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Shape and Topological Optimization  of a Nonlinear 1 

Elliptical Problem 2 

Abstract 3 

In this work, let us deal with existence and derivation results in shape optimization. It should 4 
be noted that a shape optimization problem does not generally have a solution with only its 5 
initial data. To get around the non-existence of solution, we impose geometric order 6 
restrictions (i.e. volume type) and we work with the open class checking the ε-cone property 7 
to obtain existence. On the other hand, we determine the shape derivative using the 8 
Lagrange method. And then we establish the topological derivative using the minmax 9 
method. 10 

keywords: thermoelasticity problem, shape derivative, shape gradient, minmax. 11 

1 Introduction 12 

In this paper, we are interested with shape optimization problems using the functional 13 
  14 

 𝐽 Ω =  𝑎    |∇𝑢Ω  −  ∇𝑣0|2𝑑𝑥 +  𝑏   |𝑢Ω  − 𝑣1|2𝑑𝑥
Ω

.
Ω

                      (1.1) 15 

                                              16 

 17 
 18 

 19 

 20 

 
−∇𝑢Ω + 𝑢𝑞 = 𝑓 𝑖𝑛 Ω

𝜕𝑢Ω

𝜕𝑛
= 0 𝑜𝑛 𝜕Ω

                                                                  (1.2)                                                                21 

. 22 
 23 
The objective of this paper is fixed around three main axes, that is to say the existence of optimal 24 
shape solution, the shape derivative using vector fields and the topological derivative using the 25 
minmax method. These types of problems have been studied by many authors who can be cited 26 
[2, 3, 9, 10, 7, 8, 9, 11, 12, 15] 27 
We will give existence results by adding constraints, either on the functional to be minimized or 28 
on the set of admissible domains. But we can also increase volume constraints. A minimization 29 
problem does not always admit a solution with only its initial data. Thus, it will be a question of 30 
giving existence results assuming that the edge is uniformly regular. 31 

Let us denote by Oad the set of admissible open sets. We assume that this set satisfies the 32 
following properties: 33 

Oad ⊂ Oε 34 

where a and b two real numbers, 𝑣0  (respectively 𝑣1 ) are the given functions of Hloc
1 

( ℝ𝑁 ) 

(respectively L
2
loc(ℝ𝑁) and 𝑢Ω is the solution of the following Neumann problem : 
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(the set of open checking the property of the ε − cone). It is also closed for one of the three types 35 
of convergence, namely convergence in the sense of Hausdorff, in the sense of characteristic 36 
functions or in the sense of compacts. 37 

The main in this paper is to determine the shape derivative 38 
and the topological derivative of the functional J(Oε)= J(Oε, 39 
uε), where the perturbed domain Ω ε of  Ω is defined by 40 

Ωε= T𝜀(Ω) or Ωε= Ω\Eε on the derivative to be calculated.  41 

 42 

The paper is organized as follows: In the first section we give the introduction. In the second 43 
section, we establish the existence of optimal form Section 3 is reserved for the form derivative 44 
of the functional using the Lagrange method. In this part we first give an example of application 45 
of the derivative in the sense of Hadamard. Then we apply them to the energy functionals. 46 
In the section 4 we give the topological derivative using minmax method. 47 
And in the section 5, we give the conclusion of the work. 48 

2 Existence of a solution by the -cone property 49 

We consider a functional of the form: 50 
 51 

                                 J1 Ω =   𝐹 𝑥, 𝑢Ω, ∇𝑢Ω 𝑑𝑥
Ω

                       (3.1)    52 

where 53 

F :𝐵 ×  ℝ × ℝ𝑁
 →  ℝ  54 

is a continuous function, measurable in (x,r,p) and verifying the hypothesis 55 

 𝐹(𝑥, 𝑟, 𝑝) ≤ 𝑐 1 + 𝑟2 + |𝑝|2  ∀𝑥 ∈ 𝐵, ∀𝑟 ∈ ℝ, ∀𝑝 ∈ ℝ𝑁  .                     (3.2) 

With u = uΩ of the following Neumann problem: 56 

 

−∆𝑢 + 𝑢𝑞 = 𝑓 𝑖𝑛 Ω
𝜕𝑢

𝜕𝑛
= 0        𝑜𝑛  𝜕Ω

                                                                  (3.4)   

with Ω ⊂ B (where B is an open ℝ𝑁) and f ∈ L
2
(B). 57 

We further consider the following functional: 58 

 𝐽2(Ω)  =  𝐹 𝑥, 𝑣Ω 𝑥 , 0 𝑑𝑥 +  𝛼  |∇𝑣Ω 𝑥 |2 𝑑𝑥                                      (3.5)
ΩΩ  

 

with α ≥ 0 and vΩ solution of (3.3) or(3.4). 59 
We then ask : 60 

J(ω) =        𝐹 𝑥, 𝑢𝜔  𝑥 , ∇𝑢𝜔 𝑑𝑥.                                                        ( 3.6)
𝜔

 61 

We notice that J is well defined, because F is, by hypothesis, a function measurable in (r,p) p.p. 62 
Thus, we show that J(ω) < +∞. Indeed, according to (3.2) we have:  63 

 64 
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 𝐽 𝜔  =   𝐹(𝑥, 𝑢𝜔(𝑥), ∇𝑢𝜔(𝑥))𝑑𝑥
𝜔

  ≤  𝑐(1 + 𝑢Ω
𝜔

 𝑥 2 +  ∇𝑢Ω 𝑥 |2 𝑑𝑥, 

≤ 𝑐  (1 + 𝑢Ω
𝜔

 𝑥 2 +  ∇𝑢Ω 𝑥 |2 𝑑𝑥. 

Furthermore, we can increase 65 

|𝐽 𝜔 | ≤ 𝑐 ‖𝑢𝜔‖𝐻1 + ‖𝜔‖ < +∞. 66 

So |𝐽 𝜔 | < +∞ , hence J(ω) is well defined. We therefore recall that problems (3.3) and (3.4) are 67 
well posed in the sense of Hadamard. Indeed, we have specified the conditions at the edges of 68 
Dirichlet and Neumann types. 69 

In all that follows, we set ε > 0 and we consider the set Oε defined by: 70 

Oε = {Ω open, Ω ⊂ D, Ω has the property of ε-cone}. 71 

We therefore consider the following shape optimization problem: 72 

min{J(Ω) : Ω ∈ Oε }, 73 

where J designates the functional of type J1 or J2. In all that follows, we seek to determine 74 
optimal shape existence results for shape optimization problems. But before giving optimal form 75 
existence results, we need the following results: 76 

Theorem 2.1 : Let Ωn be an open sequence in the class Oε. Then there exists an open  77 

and an sub-sequence Ω𝑛𝑘
which converges towards Ω both in the sense of Hausdorff, in the sense 78 

 79 

of the characteristic functions and in the sense of compact. In addition, Ω𝑛𝑘
 and  ∂Ω𝑛𝑘

 converge 80 

in 81 

 82 
the Hausdorff sense respectively to Ω and ∂Ω. 83 

LEMMA 2.2 : Let K be a compact and B a bounded open of R
N
. Let Ωn be a sequence of open 84 

 85 
with Ωn ⊂ K ⊂ B, verifying the ownership of the -cone. 86 

Then there is an open Ω verifying the ownership of the  -cone and an extracted sequence Ωnk such 87 
as 88 

uΩ𝑛𝑘

𝐻
→  Ω, 𝜒Ω𝑛𝑘

 
𝐿1𝑝.𝑝
   𝜒Ω 

Ω𝑛𝑘

𝐻
→Ω,    𝜕Ω𝑛𝑘

𝐻
→𝜕Ω  

It is a result which will allow us to characterize the existence of solution. 89 

Preuve. Pour la preuve, voir [1]. 90 

Consider the following homogeneous Neumann equation: 91 
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−∆𝑢Ω + 𝑢Ω
𝑞 = 𝑓 𝑖𝑛 Ω

𝜕𝑢Ω

𝜕𝑛
= 0        𝑜𝑛  𝜕Ω

                                                                  (3.7)   

So, by doing the variational formulation and integrating, we have according to Green’s formula: 92 

𝑣 ∈ 𝐻1 Ω ,  ∇𝑢Ω. ∇𝑣𝑑𝑥 +  𝑢Ω
𝑞𝑑𝑥 =  𝑓𝑣𝑑𝑥,

ΩΩΩ

 

with f ∈ L
2
(B). 93 

In what follows, we focus on the fundamental result of the game. 94 

Theorem 2.3 Let Oad ⊂ Oε be a non-empty set of open sets satisfying a closure property for 95 
convergence in the sense of Hausdorff, F a function which satisfies (3.2) and J1 (respectively J2) 96 

defined by (3.1) (respectively by (3.5)). Then, there exists Ω ∈ Oad which minimizes J1 97 
(respectively J2). 98 

Proof. Let us show that J1 is bounded. 99 
We have 100 

 𝐽1 Ω
𝑛
  =   𝐹  𝑥, 𝑢Ω𝑛

 𝑥 , ∇𝑢Ω𝑛
 𝑥  𝑑𝑥

Ω𝑛

 ≤ 𝑐 ‖𝑢Ω𝑛
‖

𝐻1 +  Ω
𝑛
  < +∞, 101 

which shows that J1(ωn) is increased. Moreover, 102 

 𝐽1 Ω𝑛
  =   𝐹  𝑥, 𝑢Ω𝑛

 𝑥 , ∇𝑢𝑢𝜔𝑛
 𝑥  𝑑𝑥

Ω
𝑛

  

and J1(Ωn) > −∞ because 𝑢Ω𝑛
∈ H

1
. So J1(Ωn) is reduced. Thus, J1(Ωn) is bounded. Let’s ask 103 

m = inf
Ω∈𝑂𝜖  𝑜𝑟  𝑂𝑎𝑑

  𝐽1 Ω                                                                                    (3.8) 

Then, according to the properties of the lower bound, there exists a minimizing sequence (ωn) of 104 
Oad such that 105 

𝐽1 Ω → m = infΩ∈𝑂𝜖  𝑜𝑟  𝑂𝑎𝑑
  𝐽1 Ω                                                                                   . 106 

Let Ωn ∈ Oad. According to Theorem 2.1, there exists an open Ω ∈ Oε and an extracted 107 

sequence (Ω𝑛𝑘
) which converges to Ω in the Hausdorff sense. Like Ωn ∈ Oad ⊂ Oε, the sequence 108 

(Ωn) verifies the property of the ε-cone. According to lemma (2.2), we can extract from the 109 

sequence (Ωn) a subsequence (𝑢Ω𝑛𝑘

) which verifies the following convergences:  110 

                                                     Ω𝑛𝑘   

𝐻
→ 

 
Ω,  χΩ𝑛𝑘

 → χΩ in L
1 
(p.p.), 111 

 𝑢Ω𝑛𝑘
  

𝐻
→Ω, ∂𝑢Ω𝑛𝑘

 

𝐻
→ ∂Ω. 112 

with Ω verifying the ε-cone property. 113 
It will now be a matter of showing that: 114 

𝑙𝑖𝑚 𝐽1(Ω𝑛) = 𝐽(𝜔) = infΩ∈𝑂𝜖  𝑜𝑟  𝑂𝑎𝑑
  𝐽1 Ω               . 115 
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 116 

Let us make the variational formulation of the Poisson problem with Neumann condition at the 117 
boundary: 118 

 
−∆𝑢Ω + 𝑢Ω

𝑞 = 𝑓 𝑖𝑛 Ω
𝜕𝑢Ω

𝜕𝑛
= 0        𝑜𝑛  𝜕Ω

                                                                            119 

By multiplying the above equation by a test function ϕ ∈ H
1
(Ω) and integrating, we have : 120 

                                                                             121 

Or,  
𝜕𝑢Ω

𝜕𝑛
𝜕Ω 

 𝜑dσ = 0 then: 122 

 ∇𝑢Ω. ∇𝜑𝑑𝑥

Ω 

+  𝑢Ω
𝑞𝜑𝑑𝑥

Ω

=  𝑓𝜑𝑑𝑥
Ω

 

Thus, according to the Lax-Milgram theorem, we can show the existence of a unique solution to 123 
this problem. 124 

So, in Ωn, we have the following variational formulation: 125 

 ∇𝑢Ω. ∇𝜑𝑑𝑥

Ω𝑛  

+  𝑢Ω
𝑞𝜑𝑑𝑥

Ω𝑛 

=  𝑓𝜑𝑑𝑥.
Ω𝑛 

 

Since Oad ⊂ Oε, we can define an extension in Ωn by: there exists an operator 126 

PΩn : H
1
(Ωn)→ H

1
(B), 127 

with B a bounded open of R
N
, such that         128 

 129 

                                                                                130 

PΩ𝑛 𝑢Ω𝑛
 = 

𝑢Ω𝑛    if  𝑥  ∈ Ω𝑛  

0   otherwise,
  131 

So either 132 

if x ∈ Ωn, 

otherwise, 

and 135 

                           𝜑  =  𝜑  𝑖𝑓 𝑥 ∈  Ω𝑛
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  136 

 137 
So, in 𝑢Ω

𝑛𝑘

we have the following variational formulation: 138 

    ∇𝑢ΩΩ𝑛𝑘

. ∇𝜑𝑑𝑥 +  𝑢Ω𝑛𝑘

𝑞𝜑𝑑𝑥Ω𝑛𝑘  
=  𝑓𝜑𝑑𝑥.Ω𝑛𝑘 

                                                       (a)  139 

Taking 𝜑  =𝑢Ω𝑛𝑘

, we obtain: 140 

 |∇uΩ𝑛𝑘|
2
𝑑𝑥+

𝐵 

  𝑢|
2
Ω𝑛𝑘𝑑𝑥+

𝐵 

  𝑓𝑢Ω𝑛𝑘
𝑑𝑥.

𝐵 
 141 

Thus, we have: 142 

 𝑢Ω𝑛𝑘
 2𝐻1(𝐵)  ≤ C‖𝑓‖L

2 Ω  𝑢Ω𝑛𝑘
  L

2 Ω  143 
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from which it follows that 144 

 𝑢Ω𝑛𝑘
  𝐻1(𝐵)  ≤ C‖𝑓‖L

2 Ω  145 

Therefore, the sequence (uΩnk) is bounded in H
1
(B). 146 

Since H
1
(B) is a reflexive Hilbert space, there exists u∗ ∈ H

1
(B) such that 147 

 𝑢Ω𝑛𝑘
 → 𝑢 ∗ 

weakly in H
1
(B),  148 

𝑢Ω𝑛𝑘
→ 𝑢 ∗ 

in L
2
(B) (strongly). 149 

Let us now show that: 150 

 151 

 ∇𝑢∗  ·  ∇𝜑𝑑𝑥 +
Ω

 (𝑢∗)
Ω

q 𝜑𝑑𝑥 =  𝑓𝜑𝑑𝑥,
Ω

         ∀𝜑𝜖 H
1
(Ω). 152 

For this, given that𝜑  ∈ D(Ω), there exists a certain rank from which 𝜑  ∈ D(Ωn). Thus, by 153 

multiplying equality (a) by χΩ𝑛𝑘
, we have: 154 

 𝜒Ω𝑛𝑘
∇𝑢Ω

𝐵

. ∇𝜑𝑑𝑥 +  𝜒Ω𝑛𝑘
𝑢Ω𝑛𝑘

𝑞𝜑𝑑𝑥
B 

=  Ω𝑛𝑘𝑓𝜑𝑑𝑥,      ∀𝜑𝜖𝐻
1
(𝐵)

B 
. 155 

Since                          χΩ𝑛𝑘
→ χΩ in L

1
(B) (p.p.), 156 

and using the weak convergence in H
1
(B) of 𝑢 Ω𝑛𝑘

, passing to the limit when k → +∞, we ob 157 

𝜒Ω𝑛𝑘

𝜕𝜑

𝜕𝑥𝑖

→ 𝜒Ω

𝜕𝜑

𝜕𝑥𝑖

   𝑖𝑛 𝐿2 𝐵 , 

𝜕Ω𝑛𝑘

𝜕𝑥𝑖

→
𝜕𝑢∗

𝜕𝑥𝑖

   𝑖𝑛 𝐿2 𝐵  

 158 

𝜒𝑢Ω𝑛𝑘
∇𝑢Ω𝑛𝑘

→χΩ∇ 𝑢∗ 
in L

2
(B), 159 

𝜒Ω𝑛𝑘uΩ𝑛𝑘→ χΩ
 𝑢∗      in L

1
(B). 160 

Thus, we have: 161 

 162 

 𝜒𝑢Ω𝑛𝑘
∇𝑢Ω𝑛𝑘

.
𝐵

 ∇𝜑𝑑𝑥 → 𝜒Ω∇𝑢∗.  ∇𝜑𝑑𝑥 
𝐵

=  ∇𝑢∗∇𝜑𝑑𝑥.
Ω

 163 

Finally, we obtain: 164 

 ∇𝑢Ω
∗

Ω
 . ∇𝜑𝑑𝑥 

+  ∇𝑢Ω
∗  

Ω
)
 q 𝜑𝑑𝑥 

= 𝑓𝜑𝑑𝑥
Ω

 165 

Let us show that𝑢Ω
∗   = 𝑢Ω 166 

Using Green’s formula in the variational formulation (b), we have: 167 
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− ∇𝑢Ω
∗

Ω
𝜑𝑑𝑥 

 
+  𝑢Ω

∗  
Ω

)
 q 𝜑𝑑𝑥 

= 𝑓𝜑𝑑𝑥 ,                  ∀𝜑𝜖𝐻1(Ω)
Ω

,   . 168 

Thus, we obtain: 169 

−∇𝑢Ω
∗ +  𝑢Ω

∗  )𝑞 = 𝑓  with      
𝜕𝑢Ω

∗

𝜕𝑛
= 0. 170 

We also need to show that the sequence 𝑢Ω
𝑛𝑘

→ 𝑢Ωin H
1
(Ω). Taking ϕ 171 

= 𝑢Ω𝑛𝑘
in (a) and ϕ = 𝑢Ωin (b), we have: 172 

𝑙𝑖𝑚   |∇𝑢Ω𝑛𝑘
|2 + Ω𝑛𝑘 𝑑𝑥 = 𝑙𝑖𝑚  𝜒𝑢Ω𝑛𝑘

𝑓𝑢Ω𝑛𝑘
𝑑𝑥.

BΩ𝑛𝑘

 

However, we also have: 173 

 𝜒𝑢Ω𝑛𝑘
𝑓𝑢Ω𝑛𝑘

𝑑𝑥.
B

→  𝜒Ω𝑛𝑘𝑓𝑢Ω
∗ 𝑑𝑥 =

B
 |∇𝑢Ω

∗ |2 +
Ω

(𝑢Ω
∗ )

 2 𝑑𝑥. 174 

Since χ𝑢Ω𝑛𝑘

𝑢Ω𝑛𝑘

 converges strongly in L
2
(B) to χΩ∇𝑢Ω, we have: 175 

 |∇𝑢Ω𝑛𝑘
− ∇𝑢Ω| 

Ω𝑛𝑘

2 𝑑𝑥= |∇𝑢Ω𝑛𝑘
|

Ω𝑛𝑘

2 𝑑𝑥-2 ∇𝑢Ω𝑛𝑘
  .  

Ω𝑛𝑘

∇𝑢Ω 𝑑𝑥 + |∇𝑢Ω|
Ω𝑛𝑘

2 𝑑𝑥 176 

By taking the limit, the second term on the right becomes zero, and therefore: 177 

 Lim   |∇𝑢Ω𝑛𝑘
− ∇𝑢Ω| 

Ω𝑛𝑘

2 
= 0 178 

In the same way, we show that: 179 

                Lim  |𝑢Ω𝑛𝑘
 −  𝑢Ω|

Ω𝑛𝑘

𝑑𝑥= 0   180 

Thus, we obtain: 181 

∇𝑢Ω𝑛𝑘

𝐿2

→  ∇𝑢Ω, 𝑢Ω𝑛𝑘
               

𝐿2

→  𝑢Ω 182 

Since F is a continuous function, we have: 183 

J(Ω𝑛𝑘
) = 𝐹(𝑥, 𝑢Ω𝑛𝑘

,
Ω𝑛𝑘

∇uΩ𝑛𝑘)𝑑𝑥 →   𝐹(𝑥,
Ω

𝑢Ω)𝑑𝑥.   184 
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3 Shape derivative : 

The objective of this section to calculate the shape derive of the functional 3.1. Before going 

further we first prove the following results which as useful for the main result. The idea is to use 

the celebrated method of Hadamard for the shape functional that we considered. This method was 

introduced by Hadamard in [14] and many other authors [2]. In there papers, the notions of shape 

derivative is given. 

Let Ω ⊂ ℝ𝑁  
be a bounded open set of class C

2
. For t ≥ 0, let Ωt = 𝜙 t(Ω), where for all t, 𝜙 t 

associated for V is diffeomorphism of R
2
. These properties holds: 

𝜙0 = 𝑉,  det ∇𝜙 𝑡  = 𝑗 𝑡, 𝑥 ,
𝑑∅𝑡

𝑑𝑡
= −𝑉,  det(∇∅𝑡

−1 = 𝑗 −𝑡, 𝑥 . 

Let Ωt = (Id + V )(Ω) be a demain of class C
2
. For t ≥ 0, very small, and V ∈ C

1 
∩ W

1,∞
( ℝ2). Let us 

consider also, the function J in Ωt. We have the following definition: 

Definition 3.1 One function J(Ω) of the domain is said to be shape differentiable at Ω if the 

mapping t → J(Ωt) from R into R is Frechet differentiable at t = 0. The corresponding Frechet 

derivative (or differential) is denoted by DJ(Ω,V ) and the following expansion holds: 

J(Ωt) = J(Ω) + tDJ(Ω,V ) + o(t). 

In the following, consider also then functional defined in Ωt, by 

 J(Ωt) = a |∇𝑢Ω  −  ∇𝑣0|
Ω𝑡

2𝑑𝑥 + b |𝑢Ω  −  𝑣1|
Ω𝑡

2 𝑑𝑥                                                               (3.1) 

where ut be the solution to the following problem 

where a and b two real numbers, v0 (respectively v1) are the given functions of Hloc
1 

(ℝ𝑁 ) 

(respectively L
2
loc(ℝ𝑁)) and uΩ is the solution of the following Dirichlet problem : 

 
−∇𝑢Ω𝑡

+ 𝑢Ω𝑡

𝑞
= 𝑓 𝑖𝑛 Ω𝑡

𝑢Ω𝑡
= 0 𝑜𝑛 𝜕Ω𝑡        

  

(3.2) 

We look, in this section for the shape derivative of the functional J(Ω). The key point in the 

calculation of the shape derivative DJ(Ω,V ) is in general, the definition of an appropriate 

derivation for the mapping Ω → uΩ. This mapping has a Lagrangian derivative u˙Ω and an Eulerian 

derivative  linking with the Laplacian derivative by For the definition of the 

Laplacian and eulerian derivative, we refer to [1], [2]. The following result is devoted to the shape 

derivative of the functional. 

Theorem 3.1 Lets Ω a class domain C
1
(ℝ𝑁) and V a class vector field C

1
. 

Let.𝐹𝜖𝐶1  0, 𝜖 𝐶0 Ω𝑡
     ∩ 𝐶0  0, ∈ , 𝐶1 Ω𝑡

     . The function defined by 

                                 𝐽1 ∈ =  𝐹 ∈, 𝑥 𝑑𝑥
Ω𝑡

                                                                        (3.3) 

is differentiable and its derivative is given by :   



4 Topological derivative via minmax method 9 

 

𝐷𝐽1 Ω𝑡, 𝑉 =  
𝜕

𝜕∈
𝐹 ∈, 𝑥 + 𝑑𝑖𝑣𝐹 ∈, 𝑥 𝑉(𝑥))𝑑𝑥                                     (3.4) 

Ω∈

                                                                                             

𝐷𝐽1 Ω𝑡, 𝑉 =  
𝜕

𝜕∈
𝐹 ∈, 𝑥 +  𝐹 ∈, 𝜎 𝑉. 𝑛𝑑𝜎.

𝜕Ω∈Ω∈
                                       (3.5)                                                            

Proof. See [1]  

Theorem 3.2 Let Ω be a domain of class C
2 
over ℝ𝑁and V a field of vectors of class C

2
. Let G be a 

function belonging to the space 

C
1
((0,ε),C

0
(Ωt)) ∩ C

0
((0,ε),C

1
(Ωt)). 

The function defined by:  

J2(t) = 𝐺 𝑡, 𝜎 𝑑𝜎,                                            (4.4)
𝜕Ω𝑡

 

is differentiable and its derivative is given by: 

𝑑𝐽2 Ω𝑡, 𝑉 =  
𝜕

𝜕𝑡
𝐺 𝑡, 𝜎 𝑑𝜎 +   𝐻 𝜎 𝐺 𝑡, 𝜎 +

𝜕𝐺(𝑡, 𝜎)

𝜕𝑛
 𝑑𝜎,

𝜕Ω𝑡𝜕Ω𝑡

                                     (4.5) 

where H(σ) is the mean curvature on the edge σ and
𝜕𝐺(𝑡 ,𝜎)

𝜕𝑛
 is the usual normal derivative. 

 Proof. For the proof of these two theorems, see [1].  

3.1 Exemple 

Let Ω be a domain of class C
1
. 

The perimeter and the volume being differentiable, we have: 
𝑑 Ω𝑡  

𝑑𝑡
|𝑡=0 =

𝑑

𝑑𝑡
|  𝑑𝑥 =  𝑑𝑖𝑣𝑉𝑑𝑥 =  𝑉. 𝑛𝑑𝜎.

𝜕ΩΩΩ𝑡

 

 

The normal derivative is positive if it points outward and negative otherwise. 

Likewise,  

 
𝑑

𝑑𝑡
|𝑡=0  𝑓𝑑𝑥 =

Ω𝑡

 𝑑𝑖𝑣 𝑓𝑉 𝑑𝑥 =  𝑓𝑉 . 𝑛𝑑𝜎
𝜕ΩΩ

 

and for the perimeter: 
𝑑

𝑑𝑡
𝑃 Ω𝑡 =  𝑑𝜎 =

𝜕Ω𝑡

 (𝑛𝑡
𝜕Ω𝑡

 . 𝑛𝑡)𝑑𝜎 =  𝑁𝑡
𝜕Ω𝑡

 . 𝑛𝑡)𝑑𝜎. 

 

Integration by parts in the other direction gives:   
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𝑑

𝑑𝑡
𝑃 Ω𝑡 =  𝑑𝜎 =

𝜕Ω𝑡

 (𝑛𝑡
𝜕Ω𝑡

 . 𝑛𝑡)𝑑𝜎 =  𝑁𝑡
𝜕Ω𝑡

 . 𝑛𝑡)𝑑𝜎. 

 

We consider Nt as a trace, and we have: 

𝑑

𝑑𝑡
𝑃 Ω𝑡 =  𝑑𝑖𝑣 𝑁𝑡𝜕Ω𝑡

. 

where Nt is an extension of nt to R
N 

(unitary norm 1). So : 

𝑑

𝑑𝑡
𝑃 Ω𝑡 =  𝑑𝑖𝑣 𝑁𝑡

𝜕Ω𝑡

|
𝑡=0

=  
𝜕

𝜕𝑡
 𝑑𝑖𝑣 𝑁𝑡 + 𝑑𝑖𝑣 𝑉. 𝑑𝑖𝑣𝑁0 𝑑𝑥.

Ω
 

By application of the divergence: 

 

 𝑑𝑖𝑣  
𝜕

𝜕𝑡
𝑁𝑡 + 𝑑𝑖𝑣 𝑉 . 𝑑𝑖𝑣𝑁0 𝑑𝑥 =  

𝜕

𝜕𝑡
𝑁𝑡  . 𝑛𝑑𝜎 +   𝑉. 𝑛 𝑑𝑖𝑣𝑁0𝑑𝜎

𝜕Ω𝜕ΩΩ

 

However, we know that: 

                                                                       
𝜕

𝜕𝑡
𝑁𝑡  . 𝑛 = 0 

Hence:                                                                  
𝑑

𝑑𝑡
 𝑓|𝑡=0 =
Ω𝑡

 𝑓𝑉. 𝑛𝑑𝜎.
𝜕Ω

 

And 

𝑑

𝑑𝑡
𝑃 Ω𝑡 |

𝑡=0
  =  𝑓𝑉. 𝑛𝑑𝜎.

𝜕Ω
 

where H is the mean curvature. 

We deduce that the derivative of the perimeter is equal to the mean curvature. 

3.2 Shape derivative via Lagrange 

In this part, we apply the results of the previous paragraph to the following functional :  

J(Ω) = 𝑎  |∇𝑢Ω  −  ∇𝑣0|
Ω

2𝑑𝑥 + b |𝑢ΩΩ
−  𝑣1|2 𝑑𝑥                                                                             (3.6) 

 

where a and b two real numbers, v0 (respectively v1) are the given functions of Hloc
1 ℝ N

) 

(respectively L
2
loc(ℝ

N
)) and uΩ is the solution of the following Dirichlet problem : 
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−∇𝑢Ω + 𝑢𝑞 = 𝑓  𝑖𝑛 Ω 

𝑢Ω = 0    𝑜𝑛      𝜕Ω.
                                                          (3.7) 

 

In Ωt the functional J is written : 

 J(Ωt) =𝑎  |∇𝑢ΩΩ𝑡
−  ∇𝑣0|2

 𝑑𝑥+ b |𝑢Ω− 𝑣1|Ω𝑡
|
2𝑑𝑥. 

Using the derivation formula (4.2) gives us (assuming enough regularity Ω ∈ C
1
,f ∈ L

2
loc 

dJ(Ω,V ) = 2a  ∇𝑢Ω −  ∇𝑣0 . ∇𝑢′𝑑𝑥 + 2𝑏   ∇𝑢Ω −  𝑣1 𝑢′𝑑𝑥
ΩΩ

  

+𝑎  |∇𝑢Ω −  ∇𝑣0|
𝜕Ω

|v1|
2𝑛𝑑𝜎 + 𝑏   𝑣1 

2𝑉. 𝑛𝑑𝜎
𝜕Ω

 

for any vector field V with u
0 
the form derivative of ut. 

In everything that follows, we look for the equation verified by u
0
. 

Let us make the variational formulation of the Dirichlet problem in Ωt. 

Let𝑣 ∈ 𝐻0
1(Ω𝑡), by multiplying the first equation of the previous problem by v and integrating over 

Ω we obtain : 

∀𝑣 ∈ 𝐻0
1 Ω𝑡 ,     ∇𝑢𝑡 . ∇𝑣 + 𝑢𝑞𝑣𝑑𝑥

Ω𝑡
=  𝑓𝑣𝑑𝑥

Ω𝑡
                                                    (3.8)  

For t small enough, we can differentiate equality(1.10) with (v = ϕ) fixed. By applying formula 

(4.2) we have : 

  ∇𝑢′ . ∇𝜑 + 𝑞𝑢𝑢𝑞−1𝜑 𝑑𝑥 +  (∇𝑢. ∇𝜑 +
𝜕ΩΩ

𝑢𝑞𝜑)𝑉. 𝑛𝑑𝜎 =  𝑓𝜑𝑉. 𝑛𝑑𝜎                           (3.9)
𝜕Ω

 

Now if ϕ is zero on the edge (on a neighborhood of the edge), the integrals of the limit disappear 

and we have : 

  ∇𝑢′ . ∇𝜑 + 𝑞𝑢′𝑢𝑞−1𝜑 𝑑𝑥 = 0                                             (3.10)   
Ω

 

So we have 

  −∇𝑢Ω + 𝑞𝑢′𝑢𝑞−1𝜑 𝑑𝑥 = 0
Ω

. 

And so we get: 

−∇𝑢 + 𝑞𝑢′𝑢𝑞−1 = 0 𝑖𝑛 Ω  
In the sense of distributions, now to recover the boundary condition, let’s remember the equality: 

𝑢′ Ω, V = 𝑢  Ω, V − V. ∇𝑢.  

The function uto(Id + tV ) defines on the fixed domain Ω disappears on the edge of Ω or all t. We 

then deduce that : 

𝑑

𝑑𝑡
 𝑢𝑡 𝑜 𝐼𝑑 + 𝑡𝑉 |𝑡=0 = 𝑢  Ω, V = 0 on 𝜕Ω. . 

 

In other words,𝑢𝑡𝑜(𝐼𝑑 + 𝑡𝑉) ∈ 𝐻0
1 Ω  for all t, therefore, according to the equality : 

𝑢′ Ω, V = 𝑢  Ω − V∇𝑢 
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𝑢′satisfied 

𝑢′ = ∇𝑢. 𝑉 =
𝜕𝑢

𝜕𝑛
𝑉. 𝑛 𝑜𝑛 𝜕Ω. 

The last equality comes from the fact that the gradient of u is normal to the edge. 

We therefore have the following result. 

Theorem 3.3 Lets Ω be a domain of class C
1
(ℝN

) and J be the functional defined by 

𝐽 Ω = a  |∇𝑢Ω − ∇𝑣0|2𝑑𝑥 +  |𝑢Ω − 𝑣1|2𝑑𝑥,
ΩΩ

 

where a and b are positive real numbers. 

The functional J is differentiable and we have 

𝑑𝐽 Ω; 𝑉  = 2a   ∇𝑢 − ∇𝑣0 . ∇𝑢′𝑑𝑥 + 2   𝑢 − 𝑣1 𝑢′𝑑𝑥
ΩΩ

 

+𝑎  |∇𝑢 − ∇𝑣0|2𝑉. 𝑛𝑑𝜎 + 𝑏  |𝑣1|2𝑉. 𝑛𝑑𝜎
𝜕Ω𝜕Ω

 

where u
0
, the form derivative satisfies 

 
−∆𝑢 + 𝑞𝑢′𝑢𝑞−1  𝑖𝑛 Ω

𝑢′ = ∇𝑢. 𝑉 = −
𝜕𝑢

𝜕𝑛
𝑉. 𝑛 𝑜𝑛 𝜕Ω

  

(3.11). 

Proof. The proof of this theorem follows directly from the previous application.  

4 Topological derivative via minmax method 

In this subsection, we describe how to calculate the topological derivative using the min-max 

approach, see e.g. [5], [6], [10], [7]. To begin with, we will look at the following definitions and 

notations. 

Definition 4.1 A Lagrangian function is a function of the form 

(𝑡, 𝑥, 𝑦) 7 →  𝐿(𝑡, 𝑥, 𝑦)  ∶  [0, 𝜏]  ×  𝑋 ×  𝑌 →  ℝ 𝜏 >  0 

where X is a vector espace, Y a non empty subset of vector space and the function y 7→ 

𝐿(𝑡, 𝑥, 𝑦)  is affine. 

Associate with the parameter t the parametrized minimax 
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𝑡 ⟼ g t = inf
𝑥∈𝑋

sup
𝑦∈𝑌

L t, x, y :  0, 𝜏 → ℝ  𝑎𝑛𝑑 𝑑g 0 = lim
𝑡→0+

g t − g 0 

𝑡
  

When the limits exist, we will use the following notations 

𝑑𝑡𝐿 0, 𝑥, 𝑦 = lim
𝑡→0+

L t, x, y − 𝐿 0, 𝑥, 𝑦 

𝑡
 

𝜑 ∈ 𝑋, 𝑑𝑥L t, x, y; φ = lim
𝜃→0+

L t, x, +θφ, y − L t, x, y 

𝜃
 

∅ ∈ 𝑌 𝑑𝑦 L t, x, y; ∅ = lim∅→0+
L t,x,+θ∅,y −L t,x,y 

𝜃
. 

Since L t, x, y  is affine en y, for all (𝑡, 𝑥) ∈ [0,τ] × X, 

 

∀𝑦, 𝜓 ∈  𝑌 𝑑𝑦𝐿 𝑡, 𝑥, 𝑦; 𝜓 =  𝐿 𝑡, 𝑥, 𝜓 −  𝐿 𝑡, 𝑥, 0 = 𝑑𝑦𝐿 𝑡, 𝑥, 0; 𝜓 ,                                        (4.1) 

 

The state equation at t ≥ 0 

 

 Find 𝑥𝑡  ∈ X such that for all 𝜓 ∈  𝑌, 𝑑𝑦L t, 𝑥𝑡 , 0; 𝜓                                              4,2  . 

The set of states 𝑥𝑡  
at t ≥ 0 is denoted 

𝐸 𝑡 =  𝑥𝑡 ∈ 𝑋, ∀𝜓 ∈ 𝑌,  𝑑𝑦L t, 𝑥𝑡 , 0; 𝜓                                                                                          (3.4). 

The adjoint equation at t ≥ 0 is  

Find p
t ∈ Y such that for all ϕ ∈ X, dxL(t,x

t
,p

t
;ϕ) 

= 0. 

The set of solutions p
t 
at t ≥ 0 is denoted 

𝑌 𝑡, 𝑥𝑡 =  𝑝𝑡 , ∈ 𝑌 ∀𝜑 ∈ 𝑋, 𝑑𝑥𝐿 𝑡, 𝑥𝑡 , 𝑝𝑡 , 𝜑 

=  0                                   

(4.4) 

 

 

(4.5) 

 

Finally the set of minimisers for the minimax is given by 

𝑋 𝑡 =  𝑥𝑡 ∈ 𝑋, g t = inf
𝑥∈𝑋

sup
𝑦∈𝑌

L t, x, y = supL
𝑦∈𝑌

(𝑡, 𝑥𝑡 , 𝑦 )       (4.6)    

LEMMA 4.1 (Constrained infimum and minimax) We 

have the following assertions 

(i) inf𝑥∈𝑋 sup𝑦∈𝑌 L t, x, y = inf𝑥∈𝐸(𝑡)(𝑡, 𝑥, 𝑦)    

(ii) The minimax g(t) = +∞ if and only if E(t) = ∅. And in this case we have X(t) = X. 

(iii) If E(t) 6= ∅, then 

(iv) 𝑋 𝑡 =  𝑥𝑡 ∈ 𝐸 𝑡 : 𝐿 𝑡, 𝑥𝑡 , 0 =  inf𝑥∈𝐸(𝑡)(𝑡, 𝑥, 0 ) ∁𝐸(𝑡)    

and g(t) < +∞. 

Proof. See [5], [8], [6].  
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To end this subsection, we give definitions and theorems on d-dimensional Minkowski content and 

d-rectifiability. 

Definition 4.2 Let E be a subset of a metric space X. E ⊂ X is d-rectifiable if it is the image of a 

compact subset K of ℝ𝑑  
by a continuous lipschitzian function f : ℝ d 

→ X. 

Let E be a closed compact set of ℝ𝑁  
and r ≥ 0, the distance function dE and the r-dilatation Er of E 

are defined as follows: 

𝑑𝐸 𝑥 = inf 𝑥 − 𝑥0 ,   𝐸𝑟 =  𝑥 ∈ ℝ𝑁: 𝑑𝐸 𝑥 ≤ 𝑟  
𝑥∈𝐸

. 

Definition 4.3 Given d, 0 ≤ d ≤ N the upper and lower d-dimensional Minkowski contents of a set 

E are defined by an r-dilatation of this set as follows 

𝑀∗𝑑 𝐸 = lim
𝑟→0+

𝑠𝑢𝑝
𝑚𝑁(𝐸𝑟)

𝛼𝑁 − 𝑑𝑟𝑁−𝑑 ;   𝑀∗
𝑑 𝐸 = lim

𝑟→0+
𝑖𝑛𝑓

𝑚𝑁(𝐸𝑟)

𝛼𝑁 − 𝑑𝑟𝑁−𝑑   

where mN is the Lebesgue measure in R
N 

and αN−d is the volume of the ball of radius 1 in ℝN−d
. 

Both concepts can be found in [5], [6]. 

4.1 Some preliminary results 

We need the following assumption for everything that follows: 

Hypothesis (H0) Let X 

be a vector space. 

(i) : For all t ∈ [0,τ], 𝑥0 ∈ 𝑋 0 , 𝑥𝑡 ∈ 𝑋(𝑡) 
0 ∈ X(0), and y ∈ Y , the function θ →7 L(t, 𝑥0  

+ θ(𝑥𝑡  
−𝑥0),y) : [0,1] → R is absolutely continuous. This implies that for almost all θ 

the derivative exists and is equal to dxL(t, 𝑥0+θ(𝑥𝑡  
−𝑥0),y; 𝑥𝑡  

−𝑥0) and it is the integral 

of its derivative. In particular 

(ii) 𝐿 𝑡, 𝑥𝑠 , 𝑦 = 𝐿 𝑡, 𝑥0, 𝑦 +  𝑑𝑠𝐿(𝑡, 𝑥0 + 𝜃 𝑥𝑡 − 𝑥0 , 𝑦;
1

0
𝑥𝑡 − 𝑥0)𝑑𝜃. 

ii) : For all t ∈ [0,τ], x
0 ∈ X(0), x

t ∈ X(s) and y ∈ Y , υ ∈ X and for almost all θ ∈ 

[0,1],  𝑑𝑠𝐿(𝑡, 𝑥0 + 𝜃 𝑥𝑡 − 𝑥0 , 𝑦; ∅)  exist et the functions θ →7 𝑑𝑠𝐿(𝑡, 𝑥0 + 𝜃 𝑥𝑡 +

𝑥0 , 𝑦; ∅) belong to L
1
[0,1] 

Definition 4.4 Given 𝑥0  ∈ X(0) and𝑥𝑡  ∈ X(t), the averaged adjoint equation is: 

𝑦𝑡 ∈ 𝑌 ∀𝑋,  𝑑𝑠𝐿(𝑡, 𝑥0 + 𝜃 𝑥𝑡 + 𝑥0 , 𝑦; ∅)𝑑𝜃
1

0

 

Find  

and the set of solutions is noted Y (t, 𝑥0 , 𝑥𝑡). 

Y (0, 𝑥0, 𝑥0) clearly reduces to the set of standard adjoint states Y (0, 𝑥0) at t = 0. 

Theorem 4.2 Consider the Lagrangian functional 
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(𝑡, 𝑥, 𝑦) 7→ L(𝑡, 𝑥, 𝑦) : [0,τ] × X × Y → ℝ, τ > 0 

where X and Y are vector spaces and the function y 7→ L(𝑡, 𝑥, 𝑦) is affine. Assume that (H0) and 

the following hypotheses are satisfied 

𝑯𝟏𝒂 for all t ∈ [0,τ], g(t) is finite, X(t) = {𝑥𝑡} and Y (0,x
0
) = {p

0
} are singletons, 

𝑯𝟐𝒂 dtL(0,𝑥0, 𝑦0) exists, 

𝑯𝟑𝒂 The following limit exists 

𝑅(𝑥0, 𝑦0) = lim𝑡→0+  𝑑𝑠𝐿  𝑡, 𝑥0 + 𝜃 𝑥𝑡 − 𝑥0 , 𝑝0;
𝑥𝑡−𝑥0

𝑡
 𝑑𝜃.

1

0
 

Then, 𝑑g (0)  exists and 𝑑g (0) = 𝑑𝑡𝐿(0, 𝑥0, 𝑦0) + 𝑅(𝑥0, 𝑝0). 

Proof. See [4, 5].  

COROLLARY 4.3 Consider the Lagrangian functional 

 𝑡, 𝑥, 𝑦 7 →  𝐿 𝑡, 𝑥, 𝑦 :  0, 𝜏 ×  𝑋 ×  𝑌 → ℝ, 𝜏 >  0  

where X and Y are vector spaces and the function y 7→ L(t,x,y) is affine. Assume that (H0) and the 

following assumptions are satisfied: 

(H1a) for all t ∈ [0,τ], X(s) not equal  ∅, g(t) is finite, and for each x ∈ X(0), Y (0,x) not equal∅, 

(H2a) for all x ∈ X(0) and p ∈ Y (0, 𝑥) 𝑑𝑡𝐿(0, 𝑥, 𝑝) exists, 

(H3a) there exist 𝑥0 ∈ X(0) and p
0 ∈ Y (0, 𝑥0) such that the following limit exists 

𝑅(𝑥0, 𝑝0) = lim𝑡→0+  𝑑𝑠𝐿  𝑡, 𝑥0 + 𝜃 𝑥𝑡 − 𝑥0 , 𝑝0;
𝑥 𝑡−𝑥0

𝑡
 𝑑𝜃.

1

0
 

Then, dg(0) exists and there exist x
0 ∈ X(0) and p

0 ∈ Y (0,x
0
) such that dg(0) =𝑑𝑡𝐿(0, 𝑥0, 𝑝0)+ 

𝑅(𝑥0, 𝑝0). 

In what follows, we focus on the main result of this part. And for information on the tools used the 

reader can consult [5]. 

4.2 Topological derivative 

Let us consider the functionnal defined in Ωt by 

𝐹 Ω𝑡 = a  |∇𝑢Ω − ∇𝑣0|2𝑑𝑥 + 𝑏  |𝑢Ω − 𝑣1|2𝑑𝑥.                                      (4.7)    
Ω𝑡Ω𝑡

 

 

where uΩt be the solution to the Neumann Problem   

 

         
−∆Ω𝑡 + 𝑢Ω𝑡

𝑞 = 𝑓 𝑖𝑛 Ω𝑡

𝑢Ω𝑡
= 0 𝑜𝑛 𝜕Ω𝑡

                                                                         (4.8)    

where q > 1 is an integer. 
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Let us consider as shape functional F define by 

𝐹 Ω = a  |∇𝑢Ω − ∇𝑣0|2𝑑𝑥 + 𝑏  |𝑢Ω − 𝑣1|2𝑑𝑥.                                      (4.9)    
ΩΩ

 

 

And𝑢Ω ∈ 𝐻0
1 Ω   is solution to the variational problem 

∀𝑣 ∈ 𝐻0
1 Ω ,  ∇𝑢Ω. ∆𝑣 + 𝑢Ω

𝑞 . 𝑣𝑑𝑥 =  𝑓𝑣𝑑𝑥.                                                              (4.10)
ΩΩ

 

 We aim to compute the topological derivative of the functional F(Ωt) 

𝑑𝐹 = lim
𝑡→0+

𝐹(Ω𝑡)−𝐹(Ω)

𝛼𝑁−𝑑𝑟𝑁−𝑑 . 

Thus, the Lagrangian dependent on t will be written in the form : 

𝐿 𝑡, ∅, 𝛷 = 𝑎  |∇𝛷 − ∇𝑣0|2𝑑𝑥 + 𝑏  |𝛷 − ∇𝑣1|2

ΩΩ𝑡

 

+  ∇∅. ∇𝛷 + ∅𝑞∇𝛷𝑑𝑥 −  𝑓𝛷𝑑𝑥

Ω
Ω

 

From this, we can now evaluate the derivative of the Lagrangian, dependent on t, 

with respect to ∅ . 

𝑑∅𝐿 𝑡, ∅, 𝛷, ∅′ =  2𝑎   ∇∅ − ∇𝑣0 . ∇∅′𝑑𝑥 + 2𝑏   𝛷 − 𝑣1 ∅′𝑑𝑥 +  ∇∅′∇𝛷 +
ΩΩΩ

𝑞∅′∅𝑞−1𝛷𝑑𝑥 

The initial adjoint state pΩ0 is a solution of 𝑑∅𝐿 0, 𝑢Ω0
, 𝑝Ω0

, ∅′ = 0  for all ∅′  
 
for t = 0. Thus the 

variational formulation of the adjoint equation of state is given by 

2a  (∇𝑢Ω0
− ∇𝑣0)∇∅′𝑑𝑥 + 2𝑏   𝑢Ω0

− 𝑣1 ∅
′𝑑𝑥 +  ∇∅′

Ω

∇ 𝑝Ω0
+  𝑞∅′𝑢Ω0

𝑞−1
 𝑝Ω0

𝑑𝑥 = 0  
ΩΩ

 

. 

And we have 

  2a  ∇𝑢Ω0
− ∇𝑣0 ∇∅′𝑑𝑥 + 2𝑏 𝑢Ω0

− 𝑣1 ∅
′𝑑𝑥 + ∇∅′∇ 𝑝Ω0

+  𝑞∅′𝑢Ω0

𝑞−1  𝑝Ω0
 𝑑𝑥 = 0           (4.11)

Ω

 

Next, we derive the Lagrangian with respect to Φ. 

𝑑∅𝐿 𝑡, ∅, 𝛷, ∅′ =  ∇∅. ∇𝛷 +
Ω

∅𝑞𝛷′𝑑𝑥 −  𝑓𝛷′𝑑𝑥
Ω

 

The initial state uΩ0 is a solution of 𝑑∅𝐿 0, 𝑢Ω0
, 0, 𝛷Ω0

′  = 0 ∀ 𝛷Ω0

′ ∈ 𝐻0
1 Ω  and in this case, we 

have: 

 ∇𝑢Ω0
. ∆𝛷′ + 𝑢Ω0

𝑞 𝛷′𝑑𝑥. −  𝑓𝛷′𝑑𝑥 = 0                                                            
ΩΩ

 

. 
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  ∇𝑢Ω0
 . ∆𝛷′ + 𝑢Ω0

𝑞 𝛷′𝑑𝑥. − 𝑓𝛷′ 𝑑𝑥 = 0                                                                      (4.12)  
Ω

 

 

And we have 

𝐿 𝑡, ∅, 𝛷 − 𝐿 0, ∅, 𝛷 =  f 𝑥 
Ω𝑡

𝛷 𝑥 𝑑𝑥 −  𝑓 𝑥 
Ω𝑡

𝛷 𝑥  

𝐿 𝑡, ∅, 𝛷 − 𝐿 0, ∅, 𝛷 =  f 𝑥 
Ω𝑡

𝛷 𝑥 𝑑𝑥 −  𝑓 𝑥 
w𝑡

𝛷 𝑥 + 

𝐿 𝑡, ∅, 𝛷 − 𝐿 0, ∅, 𝛷 = −  𝑓 𝑥 
w𝑡

𝛷 𝑥  

𝑑𝑠𝐿 𝑡, ∅, 𝛷 = lim
𝑠→0

1

 𝐵(𝑥0, 𝑠) 
  𝑓(𝑥)𝛷 𝑥 

𝐵(𝑥0 ,𝑠)

  

𝑑𝑠𝐿 0, ∅, 𝛷 = 𝑓 𝑥0 𝛷 𝑥0 . 

We will now define R(t) by. 

𝑅 𝑡 =  𝑑∅𝐿  𝑡, 𝑢Ω𝑡
+  𝜓(𝑢Ω𝑡

− 𝑢Ω0
, 𝑝Ω0 ,  

𝑢Ω𝑡−𝑢Ω0

𝑡
  

1

0

𝑑𝜓. 

By substituting∅′ =
𝑢Ω𝑡

−𝑢Ω0

𝑡
  and 𝜓 =

𝑢Ω𝑡
−𝑢Ω0

2
  into the adjoint equation for pΩ0, we obtain: 

𝑅 𝑡 = 2𝑎   ∇  
𝑢Ω𝑡

+ 𝑢Ω0

2
 − ∇𝑣0 . ∇

Ω

 
𝑢Ω𝑡−𝑢Ω0

𝑡
 𝑑𝑥 

+2𝑏   ∇ 
𝑢Ω𝑡

+ 𝑢Ω0

2
 − 𝑣1 .

Ω

 
𝑢Ω𝑡−𝑢Ω0

𝑡
 𝑑𝑥 

+  ∇ 
𝑢Ω𝑡

− 𝑢Ω0

𝑡
 ∇𝑝Ω0

+ q
Ω

 
𝑢Ω𝑡−𝑢Ω0

𝑡
  

𝑢Ω𝑡
+ 𝑢Ω0

2
 

𝑞−1

𝑝Ω0
𝑑𝑥 

= 2𝑎   ∇ 
𝑢Ω𝑡

2
 − ∇ 

𝑢Ω𝑡

𝑡
 + ∇ 

𝑢Ω0

2
 + ∇  

𝑢Ω0

2
 − ∇𝑣0 

Ω

. ∇ 
𝑢Ω𝑡

− 𝑢Ω0

𝑡
 𝑑𝑥 

+2𝑏   
𝑢Ω𝑡

2
+

𝑢Ω0

2
−

𝑢Ω0

2
−

𝑢Ω0

2
− 𝑣1 . ∇ 

𝑢Ω𝑡
− 𝑢Ω0

𝑡
 𝑑𝑥

Ω

 

+   ∇ 
𝑢Ω𝑡

2
 − ∇  

𝑢Ω0

𝑡
  ∇𝑝Ω0

+ 𝑞  
𝑢Ω𝑡

− 𝑢Ω0

𝑡
  

𝑢Ω𝑡
+ 𝑢Ω0

2
 

𝑞−1

𝑝Ω0
𝑑𝑥

Ω

 

+  𝑞  
𝑢Ω𝑡

− 𝑢Ω0

𝑡
  𝑢Ω0

𝑞−1 − 𝑢Ω0

𝑞−1 𝑝Ω0
𝑑𝑥

Ω

 

= 2𝑎  ∇ 
𝑢Ω𝑡

− 𝑢Ω0

2
 .

Ω

∇  
𝑢Ω𝑡

− 𝑢Ω0

𝑡
 𝑑𝑥 + 2𝑏   

𝑢Ω𝑡
− 𝑢Ω0

2
  

𝑢Ω𝑡
− 𝑢Ω0

𝑡
 

Ω

𝑑𝑥 

+  𝑞  
𝑢Ω𝑡

− 𝑢Ω0

𝑡
   

𝑢Ω𝑡
+ 𝑢Ω0

2
 

𝑞−1

− 𝑢𝑞−1 𝑝Ω0
𝑑𝑥

Ω

 

 f 𝑥 
Ω𝑡

𝛷 𝑥 𝑑𝑥 
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𝑅 𝑡 =
𝑎

𝑡
 |∇𝑢Ω𝑡

− 𝑢Ω0
|2𝑑𝑥 +

𝑏

𝑡
 |∇𝑢Ω𝑡

− 𝑢Ω0
|2𝑑𝑥

ΩΩ

 

+
𝑞

𝑡
 (𝑢Ω𝑡

− 𝑢Ω0
)𝑑𝑥

Ω

  
𝑢Ω𝑡

+ 𝑢Ω0

2
 

𝑞−1

− 𝑢𝑞−1 𝑝Ω0
𝑑𝑥 

 

 

Theorem 4.4 Let 0 ≤ d < N, E verify Hypothesis1 and t = αN−dr
N−d

. The topological derivative 

exists if the function  has a finite limit. Therfore, the topological derivative of the function is 

given by the expression: 

𝑑𝐽 = lim
𝑡→0

𝑠𝑢𝑝
𝐽 Ω𝑡 − 𝐽(Ω)

𝛼𝑁 − 𝑑𝑟𝑁−𝑑  

𝑑𝐽 = 𝑅 𝑥0, 𝑝Ω0
 − 𝑓 𝑥0 𝑝Ω0

 𝑥0 . 

where 𝑝Ω0
, 𝑢Ω0  are solutions of systems 

  2𝑎 ∇ 𝑢Ω0
− ∇𝑣0 . ∇∅′ + 2𝑏 𝑢Ω0

− 𝑣1 ∅
′𝑑𝑥 + ∇∅′∇ 𝑝Ω0

+  𝑞∅′𝑢Ω0

𝑞−1 𝑝Ω0
 𝑑𝑥 = 0 .           

Ω
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5 Conclusion 

5 Conclusion 

In this paper we start by establishing an existence result of optimal form. Then we proved the 

shape drift using the Lagrange method. The last part of the document was devoted to the 

topological derivative of the functional. we plan to look at the numerical problem of these 

already established derivatives. 

References 

[1] A. Henrot, M. Pierre,Variation et optimisation de formes, Mathematiques et Applications 

(Berlin), vol 48, Springer, Berlin, 2005, Une analyse geometrique ., 

[2] G. Allaire and A. Henrot, On some recent Advences in shape optimization, C.R Acad. Sci. 

Paris, 7742(01): 338-396, 2001. 

[3] MICHEL. C. DELFOUR Topological Derivative of State-Constrained Objective 

Functions: A Direct Method, DOI: 10.1137/20M1368732, SIAM Journal on Control and 

Optimization, 90C, 65K10, 49, 65K, 65K10 

[4] M. C. Delfour, Differentials and semidifferentials for metric spaces of shapes and 

geometries, in System Modeling and Optimization, IFIP Adv. Inf. Commun. Technol. 494 

L. Bociu, J. A. Desideri, and A. Habbal, eds., Springer, Berlin, 2017, pp. 230–239. 

[5] M. C. Delfour, Topological derivative: A semidifferential via the Minkowski content, J. 

Convex Anal., 3 (2018), pp. 957–982. 

[6] M. C. Delfour, Control, shape, and topological derivatives via minimax differentiability of 

Lagrangians, in Numerical Methods for Optimal Control Problems Springer INdAM Ser. 

29, M. Falcone, R. Ferretti, L. Grüne, and W. McEneaney, eds., Springer, Cham, 

Switzerland, 2018, pp. 137–164. 

[7] M. C. Delfour, Hadamard semidifferential of functions on an unstructured subset of a 

TVS, Pure Appl. Funct. Anal., 5 (2020), pp. 1039–1072. 

[8] M. C. Delfour, Topological derivatives via one-sided derivative of parametrized minima 

and minimax, Eng. Comput., (2021), https://doi.org/10.1108/EC-06-2021-0318. 

[9] M. C. Delfour and K. Sturm, Minimax differentiability via the averaged adjoint for 

control/shape sensitivity, IFAC-PaperOnLine, 49 (2016), pp. 142–149. 

[10] M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential 

Calculus and Optimization, 2nd ed., SIAM, Philadelphia, 2011. 

[11] G. Buttazzo et G. Dal Maso. Shape optimisation for the Dirichlet problem: Relaxed 

formulation and Optimality Conditions. App. Math. Opt., 23 (1991), pp. 17-49. 



20 

 

[12] G. Buttazzo, G. Dal Maso. An existence result for a class of shape optimisation problems. 

Arch. Rational Mech. Anal. 122 (1993) 183-195. 

5 Conclusion 

[13] H. Brezis. unctional Analysis: Theory and application. Masson, 1987. 

[14] J. Hadamard, Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques 

encastrées, in Mémoires présentés par divers savants à l’Academie des Sciences, vol. 33, 

Imprimerie F. Muratnationale, 1908. 

[15] M. Fall, I. Faye, A. Sy, D. Seck,On Shape Optimization Theory with Fractional Laplacian. 

Applied and Computational Mathematics. Vol. 10, No. 3, 2021, pp. 56-68. 

doi:10.1164/j.acm.20211003.12. 


