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Shape and Topological Optimization of a Nonlinear
Elliptical Problem

Abstract

In this work, let us deal with existence and derivation results in shape optimization. It should
be noted that a shape optimization problem does not generally have a solution with only its
initial data. To get around the non-existence of solution, we impose geometric order
restrictions (i.e. volume type) and we work with the open class checking the e-cone property
to obtain existence. On the other hand, we determine the shape derivative using the
Lagrange method. And then we establish the topological derivative using the minmax
method.

keywords: thermoelasticity problem, shape derivative, shape gradient, minmax.

1 Introduction

In this paper, we are interested with shape optimization problems using the functional
J(Q) = afﬂ Vuq — Vool*dx+ b [ [uq — vi/7dx. (1.1)

where a and b two real numbers, v, (respectively v;) are the given functions of Hi.® (RM)
(respectively L%oc(RY) and uyq is the solution of the following Neumann problem :

(1.2)

6u9

— =00nadQ

{—Vuﬂ +ul=finQ
on

The objective of this paper is fixed around three main axes, that is to say the existence of optimal
shape solution, the shape derivative using vector fields and the topological derivative using the
minmax method. These types of problems have been studied by many authors who can be cited
[2,3,9 10,7,8,9,11, 12, 15]

We will give existence results by adding constraints, either on the functional to be minimized or
on the set of admissible domains. But we can also increase volume constraints. A minimization
problem does not always admit a solution with only its initial data. Thus, it will be a question of
giving existence results assuming that the edge is uniformly regular.

Let us denote by O, the set of admissible open sets. We assume that this set satisfies the
following properties:

Oad c O¢
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2 Existence of a solution by the -cone property 2

(the set of open checking the property of the ¢ — cone). It is also closed for one of the three types
of convergence, namely convergence in the sense of Hausdorff, in the sense of characteristic
functions or in the sense of compacts.

The main in this paper is to determine the shape derivative

and the topological derivative of the functional J(O:)= J(Oe,

Uz), where the perturbed domain Q. of € is defined by

Qe= Ts(.Q.) or Qe= O\Ee on the derivative to be calculated.

The paper is organized as follows: In the first section we give the introduction. In the second
section, we establish the existence of optimal form Section 3 is reserved for the form derivative
of the functional using the Lagrange method. In this part we first give an example of application
of the derivative in the sense of Hadamard. Then we apply them to the energy functionals.

In the section 4 we give the topological derivative using minmax method.

And in the section 5, we give the conclusion of the work.

2  Existence of a solution by the -cone property

We consider a functional of the form:

J1(Q) = [ F(x uq, Vug)dx (3.1)
where
F:B x Rx RN - R

is a continuous function, measurable in (x,r,p) and verifying the hypothesis
|F(x,7,p)| < c(1+7%+|p|>) Vx € B,Yr ER,Vp € RV. (3.2)
With u = ug of the following Neumann problem:

—Au+ul =finQ

ou (34)
— =0 on 0Q
on

with Q c B (where B is an open R") and f € L%(B).
We further consider the following functional:

J2(Q) = ] F(x,vq(x),0)dx + af Vv (x)|? dx (3.5)
Q Q
with a > 0 and vg solution of (3.3) or(3.4).
We then ask :
Jw)= [ F(x u, (), Vu,)dx. (3.6)

We notice that J is well defined, because F is, by hypothesis, a function measurable in (r,p) p.p.
Thus, we show that J(w) < +o0. Indeed, according to (3.2) we have:
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2 Existence of a solution by the -cone property 3

()| =

fF(x,uw(x),Vuw(x))dX| Sf0(1+ua ()2 + [Vug(0)]?)dx,

< CJ (1 + ug (%)% + |Vug(x)|?)dx.

Furthermore, we can increase
[J(@)]| < c(lluyllgt + l[w]]) < +oo.

So [J(w)| < +o0 , hence J(w) is well defined. We therefore recall that problems (3.3) and (3.4) are
well posed in the sense of Hadamard. Indeed, we have specified the conditions at the edges of
Dirichlet and Neumann types.

In all that follows, we set ¢ > 0 and we consider the set O, defined by:
O.= {Q open, Q c D, Q has the property of ¢-cone}.
We therefore consider the following shape optimization problem:
min{J(Q): Q €O, },

where J designates the functional of type Ji or J,. In all that follows, we seek to determine
optimal shape existence results for shape optimization problems. But before giving optimal form
existence results, we need the following results:

Theorem 2.1 : Let Q,be an open sequence in the class O,. Then there exists an open {2 € O,
and an sub-sequence {1,,, which converges towards Q both in the sense of Hausdorff, in the sense

of the characteristic functions and in the sense of compact. In addition, {,,, and o}, , converge
in

the Hausdorff sense respectively to Q and oQ.
LEMMA 2.2 : Let K be a compact and B a bounded open of R". Let ©, be a sequence of open

with Q, c K < B, verifying the ownership of the -cone.

Then there is an open Q verifying the ownership of the -cone and an extracted sequence Q. such
as

H L'pp
uQ,, = Q,xQ,, — xo

—  H— H
Qp, —Q, 90Qy,, —0Q

It is a result which will allow us to characterize the existence of solution.

Preuve. Pour la preuve, voir [1].

Consider the following homogeneous Neumann equation:



92

93
94

95
96
97
98

99
100

101

102

103

104
105
106

107
108

109
110

111

112

113
114

115

2 Existence of a solution by the -cone property 4

dug (3.7)

So, by doing the variational formulation and integrating, we have according to Green’s formula:

vE Hl(ﬂ),f Vug. Vvdx +f
Q

ugldx = vadx,
Q Q

with f € L*(B).
In what follows, we focus on the fundamental result of the game.

Theorem 2.3 Let Oy € O, be a non-empty set of open sets satisfying a closure property for
convergence in the sense of Hausdorff, F a function which satisfies (3.2) and J; (respectively Jy)
defined by (3.1) (respectively by (3.5)). Then, there exists Q € Oy which minimizes J;
(respectively J,).

Proof. Let us show that J; is bounded.
We have

@1 =] F (20, (9, Te, ()

which shows that Ji(wy) is increased. Moreover,

< c(llug, llx +19]) < +oo,

@ =|[ F(xun,09,70,00) dx
Q,
and J1(€2y) > —oo because ug € H'. So Jy(Qy) is reduced. Thus, Ji(€2,) is bounded. Let’s ask
AL (3.8)

Then, according to the properties of the lower bound, there exists a minimizing sequence (w,) of
Ogqsuch that

J1(Q) » m = infoep, or 0,, J1(Q)
Let Q, € Ogy. According to Theorem 2.1, there exists an open Q € O, and an extracted

sequence ({1, ) which converges to Q in the Hausdorff sense. Like Q, € O, © O,, the sequence

(Q) verifies the property of the ¢-cone. According to lemma (2.2), we can extract from the

sequence (£2,) a subsequence (uq_) which verifies the following convergences:
'an - Q, X‘an — xainlL (pp)1

H H
'U,an —>Q, 8Uan - 0Q.

with Q verifying the e-cone property.
It will now be a matter of showing that:

lim J1(Qn) = J(w) = infoeo, or 0,y J1(Q)
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2 Existence of a solution by the -cone property 5

Let us make the variational formulation of the Poisson problem with Neumann condition at the
boundary:

aﬂ=O on 0Q

{—Aug +ug? =finQ
an

By multiplying the above equation by a test function ¢ € H'(Q) and integrating, we have :

n

or, f 2, do = 0 then:
0

fVuﬂ.vwdx+quq<pdx = ff(pdx
Q Q Q

Thus, according to the Lax-Milgram theorem, we can show the existence of a unique solution to
this problem.

So, in Q,, we have the following variational formulation:

j Vuﬂ.vwdx+f qugodx:f fodx.
Q"Vl 'Qn ‘Qn

Since Oy € O,, we can define an extension in Q, by: there exists an operator
Pa,: HY(Qy)— HY(B),

with B a bounded open of R, such that

P (0, )=y “Senerwise,
So either
. {un if x € Q,
0 otherwise,
and

~ = {go if x € On
@ 0 otherwise

So, in ug we have the following variational formulation:

fﬂnk Vu, . Vodx + ank ug, pdx = ank fodx. (a)
Taking ¢ =uq , we obtain:
f |Vuan|2dx+f ul’ Quydx + [, fug, dx.
B B B~ e
Thus, we have:

L?(0)

[ua, |Hi®) < ClFIL@) ||uq,,
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2 Existence of a solution by the -cone property 6

from which it follows that
o, || Hie <clfIl@

Therefore, the sequence (Uq.) is bounded in H'(B).
Since H*(B) is a reflexive Hilbert space, there exists u* € H'(B) such that

uq,,—u*  weakly in H'(B),

ug, —u*  inL%B) (strongly).

Let us now show that:

J,vur - Vodx + [ (u)?@dx = [, fedx, Ve HY(Q).
For this, given thatgp € D(Q), there exists a certain rank from which ¢ € D(Q,). Thus, by

multiplying equality (a) by yQ,,, , we have:

njk?
J )(anvua Vodx + JB )(anuﬂnkq @dx = fB O fodx,  veet'®).
B

Since 2= 2o In L'(B) (pp.),

and using the weak convergence in H(B) of u Q! passing to the limit when k — +o0, we ob

% dop 5
XQ,, 72 Xa5— inl(B),
00y, ou*
— inL*(B
2. _)% in L*(B)

){UanVUan—)XQV u* in LZ(B),
xQyully,— xou*  inLY(B).

Thus, we have:

quanqunk' V(pdx fB xaVu'. VQDdX = fQ Vu*Vgodx
B
Finally, we obtain:

J Vug* . Vepdx +fQ(Vua) I pdx :fnfq)dx

Let us show thatu,, =uq
Using Green’s formula in the variational formulation (b), we have:
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2 Existence of a solution by the -cone property

— Jo Vua" @dx + [, (ug) * pdx =[, fdx, VoeH'! (Q),
Thus, we obtain:
oug

—Vug™ + (up)? = f with =0
We also need to show that the sequence ug — ugin HY(Q). Taking ¢

= Uanin (@) and ¢ = uqin (b), we have:

lim (lVUanlz + an) dx = limj)(uﬂnkfugnkdx.
Oy B

However, we also have:
quanqunkdx. - fB X fugdx = [ |Vug|? + (ug) ? dx.
B

Since yug uq converges strongly in L?(B) to xoVuq, we have:

f IVugq, - Vug|® dx= f Vugq, |* dx-2 f Vuan.Vqux+ank|VuQ|2dx
Qny,

Qg Qny
By taking the limit, the second term on the right becomes zero, and therefore:
Lim f |Vug, - Vug|?=0
nk
Qg

In the same way, we show that:

Limf lug,, — ualdx=0
Qny,

Thus, we obtain:
L2 L2
Vuan - Vug, Uq,, - Ug

Since F is a continuous function, we have:

I Q) :jﬂ F(x,uq,, vuQ,, )dx - fQF(x,uQ)dx.
ni
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3  Shape derivative :

The objective of this section to calculate the shape derive of the functional 3.1. Before going
further we first prove the following results which as useful for the main result. The idea is to use
the celebrated method of Hadamard for the shape functional that we considered. This method was
introduced by Hadamard in [14] and many other authors [2]. In there papers, the notions of shape
derivative is given.

Let Q@ — R be a bounded open set of class C% For t > 0, let Q= ¢ (), where for all t, ¢+
associated for V is diffeomorphism of R2. These properties holds:

d N
B0 =V, ldet(V )] = j(6,), 3 = V. 1deti@0; | = j(~t,).

Let Q= (Id + V )(€) be a demain of class C% For t >0, very small, and V € C*N W**( R?). Let us
consider also, the function J in Q.. We have the following definition:

Definition 3.1 One function J(Q2) of the domain is said to be shape differentiable at Q if the
mapping t — J(€;) from R into R is Frechet differentiable at t = 0. The corresponding Frechet
derivative (or differential) is denoted by DJ(€2,V ) and the following expansion holds:

J(Q) = J(Q) +tDIQ,V) +o(b).

In the following, consider also then functional defined in Q;, by

JQ) =af, Vug — vvo|%dx +b Jo, o = vy |2 dx (3.1)
where u; be the solution to the following problem

where a and b two real numbers, vq (respectively vi) are the given functions of Hic' (RY)
(respectively L%.(R")) and ugq is the solution of the following Dirichlet problem :

{—Vugt +ug =finQ,
ug, = 0on dQ,

3.2)
We look, in this section for the shape derivative of the functional J(Q). The key point in the
calculation of the shape derivative DJ(Q,V ) is in general, the definition of an appropriate
derivation for the mapping Q — uq. This mapping has a Lagrangian derivative u'g and an Eulerian
derivative o linking with the Laplacian derivative byto = to — Vua - V.For the definition of the
Laplacian and eulerian derivative, we refer to [1], [2]. The following result is devoted to the shape
derivative of the functional.

Theorem 3.1 Lets Q a class domain C'(R") and V a class vector field C.
Let.FeC'((0,6)C°(,)) n c°((0,€),C* (). The function defined by

Ji(8) = [y, F(€,x)dx (3.3)
is differentiable and its derivative is given by :
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DJ,(Qt, V) = f — F(€,x) + divF (€, )V (x))dx (3.4)
Qe
DJ,(Qt, V) = fQE;—GF(E,x) + [, F(€0)V.ndo. (3.5)
Proof. See [1] [ ]

Theorem 3.2 Let Q be a domain of class Cover R¥and V a field of vectors of class C2. Let G be a
function belonging to the space

CY((0,¢),C%()) N C°((0,¢),CHY)).

The function defined by:
Jo(t) :faﬂt G(t,o0)do, (4.4)
is differentiable and its derivative is given by:

aG(t, o)

H(o)G(t,0) + 3

do, (4.5)

d
d),(Q,,V) = f 566 )do + f

a0, dq,
. 3G (t,0) . .
where H(o) is the mean curvature on the edge o and% is the usual normal derivative.

Proof. For the proof of these two theorems, see [1]. [ ]

3.1 Exemple

Let Q be a domain of class C.
The perimeter and the volume being differentiable, we have:
d|Q|

d
It l¢=0 dtlfnt X L ivVdx J(.m ndo

The normal derivative is positive if it points outward and negative otherwise.
Likewise,

d
—|t=0f fdx =f div(fV)dx = | fV .ndo
dt ™" Jg, ) 20

and for the perimeter:

d
—P(Q;) = do = (n; .ny)do = N: .n;)do.
dt a0, a0, IR

Integration by parts in the other direction gives:
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d
—P(Qy) = do =J (n; .ny)do = N, .ny)do.
dt a0, a0, a0,

We consider N;as a trace, and we have:
d . ,
EP(Qt) = fmtdw N,.

where Ny is an extension of n;to R" (unitary norm 1). So :

d 2
SP@)=[ divN,|_,= f S-(div Ny) + div(V. divNo)dx.
[0}

a0
By application of the divergence:

0 0

J div (—Nt) + div(V .divNy)dx = | —N;.ndo + | (V.n)divNydo
Q at a0 0t a0

However, we know that:

2
ENt .n = 0
Hence: L fliwo =
[ : dt Jo, 7 1t=0
fV.ndo.
0
And

d
TPQ@ly = [ fVondo
oQ

where H is the mean curvature.
We deduce that the derivative of the perimeter is equal to the mean curvature.

3.2 Shape derivative via Lagrange
In this part, we apply the results of the previous paragraph to the following functional :

IQ)=af,|Vug — Vvo|’dx +bf [ug — v;|* dx (3.6)

where a and b two real numbers, vo (respectively vi) are the given functions of Hi.' R")
(respectively L%(R"Y)) and ug is the solution of the following Dirichlet problem :
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{—Vug +ul=f inQ

ug=0 on 0Q. (3.7)

In Q; the functional J is written :

() =a [, [Vug — Vg |? dx+b fnt lug v P dx.

Using the derivation formula (4.2) gives us (assuming enough regularity Q € C1.f € L%

dJ(Q\V) = 2an(VuQ — V). Vu'dx + 2b Jo(Vug — v U dx
+a [, [Vug — VvolVifPnda + b [ |v112V.ndo
for any vector field V with u’ the form derivative of u..
In everything that follows, we look for the equation verified by u’.
Let us make the variational formulation of the Dirichlet problem in Q.
Letv € H}(9,), by multiplying the first equation of the previous problem by v and integrating over
Q we obtain :
Vv € HE(Q), th Vu,. Vv + ulvdx = th frdx (3.8)

For t small enough, we can differentiate equality(1.10) with (v = ¢) fixed. By applying formula
(4.2) we have :

f (Vu'.Vo + quui—@)dx + | (Vu.Vo +ul@)V.ndo = | feV.ndo (3.9
Q a0 a0

Now if ¢ is zero on the edge (on a neighborhood of the edge), the integrals of the limit disappear
and we have :

j(Vu’.V(p +quui~le)dx =0 (3.10)
)

So we have
Jo(—Vuq + qu'ut'p)dx = 0.
And so we get:
—Vu+quuit=0inQ
In the sense of distributions, now to recover the boundary condition, let’s remember the equality:
w(QV) =u(@QV) - V.V

The function uo(ld + tV ) defines on the fixed domain Q disappears on the edge of Q or all t. We
then deduce that :

= (uedoUd + tV)]e—g = 1(Q, V) = 0 on 3.

In other words,u,o(Id + tV) € H}(Q) for all t, therefore, according to the equality :

u (Q,V) = u(Q) — VVu
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u satisfied

u =vuV = a—uV.n on o).
on

The last equality comes from the fact that the gradient of u is normal to the edge.
We therefore have the following result.

Theorem 3.3 Lets Q be a domain of class C'(R") and J be the functional defined by
J(Q) = aJ |Vug — Vg |?dx + f lug — vy |dx,
Q Q

where a and b are positive real numbers.
The functional J is differentiable and we have

ajv) = Zaf (Vu — Vvy).Vu' dx + 2 f (u — vyu dx
Q Q

+aj |Vu — Vvy|?V.ndo + b | |v,]*V.ndo
20 20

where u°, the form derivative satisfies
—Mu+quuit inQ

, u
u =Vu.V=——V.non
an

(3.11).

Proof. The proof of this theorem follows directly from the previous application. [ |

4 Topological derivative via minmax method

In this subsection, we describe how to calculate the topological derivative using the min-max
approach, see e.g. [5], [6], [10], [7]. To begin with, we will look at the following definitions and
notations.

Definition 4.1 A Lagrangian function is a function of the form
(t,x,y)7 - L(t,x,y) : [0,t] X X XY - Rt >0
where X is a vector espace, Y a non empty subset of vector space and the function y 7—

L(t,x,y) is affine.
Associate with the parameter t the parametrized minimax
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g —g(0)

t—g(t) = ;Iel)f( f}lé}l? Lt x,y):[0,7] » R and dg(0) = tlir(?+ .

When the limits exist, we will use the following notations

L(tx,y) — L(0,x,y)
t
L(t,x, +0¢,y) — L(t, x,y)
0

L(tx,+00,y)—-L(tx,y)
o :

d.L(0,x,y) = tli%l+

p €X,dLltxy @)= Hli_)rglJr

@ €Y dL(txy @) = limgo+
Since L(t, %, y) is affine eny, for all (t,x) € [0,7] x X,

vy, € Y dyL(t,x,y;y) = L(t,x,¢) — L(t,x,0) = dyL(t, x,0; ), (4.1)

The state equationatt >0

Find x* € X such that for allp € Y, d, L(t, x¢, 0; ) (4,2) .

The set of states x¢ at t > 0 is denoted
E(t) = {x' € X,vy € Y,d,L(t, x%,0;%) (3.4).
The adjoint equation att> 0 is

Find p' € Y such that for all ¢ € X, deL(tx',p’¢) (4.4)
=0.

The set of solutions p'at t > 0 is denoted (4.5)
Y(t,xt) ={pt,e Y Vo € X,d,L(t, xt, p", @)
=0}

Finally the set of minimisers for the minimax is given by

X(t) = {x* € X,g(t) = inf supL(t, x,y) = supL(t, x5, y)} (4.6)
X€X yey yeY

LEMMA 4.1 (Constrained infimum and minimax) We
have the following assertions

() infex supy ey Lt xy) = infyep) (L, x,y)
(i) The minimax g(t) = +oo if and only if E(t) = @. And in this case we have X(t) = X.
(iii) 1f E(t) 6= @, then
(iv) X(t) = {x" € E(t):L(t,x", 0) =infycp)(t, x,0)}CE(L)
and g(t) < +oo.

Proof. See [5], [8], [6]. [ ]
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To end this subsection, we give definitions and theorems on d-dimensional Minkowski content and
d-rectifiability.

Definition 4.2 Let E be a subset of a metric space X. E c X is d-rectifiable if it is the image of a
compact subset K of R? by a continuous lipschitzian function f : R — X.

Let E be a closed compact set of RY and r > 0, the distance function dg and the r-dilatation E, of E
are defined as follows:

dg) = inflx — x0l, E, = {x e RV: dey <71
x€E
Definition 4.3 Given d, 0 < d < N the upper and lower d-dimensional Minkowski contents of a set
E are defined by an r-dilatation of this set as follows
my(Er) my (ET)
aN —dr" ™ ’ aN —dr" ™
where my is the Lebesgue measure in RN and ay_q is the volume of the ball of radius 1 in RV ¢,

M*(E) = rlir(r)lJr sup M4(E) = rlirglJr inf

Both concepts can be found in [5], [6].

4.1 Some preliminary results

We need the following assumption for everything that follows:
Hypothesis (HO) Let X
be a vector space.

(i) - For all t € [0,7], x° € X(0),x* € X(t) € X(0), and y € Y, the function & —7 L(t, x°
+ 0(xt —x%),y) : [0,1] — R is absolutely continuous. This implies that for almost all 6
the derivative exists and is equal to dyL(t, x?+6(xt —x%),y; x* —x°) and it is the integral
of its derivative. In particular

(i)  L(t,x%5y)=L(tx%y) + fol dL(t, x° + 0(xt —x9),y; xt —x%)d86.

ii) : For all t € [0,2], X’ € X(0), X' € X(s) and y € Y, ¢ € X and for almost all 6 €
[0,1], dsL(t,x° + 6(xt —x°),y; @) exist et the functions 6 —7 dL(t,x°+ 6(x +
x9), y; @) belong to L*[0,1]

Definition 4.4 Given x° € X(0) andx? € X(t), the averaged adjoint equation is:

1
ytey VX,f d;L(t,x° +0(xt +x°),y; ®)do
0

Find

and the set of solutions is noted Y (t, x** x?).
Y (0, x°, x0) clearly reduces to the set of standard adjoint states Y (0, x°) at t = 0.

Theorem 4.2 Consider the Lagrangian functional
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(t,x,y) 7= L(t,x,y) : [0,7] x XxY >R, >0

where X and Y are vector spaces and the function y 7— L(t, x, y) is affine. Assume that (HO) and
the following hypotheses are satisfied
H1a for all t € [0,4], g(t) is finite, X(t) = {x} and Y (0,x°) = {p°} are singletons,
H2a dL(0,x°, y°) exists,
H3a The following limit exists
_+0
R(x®,y%) = lim,_o+ fy dyL (£,x° + 6(x" - xO),po;xtTX) de.
Then, dg (0) exists and dg (0) = d,L(0,x°, y°) + R(x°, p?).

Proof. See [4, 5]. [ |

COROLLARY 4.3 Consider the Lagrangian functional
(t,x,y)7 » L(t,x,y):[0,7] X X X Y >R, > 0

where X and Y are vector spaces and the function y 7— L(t,x,y) is affine. Assume that (HO) and the
following assumptions are satisfied:

(H1a) for all t € [0,z], X(s) not equal @, g(t) is finite, and for each x € X(0), Y (0,x) not equal®,
(H2a) for all x e X(0) and p € Y (0, x) d.L(0, x, p) exists,

(H3a) there exist x° € X(0) and p® € Y (0, x°) such that the following limit exists

_+0
R(x% p%) =lim,_ o+ fol d,L (1:,x0 +6(xt — xo),po;xth) do.
Then, dg(0) exists and there exist x° € X(0) and p° € Y (0,x°) such that dg(0) =d,L(0,x°, p°)+
R(x°, p9).
In what follows, we focus on the main result of this part. And for information on the tools used the
reader can consult [5].

4.2 Topological derivative
Let us consider the functionnal defined in Q; by

F(Qt) = aj |Vug — Vog|?dx + b | |ug — vq|%dx. (4.7)
Q Q

where ug,be the solution to the Neumann Problem

—AQ, +ul =finQ
{ e g, =/ nf (4.8)

ug, = 0 ondQ,

where g > 1is an integer.
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Let us consider as shape functional F define by
F(Q) = af |VuQ—Vv0|2dx+bf|u9—v1|2dx. (4.9)
Q Q

Andug € H(Q) is solution to the variational problem

Vv € H} (Q), f Vug. Av + ul. vdx = ffvdx. (4.10)
Q Q
We aim to compute the topological derivative of the functional F(€)
dF = lim 280

t—0t ay—d”

Thus, the Lagrangian dependent on t will be written in the form :

L(t,0,®)=a | |V® —Vy|?dx+b f | — Vv, |
Q Q

+j V(ZS.VCD+(Z)qV<Ddx—ijDdx
Q
a

From this, we can now evaluate the derivative of the Lagrangian, dependent on t,
with respect to @ .

dgL(t,®,@,0) = 2af (VO — Vv,). V0 dx + 2b ] (& —v)@ dx + jvdvqa +q® 09 ddx
Q Q Q

The initial adjoint state pg,is a solution of d(z,L(O, ugo,pno,(bl) =0 forall@ fort=0. Thus the
variational formulation of the adjoint equation of state is given by

Zaf (Vug, — Vo)V dx + 2b f (uQO — vl)Q'dx + fV(D' Vg, + q(blugo_l Po,dx =0
Q Q Q

And we have

f [Za(VuQO — Vo )VO dx + 2b(u90 — )0 dx + V@'V Po, q(ZYqu)O_1 pgo]dx =0 (4.11)
Q

Next, we derive the Lagrangian with respect to ®.

dgL(t, ®,@,0) = f

Q
The initial state ug,is a solution of dgL(0,ug,,0,®q,) = 0V &g € H}(Q) and in this case, we
have:

v@.v<p+®qq>’dx—ff¢>’dx
Q

J Vug,. AD' +ugod>'dx.—jfcbldx =0
) )
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f [Vug,. A®" +ul & dx.—f® ]dx =0 (4.12)
Q
And we have
L(t,d,®) —L(0,0,®) = f f(x) d(x)dx — | f(x)®(x)
Qe Q

L(t,0,®)—L(0,0,®) = | f(x)P(x)dx — f flx)d(x) + f f(x) ®(x)dx
Qg W¢ Q

t

L(t,0,®) —L(0,0,®) = —j fx) @(x)
00 =inge [ | rmew)

dsL(0,0,®) = f(x0) P (x0).
We will now define R(t) by.

1 u'o't_uﬂo
R() = | dgL|t,ug + P(ug, — ug, Pa, " dy.
0

By substituting®’ = 2% and Y = T“O into the adjoint equation for pg,, We obtain:

u +u U, —
R(t) = 2af [V (M) — Vvo] _v( “%)dx
0 2 t

o [ o] ()

0 t

+ LV (uﬂt ; uﬂo) Vpq, + 9 (ugt:‘%) (unt ; ”ﬂo)q_l Pa,dx

=20 [7(5) =7 () +7 () 7 () - o] ()

o [ [l et ) (et

- -1
¥ fa [V (%> -V (%)] Vpq, + 4 (uﬂt - uﬂo) (um "2‘ uno)q P, d
R s |t
} Z“LV(W)-V(M‘“ZA) dx + be

Q (uﬂt ;ugo) (ugt ; ugo) i

Uy, — U Uy + ug \771
+f CI( (o . Qo) l( (o . Qo) _uq—ll pgodx
Q
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a 2 b 2
R(t) in QquQt — Uq, | dx+? QquQt — Ugq, |“dx

ug, +ug 971
+%J (ug, — ug,)dx l(%) - uq_ll Pa,dx
)

Theorem 4.4 Let 0 < d < N, E verify Hypothesisl and t = an_gr' . The topological derivative

exists if the function™(€) has a finite limit. Therfore, the topological derivative of the function is
given by the expression:

L J(Q) —J ()
4 = limsup= - =&
d] = R(x0,pa,) — f(X0)Pa, (xo)-

where pg,, uq, are solutions of systems

f[Za(V Ug, — Vvo).V(D’ + Zb(uQ0 — v1)®'dx +VQ'V Pa, + q@lugo_l Pno]dx =0.
Q
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5 Conclusion

5 Conclusion

In this paper we start by establishing an existence result of optimal form. Then we proved the
shape drift using the Lagrange method. The last part of the document was devoted to the
topological derivative of the functional. we plan to look at the numerical problem of these
already established derivatives.
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