with a learning rate of 0.000625 and
momentum set at 0.9 [70]. Each model was trained for 50 epochs using images resized to 320x320 for both the
training and validation datasets.

1

The pcﬂialancc of the YOLOvI10 models was evaluated using various metrics. These include precision, which
measures the accuracy of positive predictions, and recall, whichaesses the ability to identify all relevant instances
[71]. The Fl-score, a harmonic mean of precision an&ecal], was calculated to provide a balanced performance
measure [72]. The models were also assessed using mean Average Precision (mAP) at IoU thresholds of 50%
(mAP50) and a range of IoUs from 50% to 95% (mAP50-95), offering insights into detection accuracy across
different overlap thresholds [73].

For latency analysis, the average latency per image was calculated using 2,227 images from the validation set. This
metric represents the average time required to detect objects or classes in a single image, providing a measure of
computational efficiency [74].

4.1. YOLOv10-N Model .

2
The YOLOv10-N model, with the smallest architecture of 2.71 million parameters, achieved a precision of 86.89%
and recall of 87.07%, resulting in an Fl-Score of 86.98%. It attained a mAPS50 of 89.94% and a mAP50-95 of
72.98%, with the lowest average latency of 25.1 milliseconds, making it computationally efficient for lightweight
applications.

Epochs

Total No. FLOPs | Precision Recall F1-Score mAP 50 mAP 50-95 | Avg. Latency
Parameters (G) (%) (%) (%) (Val) (%) (Val) (%) (Val) (ms)




271M
50 84 86.89 87.07 8698 89.94 7298 25.10
(27117200
Glioma 0.05
Meningioma - 0.01 002
No_Tumor - 002
Pituitary - 0.04
Mild_Demented -
Moderate_Demented -
o
2
= Non_Demented - o0l
E |
Severe_Demented -
Very_Mild_Demented - 0
PD_Control - 028 009 003 026
PD - 036 041
Prodromal - 00z 006 018
background - 018 009 010 003
E E B F B EE E B OE 2 E B
s 8 £ 2 € & € € £ 3
& & B 5 ] g g g g & g g
5 g . 8 B E & £ & & s °
s g § & g 5 o g =
g = a & & 6 o g £ 4
z 2 g £ o = =
£ E 2 T F
H & 2
H 2
True

Fig. 3. Confusion Matrix (Normalized) for YOLOv10-N model.
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Fig. 4. F1 vs. Confidence Curve for YOLOv10-N model.
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Fig. 5. Precision vs. Recall Curve for YOLOv10-N model.
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Fig. 6. Graphical Representation of Performance Analysis for YOLOv10-N model.
4.2. YOLOv10-S Model

The YOLOv10-S model, containing 8.08 million parameters, demonstrated improved recall at 90.4% and slightly
lower precision at 86.32%. Its F1-Score was 88.31%, with mAP50 reaching 91.81% and mAP50-95 at 75.89%. The
average latency per image was similar to YOLOv10-N at 25.08 milliseconds, offering a balanced trade-off between
accuracy and efficiency.

Total No. | FLOPs Eﬂ:ision Recall | FlScore | mAPS0 | mAPS0-95 | Av. Latency |, ToP¢S.
Parameters (G) (%) (%) (%) (Val) (%) | (Val) (%) (Val) (ms) Analysis for
YOLOVIO-S
model.
808 M
®07s60) | 248 8632 | 9040 | 8831 9181 75.89 2508
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Fig. 7. Confusion Matrix (Normalized) for YOLOv10-S§ model.
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Fig. 8. F1 vs. Confidence Curve for YOLOv10-S model.
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Fig. 9. Precision vs. Recall Curve for YOLOv10-S model.
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4.3. YOLOv10-M Model:

The YOLOvI0-M model, comprising 16.50 million parameters, achieved a high precision of 90.08% but slightly
reduced recall at 86.66%. Its F1-Score stood at 88.34%, with a mAPS0 of 91.63% and mAPS0-95 at 75.45%. The
model exhibited an average latency of 27.67 milliseconds, indicating its suitability for applications requiring
moderate computational power.




3
Epoch Total No. FLOPs | Precision | Recall | F1-Score mAP 50 mAP 50-95 | Avg. Latency
Parameters (G) (%) (%) (%) (Val) (%) (Val) (%) (Val) (ms)
1650 M
2
50 (16,498,024 64.0 90.08 86.66 8834 91.63 7545 2767

Fig. 11. Confusion Matrix (Normalized) for YOLOv10-M model.
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Fig. 12. F1 vs. Confidence Curve for YOLOv10-M model.
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Fig. 13. Precision vs. Recall Curve for YOLOv10-M model.
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4.4. YOLOv10-B Model:

The YOLOv10-B model, with 20.47 million parameters, balanced its performance with a precision of 87.52% and a
recall of 89.18%. It achieved an F1-Score of 88.34%, a mAP50 of 91.71%, and a mAP50-95 of 76.09%. The latency
was measured at 27.59 milliseconds, making it an efficient option for slightly larger workloads.

Epock Total No. FLOPs | Precision Recall F1-Score mAP 50 mAP 50-95 Avg. Latency Perrf‘::::;‘ce
Parameters (G) (%) (%) (%) (Val) (%) (Val) (%) (Val) (ms) Analysis for
YOLOvI0-B
model.
2047M
50 (20,469.528) 98.8 87.52 89.18 88.34 91.71 7609 27.59
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4.5. YOLOv10-L Model:

The YOLOv10-L model, featuring 25.78 million parameters, exhibited precision of 87.01% and the highest recall
among models at 90.84%. It delivered an F1-Score of 88.88%. a mAP50 of 92.05%, and a mAP50-95 of 76.34%.
The average latency of 32.20 milliseconds reflected its computational complexity.
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4.6. YOLOv10-X Model:

The YOLOv10-X model, the largest with 31.68 million parameters, achieved the highest precision (89.94%), recall
(89.02%), and F1-Score (89.48%). It also recorded the best mAPS0 (92.95%) and mAPS50-95 (77.31%). However,
its average latency was the highest at 34.49 milliseconds, making it ideal for accuracy-critical tasks with sufficient
computational resources.

Total No. | FLOPs | Precision | Recall | FlScore | mAPS0 | mAPS0-95 | Avg.Latency |, 'aPle -

Parameters | (G) (%) ) (%) | (Va (%) | (VaD (%) | (Val)ms) ondigais o
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model.
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Fig. 26. Graphical Representation of Performance Analysis for YOLOv10-X model.

4.7. Comparative Performance Analysis of Y OLOv10 Models for Neurological Disease Diagnosis

The YOLOv10 models demonstrate varying performance levels in diagnosing neurological diseases from MRI
images, depending on their complexity. YOLOv10-X achieves the highest diagnostic accuracy, with precision
(89.94%), recall (89.02%), and Fl-score (89.48%), making it the most effective for detecting and localizing
abnormalities such as gliomas, meningiomas, and pituitary tumors. The lighter models, YOLOvIO-N and
YOLOv10-S, still provide reliable results with an mAP@50 of 89.94% and 91.81%, respectively, while maintaining




significantly lower computational demands. These models are particularly suitable for real-time diagnostic
workflows in resource-constrained clinical settings, offering a balance of performance and efficiency [79-81].
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. Performance Efficiency Trade-Off Analysis of YOLOv10 Models in Medical Diagnostics

In the context of medical image analysis for neurological diseases, the performance-efficiency trade-off of
YOLOv10 models is critical. Lighter models, such as YOLOv10-N and YOLOv10-S, exhibit low latency (25.10 ms
and 25.08 ms, respectively), enabling faster diagnostic decisions while maintaining moderate accuracy, making them
ideal for rapid screening in emergency or mobile healthcare units. On the other hand, YOLOv10-X, with its higher
computational complexity and latency (34.49 ms), provides the most accurate segmentation and localization of
disease-specific regions in Nm images, suitable for detailed diagnostic analysis and treatment planning in
specialized healthcare centers. This trade-off underscores the importance of selecting the appropriate model based
on the diagnostic requirements and available computational resources [1,82.83].




FLOPs: 171,16
mAP50: 92.95%
93
LE ]
FLOPs: 24.8G "
FLOPs: 98.86

53 mAP50: 91.81% Bt Lo mMAPS0: 91.71%
- |
E
]
w FLOPs: 8.4G

MAPS0: 89,94%.

E %

89

88 -

.,U‘\ \p,‘a & N o S
8 o8 he b
o o o g y" &
@ O £ & €
Model

Fig. 28. Graphical Representation of FLOPs (G) vs. mAPS50 for all YOLOv 10 models.

35 mmm Parameters (in Millions) -
I Latency (in ms)
30 —
25 | 25.1
|
ﬂ 20 ‘
2
15 }
10 ‘
5
271
0 L
YOLOv10-N YOLOvV10-5 YOLOv10-M YOLOv10-B YOLOv10-L YOLOv10-X

Model

Fig. 29. Graphical Representation of Parameter (in Millions) vs. Latency (in ms) for all YOLOv10 models.




4.9. Segmentation and Interpretation

1. Input Image: Raw MRI images from various classes are used as the primary input for analysis. These images
undergo preprocessing to prepare them for detection and segmentation tasks [75].

2. Bounding Box Detection: The YOLOv10-X model detects regions of interest by generating bounding boxes
und potential abnormalities or class-specific features. Its high performance ensures precise localization,
making it suitable for complex medical imaging tasks [76].

3. Detection Details: Each bounding box includes a class label and a cmdence score, which aids in the accurate
prediction and localization of the detected region. These details are crucial for validating the reliability of the
model's predictions [76].

4.SAM 2.1 Output: The "Segment Anything Model (SAM) 2.1-tiny" refines the detection process by creating
segmentation masks for the bounding boxes. These masks enhance the precision of the detected regions by
outlining the exact areas of abnormalities or class-specific features [77].

5. Colormap Visualization (Plasma): The segmented regions are visualized using a Plasma Colormap. This step
highlights activated areas, providing an interpretable representation of the model’s predictions for better
understanding in medical diagnostics [78].
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Fig. 30. Segmentation and Interpretation for Brain Tumor Classes.
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5. Conclusion and Future Scope

s research highlights the potential of deep learning models, specifically YOLOv10 variants, in the automated
detection and classification of neurological diseases from MRI images. By leveraging the strengths of YOLOv 10-
for high accuracy and lighter models such as YOLOv10-N and YOLOv10-S for efficiency, the study establishes a
trade-off between performance and computational requirements. The integration of advanced segmentation
techniques, such as the SAM 2.1 model, further enhances the interpretability of the detected regions, which is
critical for medical diagnostics. The use of colormap visualizations like Plasma further aids in the clinical
understanding of disease-specific regions, making these methods practical for real-world medical applications.
For future work, we aim to expand the scope of this research by incorporating multimodal medical imaging data,
as CT and PET scans, to develop a more comprehensive diagnostic system. Additionally, incorporating
explainable Al techniques such as SHAP and LIME could improve the transparency of predictions, fostering greater
trust among medical practitioners. Furthermore, deploying these models in real-time diagnostic systems with
hardware optimizations for edge devices can bring the benefits of deep learning to resource-constrained clinical
environments. This future direction will focus on enhancing the scalability, robustness, and accessibility of Al-
driven medical diagnostics to assist healthcare professionals in delivering timely and accurate care.
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