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Neural Radiance Fields in Space Applications : 

A Comprehensive Review 
 

 

Abstract — Neural Radiance Fields (NeRF) have emerged as a 

powerful deep learning technique, revolutionizing the 

representation and rendering of 3D scenes. Although originally 

developed for computer vision and graphics applications, the 

potential of NeRF is increasingly being recognized in space- 

related fields. This paper provides a comprehensive review of 

the applications, advancements and challenges associated with 

the use of NeRF in space exploration, satellite imaging and 

remote sensing. We begin by introducing the foundational 

concepts of NeRF, including its architecture, underlying 

principles and computational requirements. We then explore 

how NeRF has been adapted and applied to space-specific 

challenges such as high-resolution 3D reconstruction of 

planetary surfaces, the visualization of satellite data and the 

enhancement of space mission planning. Furthermore, we 

discuss the integration of NeRF with other cutting-edge 

technologies like machine learning, autonomous systems and 

real-time rendering, highlighting the potential for future 

breakthroughs in space missions. Finally, we outline the 

current limitations and open research questions, offering 

insights into the future directions of NeRF in space 

applications. This review aims to serve as a valuable resource 

for researchers and practitioners exploring the intersection of 

machine learning, computer graphics and space science. 

Keywords — Neural Radiance Fields (NeRF), Computer Vision, 

Deep Learning, Space Applications, Space Exploration 

I. INTRODUCTION 

The rapid advancements in machine learning and computer 

vision have led to transformative breakthroughs in various 

fields, including space exploration and satellite-based remote 

sensing. One such breakthrough is the development of 

Neural Radiance Fields (NeRF), a deep learning-based 

method that generates photorealistic 3D scenes from 2D 

images by modeling the volumetric scene representation. 

Originally introduced by Mildenhall et al. [1] in 2020, NeRF 

has garnered significant attention due to its ability to 

synthesize realistic 3D environments with impressive detail 

and fidelity. These capabilities have prompted research into 

leveraging NeRF for space-related applications, where high- 

resolution 3D reconstructions and visualizations are critical 

for missions such as planetary exploration, satellite imaging 

and real-time space mission planning. 

In space exploration, the need for accurate, high-quality 3D 

models of planetary surfaces, celestial bodies and orbital 

environments is fundamental to mission success. Traditional 

methods [2, 3] for constructing these models often rely on 

complex sensor data processing, which may be time- 

consuming and computationally expensive. NeRF offers a 

promising alternative, enabling high-quality 3D 

visualizations from relatively sparse input data. This ability 

can significantly reduce the cost and complexity of space 

mission operations, such as terrain modeling, navigation and 

resource mapping. 

 

Furthermore, as satellite constellations proliferate, space- 

based observation systems require efficient methods for 

processing and interpreting massive datasets. NeRF's 

potential for enhancing satellite imagery, improving remote 

sensing capabilities and visualizing data in 3D opens up new 

avenues for real-time decision-making in space missions. 

Beyond visualization, NeRF has applications in autonomous 

spacecraft navigation, mission planning and even the 

simulation of extraterrestrial environments [4], potentially 

revolutionizing how space agencies approach mission 

design, training and execution. Despite its promise, the 

application of NeRF in space applications presents unique 

challenges. Space-related data often come with a variety of 

complexities such as noise, occlusions, varying illumination 

conditions and sparse data coverage. Additionally, the 

computational demands of NeRF, particularly in terms of 

training large neural networks and rendering 3D scenes in 

real-time, can be an obstacle to its broader adoption in space 

exploration and remote sensing applications. 

Space exploration and Earth observation have long relied on 

traditional imaging techniques such as stereo 

photogrammetry [5, 6], LiDAR and radar for mapping and 

monitoring. However, these methods often face limitations 

in terms of accuracy, resolution and computational 

efficiency. In recent years, Neural Radiance Fields (NeRF) 

has become a powerful technique for synthesizing realistic 

3D models and rendering new viewpoints from a sparse 

collection of 2D images. NeRF represents 3D scenes 

through neural networks, capturing volumetric properties 

like color as well as opacity at every point in space. This 

makes NeRF a promising tool for a variety of space 

applications, where high-quality 3D reconstructions from 

limited imagery are needed. The ability of NeRF to generate 

photo-realistic 3D models has significant implications for 

satellite-based Earth observation, planetary exploration, 

space debris monitoring and astronomical research. This 

review aims to provide an in-depth look at the underlying 

principles of NeRF, its variants, applications in space, 

challenges and future directions. 
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This paper provides a comprehensive and thorough review 

of the emerging field of NeRF for space applications. We 

begin by introducing the foundational principles of NeRF, 

followed by an exploration of its key applications in space 

exploration, satellite imaging and remote sensing. We also 

discuss the challenges of applying NeRF to these domains 

and propose potential solutions. Finally, we outline future 

research directions and opportunities for the integration of 

NeRF with other advanced technologies such as 

autonomous systems [7], machine learning [8] and real-time 

rendering [9], to push the boundaries of what is possible in 

space missions by using NeRF. 

 

The below graph shows the number of publications 

increasing every year based on Neural Radiance Fields: 
 

Fig 1: Number of NeRF publications over the years as in [5] 

A. Background 

Neural Radiance Fields (NeRF) have transformed the field 

of computer vision by enabling the synthesis of 

photorealistic 3D scenes from sparse sets of 2D images. 

Introduced by Mildenhall et al. in their seminal work [1], 

NeRF utilizes a fully connected deep learning neural 

network in order to model the volumetric scene function of a 

3D environment. The technology interpolates the color as 

well as the density of light at any point in the 3D space from 

which photo-consistent images are rendered from novel 

viewpoints. This ability has profound implications for 

numerous applications, ranging from virtual reality to 

autonomous navigation. 

B. Importance in Space Technology 

In space technology, high-resolution 3D modeling and 

accurate real-time imaging are paramount. Traditional 

methods of capturing and reconstructing space environments 

involve either physically detailed probes or computationally 

intensive simulations, each with its limitations in terms of 

resolution, scalability or timeliness. NeRF offers a 

compelling alternative by promising to reconstruct high- 

fidelity models from limited image data [10]. In space 

applications, such capabilities can enhance satellite imagery 

analysis, improve navigation and docking procedures for 

spacecraft and facilitate realistic simulations for mission 

planning and astronaut training. 

C. Scope of Review 

This review paper focuses on the adaptation and application 

of NeRF in the context of space exploration and satellite 

technology. Given the extreme conditions and unique 

challenges of the space environment, such as varying 

lighting conditions, limited data capture opportunities and 

the need for computational efficiency, NeRF’s application 

extends beyond its initial terrestrial constraints. We explore 

its use in enhancing the quality and accuracy of satellite 

imagery [11], aiding in autonomous spacecraft navigation 

and creating simulated environments for mission 

preparation. Furthermore, we discuss the technological 

challenges and potential advancements needed to fully 

leverage NeRF in these high-stakes applications. 
 

Fig 2: Timeline of various NeRF methods for space 

NeRF [1] is having high citation impact and received the 

ECCV 2020 Oral - Best Paper Honorable Mention. It also 

received prestigious awards and recognition within the 

academic community for its novel approach to 3D rendering 

from 2D images and has influenced not only computer 

graphics and vision but also areas like robotics, virtual 

reality and cultural heritage preservation. 

D. Objective of the Review 

The primary goal of this review is to provide a 

comprehensive or complete overview of how NeRF 

technologies are being integrated into space applications, 

what has been achieved so far and what challenges remain. 

The review aims to synthesize current research findings, 

highlight critical advancements and outline the roadmap for 

future research and implementation strategies. 

II. NEURAL RADIANCE FIELDS: PRINCIPLES AND 

VARIANTS 

A. The NeRF Framework 

NeRF model a scene by representing each point in 3D space 
with a neural network that actually predicts the color as well 
as the opacity of the point, given its 3D coordinates and the 
viewing direction. NeRF leverages a fully connected multi- 
layer perceptron (MLP) in order to map the spatial 
coordinates and viewing angles to light intensities, which are 
then combined via volume rendering to generate a final 
image [12]. The network is trained using a set of 2D images 
taken from various different types of viewpoints. The goal is 
to minimize or reduce the rendering error between synthetic 
images and real-world images, allowing the model to 
generalize to novel viewpoints. 

The fundamental strength of NeRF lies in its ability to 
simulate light transport and material properties within a 
scene, which enables it to generate highly realistic 3D 
reconstructions from sparse data. 

B. Fundamentals of Neural Radiance Fields 

Neural Radiance Fields introduce a new approach to the 3D 

reconstruction of complex scenes from a sparse set of 2D 

images. The core innovation of NeRF lies in its ability to 

use a deep neural network in order to parameterize a 

continuous volumetric scene function that predicts the color 

as well as the density of light for each point in 3D space 
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[13]. Unlike traditional 3D reconstruction methods that rely 

on discrete representations such as point clouds or meshes, 

NeRF models the scene as a continuous volume where the 

scene's appearance changes smoothly with perspective and 

lighting conditions. 
 

Fig 3: Representation of NeRF as in [1] 

 

The technical foundation of NeRF basically involves using a 

coordinate-based neural network that takes as input a spatial 

location (x,y,z) and viewing direction (θ,ϕ) and then outputs 

the RGB color and volume density at that point. This is 

achieved by training the deep neural network with a 

collection of images of the scene from known viewpoints. 

During training, the model learns to regress the color and 

opacity values that when integrated along the camera rays 

using the volume based rendering techniques, best 

reconstruct observed images. This process uses 

differentiable rendering to adjust the network weights based 

on the reconstruction error [14]. 

 

One of the key advantages of NeRF over traditional 

methods is its ability to produce highly detailed and 

photorealistic renderings of complex scenes. This is 

facilitated by the model's inherent ability to interpolate and 

generalize from the training data it has seen, allowing for 

novel view synthesis with impressive fidelity [15]. 

Moreover, NeRF inherently supports dynamic lighting and 

viewing conditions, making it exceptionally well-suited for 

applications requiring realistic visualization under varying 

conditions. 

However, NeRF also comes with its set of challenges. The 

model is computationally intensive, requiring significant 

processing power and time to train and render, particularly 

for high-resolution outputs. Additionally, the quality of the 

reconstruction heavily depends on the coverage and quality 

of the input images. Scenes with occlusions, complex 

textures or reflective surfaces can pose significant 

difficulties for accurate reconstruction [16]. 

While NeRF represents a significant enhancement and 

improvement in the field of computer vision and 3D 

reconstruction, its practical deployment, especially in 

resource-constrained environments such as space, requires 

addressing its computational demands and limitations in 

handling diverse scene complexities. Ongoing research aims 

to optimize these aspects, making NeRF a promising 

technology for future applications in various fields, 

including space exploration. 

C. Architecture of Neural Radiance Fields 

The figure 4 shows the architecture of NeRF and its details: 

Neural Radiance Fields (NeRF) utilize a fully connected 

deep neural network, known as a multilayer perceptron 

(MLP), to represent 3D scenes. This MLP takes as input a 

continuous 5D coordinate comprising spatial location (x, y, 

z) and viewing direction (θ, φ), and outputs the volume 

density and view-dependent emitted radiance at that point. 

By sampling points along camera rays and applying volume 

rendering techniques, NeRF synthesizes novel views of 

complex scenes from a sparse set of input images. 
 

Fig 4: Architecture of Neural Radiance Fields 

 

D. Advancements in NeRF Variants 

While the original NeRF model was computationally 
expensive, recent developments have led to several variants 
that improve speed, scalability and applicability to dynamic 
and large-scale scenes: 

 Dynamic NeRF (D-NeRF) by Park et al. [17] extended 
NeRF to dynamic environments, incorporating temporal 
information to handle scenes with moving objects. This 
is particularly relevant for satellite imaging where 
objects like clouds, vehicles and atmospheric conditions 
change over time. 

 Fast NeRF (NeRF-W) from Liu et al. [18] introduced 
optimizations to make NeRF more computationally 
efficient. Their work on NeRF-W reduces the memory 
and computational load required for training and 
rendering, enabling real-time applications such as on- 
board spacecraft processing and quick terrain mapping. 

 Physics-Informed NeRF by Zhao et al. [19] proposed 
integrating physical models of light scattering and 
reflection into the NeRF framework, improving its 
accuracy in environments with complex lighting and 
material properties, such as planetary surfaces and space 
habitats. 

 Multi-Scale NeRF handles large-scale environments by 
generating multi-resolution models. Chen et al. [20] 
demonstrated that multi-scale NeRF is particularly 
effective for planetary surface mapping, where large 
terrain areas require efficient handling of varying levels 
of detail. 

III. APPLICATIONS OF NERF IN SPACE 

There are many applications of NeRF for space and Figure 5 
shows the pie chart of different applications where NeRF is 
used. 
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image resolution and detail. This is achieved through 

NeRF's deep learning framework, which models the 

volumetric density and color of every point in space, 

enabling it to infer and fill in details that are not explicitly 

captured in the single images. 

This can significantly enhance the clarity and utility of 

satellite images in various applications: 

 In urban planning where, higher resolution images can 

help urban planners and developers better understand 

land use patterns and plan infrastructure projects more 

effectively [23]. 

 Enhanced detail aids in more accurate environmental 

monitoring of environmental changes such as 

deforestation, desertification and water body dynamics. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5: Various publications of NeRF 

 
Here are some of the applications where NeRF is applied for 
space systems: 

A. Satellite Imaging and Earth Observation 

Satellite imaging plays an important role in Earth 
observation, providing vital data for environmental 
monitoring, land use planning and disaster response. NeRF 
can enhance these capabilities by providing high-resolution 
3D models from a limited collection of 2D satellite images. 
Zhu et al. [21] demonstrated that NeRF can generate 
topographic models of urban areas, improving the accuracy 
of elevation data compared to traditional stereo 
photogrammetry. 
Applications in satellite imaging include: 

 Topographic mapping where NeRF enables the 
generation of highly accurate 3D terrain models from 
satellite images which are valuable for flood risk 
analysis, agricultural monitoring and infrastructure 
planning. 

 In disaster management by synthesizing 3D models 
from pre and post-disaster imagery, NeRF can assist in 
assessing damage and planning disaster recovery efforts. 

 For environmental monitoring, NeRF helps in 
monitoring deforestation, land use changes and other 
environmental phenomena through periodic satellite 
imagery [22]. The application of Neural Radiance Fields 
(NeRF) in satellite imagery represents a significant 
innovation in the field of remote sensing and earth 
observation. 

NeRF's core ability to generate detailed three-dimensional 

reconstructions from sparse and diverse two-dimensional 

satellite images allows for substantial improvements in 

Satellite images are often compromised by occlusions due to 

clouds, fog or atmospheric pollutants. NeRF can address 

these challenges by interpolating obscured parts of an 

image, drawing on its understanding of the 3D structure of 

the scene derived from clear segments of other images. [24, 

25] 

This capability is crucial for: 

 In weather forecasting for continuous monitoring 

without interruptions due to cloud cover can provide 

more reliable data for weather prediction models. 

 Farmers and regulators can obtain consistent views in 

agricultural monitoring of crop health and growth, even 

under adverse weather conditions, aiding in decision- 

making for irrigation, harvesting and pest control. 

NeRF can be instrumental in ensuring temporal consistency 

across satellite images captured at different times, under 

varying conditions. This is particularly beneficial for long- 

term environmental monitoring and change detection, where 

inconsistencies between images can lead to inaccurate 

assessments or missed changes: 

 Tracking changes in ice caps, sea levels or vegetation 

over time with high consistency can provide clearer 

evidence of climate impacts for climate change studies. 

 Following natural disasters, for disaster assessment 

consistent time-series data is crucial for assessing 

changes and planning recovery efforts. 

Traditionally, creating 3D models from satellite data 

requires stereo pairs or complex radar systems [26, 27]. 

NeRF introduces a method to infer three-dimensional 

information from non-stereoscopic images, which can be 

revolutionary for geological and urban modeling: 

 Enhanced 3D models can improve GIS applications in 

government and civil sectors by providing more 

accurate terrain models. 

 3D mapping of historical sites from satellite images can 

aid in the preservation and study of archaeological sites 

for Archaeological Reconstructions. 

While the application of NeRF in satellite imagery is 

promising, several challenges need to be addressed: 

 High computational cost because NeRF requires 

substantial computational resources for training and 

inference [28], which can be a limitation especially for 

processing large datasets typical of satellite imagery. 

Publications of NeRF 
for Various 

Applications 

Noval View Synthesis  3D Reconstruction 

Neural Rendering 3D Generation 

Object Detection Pose Estimation 

Autonomous Driving Text To 3D 

3D Geometry Other 
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 Effective training of NeRF models necessitates a large 

and varied dataset that may not always be available in 

remote sensing applications. 

 Satellite images are taken under a myriad of dynamic 

environmental conditions that can affect the accuracy of 

NeRF reconstructions [29]. Adapting NeRF models to 

handle such variability effectively remains a key area of 

research. 

Ongoing research into improving the efficiency and 

robustness of NeRF could lead to broader applications in 

satellite imagery. Potential future developments include: 

 Enhancements in computational efficiency could enable 

near real-time processing of satellite data with NeRF, 

opening up possibilities for live monitoring and 

decision-making. 

 Integration with other data sources like combining 

NeRF with other data sources such as drone imagery or 

ground-based sensors [30] could enhance the depth and 

accuracy of the reconstructions. 

NeRF offers transformative potential for satellite imagery 

applications by providing enhanced image resolution, the 

ability to reconstruct occluded areas, ensuring temporal 

consistency and enabling detailed 3D modeling. Addressing 

the computational and data-related challenges will be crucial 

to fully leverage NeRF’s capabilities in satellite imagery and 

other remote sensing fields. 

B. Planetary Exploration and Terrain Mapping 

NeRF has significant potential in planetary exploration, 
especially for missions to the Moon, Mars and other celestial 
bodies. Traditional techniques such as stereo imaging and 
LiDAR have been used to generate 3D maps of planetary 
surfaces, but NeRF can offer more photorealistic models 
with finer details. Recent research by Zhao et al. [31] applied 
NeRF to Mars terrain mapping, demonstrating its ability to 
generate highly detailed 3D surface models from sparse 
images collected by orbiters. 

NeRF applications in planetary exploration include: 

 Surface mapping for generating accurate 3D models of 
planetary surfaces from orbital and rover-based imagery, 
aiding in mission planning, navigation and hazard 
detection. 

 Autonomous navigation like enhancing the autonomy of 
rovers and landers by providing richer spatial context for 
obstacle detection and navigation. 

The utilization of Neural Radiance Fields (NeRF) in 
planetary exploration and rover navigation marks a 
significant leap in the technological capabilities deployed on 
extraterrestrial surfaces. NeRF's capability to make accurate 
3D reconstructions from a series of 2D images make it an 
invaluable tool in navigating and exploring other planets 
[32], where traditional mapping and navigation methods face 
numerous challenges. 

NeRF can transform sparse and varied imagery captured by 
rovers into detailed 3D maps of planetary surfaces, providing 
richer information than conventional 2D images or 
rudimentary 3D models. High-resolution terrain mapping 

This level of detail is crucial for scientific analysis and safe 
navigation. For subsurface analysis, by integrating NeRF 
with penetrating radar data, it's possible to not only model 
the surface but also to infer some characteristics of the 
subsurface environment, which is vital for understanding 
planetary geology and searching for subsurface water or ice. 
Rover navigation on other planets requires highly accurate 
and up-to-date spatial information to avoid hazards and 
optimize travel routes. NeRF enhances rover autonomy by 
providing more comprehensive environmental models. In 
obstacle avoidance, detailed 3D models allow rovers to 
identify and avoid potential hazards such as large rocks, 
steep inclines and crevices, enhancing their ability to 
navigate safely and efficiently across unknown terrains. For 
optimal route selection, NeRF enables the generation of 
topographical maps that help in planning paths that optimize 
energy consumption and minimize travel time, while also 
considering scientific points of interest. 

The implementation of NeRF in the harsh environment of 
space exploration presents unique challenges [34] that must 
be addressed to fully leverage this technology: 

 Limited data and communication constraints as 
planetary rovers typically operate under significant 
limitations on data transmission due to the vast distances 
involved. NeRF models require a considerable amount 
of data to create accurate reconstructions, posing a 
challenge in environments where data bandwidth is 
limited. 

 Due to limitation in computational resources, rovers 
have limited onboard computing power, which 
constrains the complexity of the algorithms that can be 
run in real-time. NeRF's computationally intensive 
nature requires optimizations or potentially dedicated 
hardware to function effectively in this context [35]. 

 Because of environmental factors, planetary surfaces can 
present extreme variability in lighting, weather and other 
conditions that affect image quality and model accuracy. 
Adapting NeRF to function reliably under such 
conditions is crucial. 

As computational technology evolves and becomes more 
robust, the application of NeRF in planetary exploration is 
expected to expand: 

 For integration with autonomous systems, further 
integration of NeRF with rover's autonomous systems 
could enhance their decision-making capabilities, 
allowing for more complex missions that involve 
minimal human intervention. 

 Ongoing research aims to minimize the many 
computational demands of NeRF and improve its 
efficiency [36], potentially allowing for real-time 
processing even on limited hardware platforms. 

 Combining NeRF with data from other sensors, such as 
LIDAR, multispectral imagers and thermal cameras, 
could provide a more comprehensive understanding of 
planetary environments, aiding in both navigation and 
scientific exploration [37]. 

 NeRF holds significant potential to transform planetary 
exploration and rover navigation by providing detailed 
3D reconstructions that enhance both scientific research 
and operational safety. 

where NeRF models generate high-resolution 3D As challenges related to data requirements, computational 
representations of planetary terrains, capturing fine details 
such as small rocks, dunes and other surface features [33]. 

limits and environmental adaptability are addressed, NeRF is 
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poised to become a cornerstone technology in the exploration 
of other planets. 

Figure 6 shows the various applications of space where 
NeRF is applied: 

 

Fig 6: NeRF used for different space applications 

C. Space Debris Monitoring 

Space debris poses a significant risk to active satellites and 
crewed space missions. NeRF can improve space debris 
detection and tracking by generating detailed 3D 
reconstructions from limited observation data. Liu et al. [38] 
demonstrated that NeRF could be used to model space debris 
fields in orbit, enhancing collision risk assessments and the 
development of debris mitigation strategies. 
Applications in space debris monitoring include: 

 For 3D modeling of debris, using satellite imagery to 
generate detailed models of debris, even from limited 
observational angles. 

 In collision avoidance, providing better situational 
awareness for satellite operators to avoid collisions with 
small debris. 

D. Spacecraft Navigation and Docking 

NeRF also holds significant potential for improving 
spacecraft navigation and docking procedures. In space 
missions, accurate docking is critical, especially for missions 
involving the International Space Station (ISS) or other 
spacecraft rendezvous. NeRF can be utilized to create highly 
accurate 3D models of docking areas from multiple camera 
angles, providing enhanced situational awareness to both 
autonomous systems and human operators. This application 
has been tested in simulated environments with results 
showing improved accuracy and reduced risk of collision or 

misalignment during docking maneuvers [39]. The 
integration of NeRF into spacecraft navigation and docking 
systems presents a transformative approach to handling the 
complexities associated with these critical operations. 
NeRF's ability to create high-fidelity 3D models from 2D 
images can significantly enhance the accuracy and safety of 
spacecraft navigation and docking procedures. 

NeRF can substantially improve visual navigation systems 
by providing detailed 3D reconstructions of the spacecraft's 
surroundings. This capability is particularly useful in 
environments where GPS or other RF-based navigation 
systems are unreliable or unavailable such as in deep space 
or on other celestial bodies [40, 41]. 

 For autonomous navigation, NeRF allows spacecraft to 
autonomously navigate by interpreting complex 
environments and identifying safe paths or orbits, 
reducing the dependency on ground-based controls. 

 In obstacle avoidance, detailed 3D models generated by 
NeRF can help identify and avoid potential hazards such 
as space debris, other spacecraft or rough terrain on 
celestial bodies. 

Docking is one of the most delicate operations in space 
missions, requiring high precision to avoid costly or 
dangerous collisions [42]. NeRF can enhance docking 
procedures by providing accurate and up-to-date 3D models 
of the docking area and any involved spacecraft. 

 During the simulation of docking procedures, NeRF can 
simulate various docking scenarios in high detail, 
allowing operators and autonomous systems to practice 
and refine docking procedures before actual 
implementation. 

 For real-time adjustments during docking, NeRF can 
continuously update the 3D model based on incoming 
imagery, allowing for real-time adjustments to the 
docking approach in response to any changes in the 
relative positions and orientations of the spacecraft. 

Implementing NeRF in spacecraft navigation and docking 
involves several technical and operational challenges that 
must be addressed: 

 Due to computational constraints, space missions often 
have strict limitations on available power and 
computational resources. The high computational 
demands of NeRF models may necessitate specialized 
hardware or significant optimization. 

 Data quality and availability is needed for effective 
operation of NeRF-based systems requires high-quality, 
multi-angle images, which may not always be feasible to 
obtain in space environments due to factors like lighting 
variability and limited sensor fields of view. 

 Spacecraft navigation and docking occur within 
dynamic environments where relative positions and 
conditions change rapidly [43]. NeRF models need to be 
highly responsive and adaptable to these dynamics to be 
effective. 

Ongoing advancements in computational technology and 
machine learning are likely to expand the feasibility and 
effectiveness of using NeRF for spacecraft navigation and 
docking: Integration with other sensory data like combining 
NeRF with data from radar, LIDAR and other sensors can 
enhance the robustness and accuracy of navigation and 
docking systems, creating a more comprehensive situational 
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awareness [44]. For machine learning optimizations, research 
into more efficient machine learning models and training 
techniques could reduce the computational overhead of 
NeRF, making it more suitable for space applications. NeRF 
offers promising potential to revolutionize spacecraft 
navigation and docking, providing detailed 3D 
reconstructions that enhance both autonomous and manual 
operations [45]. As technology and computational 
capabilities continue to advance, NeRF could become a 
standard tool in the aerospace industry, significantly 
improving the safety and efficiency of space missions. 
However, addressing the challenges related to computational 
requirements, data quality and dynamic environmental 
adaptation will be crucial for the successful integration of 
NeRF technologies in space exploration. 

E. Mission Simulation and Astronaut Training 

Another vital application of NeRF in space technology is in 

mission simulation and astronaut training. NeRF’s ability to 

render photorealistic 3D environments from 2D images 

makes it an excellent tool for creating virtual reality (VR) 

simulations of various space environments. These 

simulations can help astronauts train for specific missions, 

familiarizing themselves with the spacecraft, equipment and 

potential scenarios they might encounter. NASA and other 

space agencies are exploring the use of NeRF to enhance 

their training modules, making them more immersive and 

effective. This technology not only helps in reducing the 

training costs but also increases the safety and efficiency of 

the missions [46]. Integrating Neural Radiance Fields 

(NeRF) into mission simulation and astronaut training offers 

a groundbreaking way to enhance the preparation and 

execution of space missions. NeRF's capability to render 

photorealistic 3D environments from 2D images allows for 

the creation of detailed and immersive training modules that 

closely mimic real-world conditions in space. 

 

NeRF's ability to produce highly detailed and realistic 3D 

models from ordinary images enables the creation of 

training environments that are visually and spatially 

accurate to real scenarios astronauts might face during 

missions. This realism is crucial for effective training, 

especially for high-risk operations. 

 Visual and spatial accuracy is improved as NeRF can 

generate training modules that replicate the exact visual 

and spatial conditions of spacecraft interiors and 

exteriors [47], planetary surfaces and other celestial 

environments. This level of detail includes everything 

from the placement of instruments and equipment to the 

textural details of surfaces. 

 Dynamic scenario simulation where advanced NeRF 

models can simulate dynamic environments that change 

over time or in response to astronaut's actions, 

providing realistic feedback and conditions that 

improve decision-making skills under pressure. 

Realistic simulations crafted using NeRF not only enhance 

the training experience but also significantly improve the 

safety and efficiency of space missions by providing 

astronauts with a better understanding of their working 

environments before actual exposure. 

 For emergency response training, NeRF simulations can 
include  potential  emergency  scenarios,  allowing 

astronauts to practice and refine their responses to 

situations like equipment failures, sudden 

depressurization or fire outbreaks in a controlled and 

safe setting [48]. 

 EVA (Extravehicular Activity) preparation involved for 

activities outside the spacecraft, NeRF can create highly 

realistic simulations of the external environment of 

spacecraft or space stations [49], including detailed 

models of surfaces and modules that astronauts will 

interact with during EVAs. 

While the potential benefits of using NeRF in mission 

simulation and astronaut training are considerable, several 

challenges must be addressed: 

 The high computational requirements of NeRF-based 

simulations can be a barrier, particularly for real-time 

applications. Training simulations often need to run on 

systems with limited processing power, requiring 

optimizations to the NeRF algorithms to ensure smooth 

performance. 

 Developing accurate NeRF models requires extensive 

datasets of images under various conditions. Collecting 

and processing these images for use in training 

simulations can be time-consuming and resource- 

intensive [50]. 

 Incorporating NeRF simulations into established 

astronaut training programs requires careful 

coordination. The simulations must be validated for 

educational effectiveness and integrated in a way that 

complements traditional training methods. 

Continued advancements in NeRF technology and 

computational hardware are likely to enhance its application 

in mission simulation and astronaut training: 

 In hybrid training environments where combining 

NeRF with virtual reality (VR) and augmented reality 

(AR) technologies [51] could lead to more immersive 

and interactive training environments. This integration 

can allow astronauts to interact with simulations in a 

more intuitive and natural manner, improving the 

training outcomes. 

 Future developments could enable NeRF systems to 

automatically generate training scenarios based on 

mission objectives and past performance data. This 

would provide a highly personalized training 

experience that adapts to the individual needs of 

astronauts. 

NeRF presents a promising avenue for revolutionizing 

mission simulation and astronaut training, offering 

unprecedented levels of realism and interactivity. As the 

technology matures and becomes more integrated into 

astronaut training programs, it has the capability to 

significantly improve the preparedness and safety of crew 

members undertaking complex and hazardous missions in 

outer space. Addressing the computational and integration 

challenges will be infact key to fully realizing the true 

potential of NeRF in this critical application area. 

F. Planetary Exploration and Rover Navigation 

NeRF is also being adapted for use in planetary exploration, 
particularly in navigating planetary rovers. On planets like 
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Mars, where sending back high-resolution images is 
bandwidth-intensive, NeRF can reconstruct high-quality 3D 
maps from sparse and low-resolution images sent by rovers. 
These maps are crucial for navigating the challenging and 
unknown terrains of other planets. By improving the quality 
and utility of visual data, NeRF enhances the autonomous 
capabilities of rovers, allowing for more effective 
exploration and data collection with reduced human 
oversight [52]. 

G. Space Astronomical Research and Space Telescopes 

NeRF also holds promise for astronomical research, where 
3D reconstructions of celestial objects such as nebulae, 
galaxies and star systems can lead to new insights into the 
formation and evolution of these bodies. NeRF can generate 
detailed 3D models of distant astronomical objects [53], 
allowing for a better understanding of their structure and 
behavior. 
Applications in astronomy include: 

 Celestial object modeling where it improves the 
modeling of nebulae, galaxies and exoplanetary systems 
by generating 3D visualizations from images captured 
by space telescopes. 

 Light propagation simulations where it simulates light 
interactions within deep space environments to refine 
astrophysical models and improve observational 
accuracy. 

IV. DATASETS FOR NERF 

There are may datasets which are used by NeRF for space 
applications. 

Creating and utilizing specific datasets for Neural Radiance 
Fields (NeRF) applications in space involves gathering and 
preparing image data from space missions, simulations, and 
ground-based observations. These datasets must be carefully 
curated to effectively train NeRF models that are capable of 
reconstructing high-fidelity 3D environments from 2D 
images. 

Here is a detailed description of the types of NeRF datasets 
typically used for space applications: 

A. Satellite Imagery Datasets 

These datasets consist of images captured by Earth 
observation satellites, lunar orbiters, or spacecraft around 
other planets. They include diverse types of data such as 
multispectral and hyperspectral imagery, high-resolution 
optical images and radar images. These datasets are crucial 
for training NeRF models to reconstruct Earth’s landscapes, 
planetary surfaces, and features of other celestial bodies. 

Examples: 

Landsat and Sentinel datasets for Earth observation, 
providing extensive coverage and historical data, Lunar 
Reconnaissance Orbiter Camera (LROC) dataset for high- 
resolution images of the lunar surface, Mars Reconnaissance 
Orbiter’s HiRISE camera data for detailed Martian terrain 
images. 

B. Rover-Captured Datasets 

Images captured by rovers on planetary surfaces, such as 
Mars or the Moon, include detailed close-up photographs of 
the geology, horizon and sky. These datasets are valuable for 
training NeRF models to navigate and analyze the planetary 

surface, facilitating better planning and decision-making for 
future rover missions. 

Examples: 

Mars Rover Image Data from missions like Curiosity, 
Perseverance and historical missions providing ground-level 
views, Apollo Lunar Surface Experiments Package (ALSEP) 
imagery for lunar exploration. 

C. Astronomical Observation Datasets 

These datasets are comprised of images captured by 
telescopes and observatories, both ground-based and space- 
based like the Hubble Space Telescope. They include images 
of stars, galaxies, nebulae, and other astronomical 
phenomena, which can be used to train NeRF models for 
educational and research purposes in astronomy. 

Examples: 

Hubble Space Telescope datasets providing deep space 
images, Very Large Telescope (VLT) and other 
observatorie’s data for stellar and interstellar object studies. 

D. Simulated Space Environment Datasets 

Simulated datasets created using software that models space 
environments based on physical and scientific principles. 
These are particularly useful for scenarios where real-world 
data is scarce or difficult to obtain, such as exoplanetary 
surfaces or the outer solar system. 

Examples: 

NASA’s Eyes on the Solar System simulations. 
Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) simulated datasets for planetary 
geology studies. 

E. Synthetic Datasets Generated from CAD Models 

Synthetic datasets generated from CAD (Computer-Aided 
Design) models of spacecraft, satellites, and space stations 
are used for training NeRF models in applications related to 
the construction, maintenance, and operation of space 
structures. 

Examples: 

International Space Station (ISS) module CAD models. 
Satellite assembly and maintenance training simulations. 

To conclude, these datasets play a critical role in the 
development and application of NeRF techniques in space 
exploration and research. They provide the necessary data for 
training models that can predict and render 3D space 
environments with high precision, supporting a variety of 
applications from planetary exploration to astronaut training 
and astronomical research. The success of NeRF in space 
applications heavily depends on the quality, diversity and 
accuracy of these datasets. 

F. Other Potential Datasets for NeRF in Space Applications 

HiRISE (High Resolution Imaging Science Experiment) is a 
dataset which provides high-resolution images of the Martian 
surface. LROC (Lunar Reconnaissance Orbiter Camera) 
captures high-resolution imagery of the lunar surface. Earth 
Observing System (EOS) Data is a dataset which includes 
data from satellites like Terra and Aqua, which capture Earth 
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imagery. Apollo Surface Panoramas includes Panoramic 
images taken by astronauts during the Apollo Moon 
missions. Mars Rover Image Data contains images captured 
by Mars rovers such as Curiosity, Opportunity and 
Perseverance. Hubble Space Telescope Public Data provides 
images of space captured by the Hubble Space Telescope. 
Astronomical Photographic Data Archive (APDA) offers 
photographic plates from observatories around the world 
covering a span of many decades. Cassini-Huygens Mission 
Data includes imagery and other data from the Cassini 
spacecraft's mission to Saturn and its moons. Gaia Mission 
Data provides accurate positions, distance indicators and 
motions of stars. Synthetic Universe is a simulated dataset of 
universe-scale phenomena created using advanced 
computational models. 

 
While the above datasets are not explicitly designed for 
NeRF applications, they provide the type of high-quality, 
multi-perspective imagery that is ideal for NeRF model 
training in space applications. Researchers looking to apply 
NeRF to space applications would likely need to adapt these 
datasets, potentially processing the images to meet specific 
NeRF input requirements and ensuring that images are 
suitable for creating accurate 3D reconstructions. Each NeRF 
dataset's accessibility and usage terms can vary, so it's 
essential to review the associated licenses and usage rights 
before incorporating them into research or commercial 
projects. 

 

Table 1 shows the different NeRF datasets used for space applications. 

Table 1: Datasets used in NeRF for space applications 

 

 

Dataset 

 

Venue 

 

# Scenes 

 

# Imgs 

 

Type 

 

Centricity 

 
Data 

Modalities 

 

Annotations 

 

3DMV-VQA [54] 
 

CVPR 
2023 

 

5000 

 

600K 

 

Indoor 

 

S+O 

 

RGB 
 

Visual Question and 
Answer 

 

NeRDS 360 [55] 
 

ICCV 
2023 

 

75 

 

15k 

 

Urban 

 

S+O 

 

Synthetic 

3D object boxes, 2D 
panoptic segmentation 

 

ScanNet++ [56] 
 

ICCV 
2023 

 

400 

 

3.7M 

 

Indoor 

 

S 

 

RGB-D 
 

2D/3D panoptic 
segmentation 

 

KITTI-360 [57] 
 

PAMI 
2022 

 

10 

 

150K 

 

Urban 

 

S+O 

 

RGB & LIDAR 

2D/3D object boxes, 2D 
panoptic segmentation 

 

SHIFT [58] 
 

CVPR 
2022 

 

4850 

 

2.5M 

 

Urban 

 

S+O 

 

Synthetic 

2D/3D object boxes, 2D 
panoptic segmentation 

 

HM3D Sem [59] 
 

arXiv 
2022 

 

216 

 

- 

 

Indoor 

 

S 

 

Mesh 

 

3D semantic segmentation 

 

3D-FRONT [60] 
 

ICCV 
2021 

 

18968 

 

- 

 

Indoor 

 

S+O 

 

Synthetic 

 

3D semantic segmentation 

 

HyperSim [61] 
 

ICCV 
2021 

 

461 

 

77.4K 

 

Indoor 

 

S+O 

 

Synthetic 

2D/3D object boxes, 
2D/3D panoptic 
segmentation 

 

Waymo [62] 
 

CVPR 
2020 

 

1150 

 

1M 

 

Urban 

 

S+O 

 

RGB & LiDAR 

 

2D/3D object boxes 

2D panoptic segmentation 

 

nuScene [63] 
 

CVPR 
2020 

 

1000 

 

1.4M 

 

Urban 

 

S+O 

 

RGB & LiDAR 

3D object boxes, 2D 
semantic segmentation 

 

Replica [64] 
 

arXiv 
2019 

 

18 

 

- 

 

Indoor 

 

S 

 

Mesh 
 

2D/3D panoptic 
segmentation 
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Matterport 3D [65] 

 

3DV 
2017 

 

90 

 

194.4K 

 

Indoor 

 

S 

 

RGB-D 
 

2D/3D panoptic 
segmentation 

 

CLEVR [66] 
 

CVPR 
2017 

 

- 

 

100K 

 

Indoor 

 

O 

 

Synthetic 
 

Visual Question and 
Answer 

 

ScanNet [67] 
 

CVPR 
2017 

 

1513 

 

2.5M 

 

Indoor 

 

S+O 

 

RGB-D 

3D object boxes, 2D/3D 
panoptic segmentation 

 

Virtual KITTI [68] 
 

CVPR 
2016 

 

5 

 

17K 

 

Urban 

 

S+O 

 

Synthetic 

2D/3D object boxes, 2D 
panoptic segmentation 

 

SUN RGB-D [69] 
 

CVPR 
2015 

 

47 

 

10.3K 

 

Indoor 

 

S+O 

 

RGB-D 

2D/3D object boxes, 2D 
panoptic segmentation 

 

Shapenet [70] 
 

arXiv201 
5 

 

- 

 

- 

 

Objects 

 

O 

 

CAD Model 

 

3D part segmentation 

 

KITTI [71,72] 
 

CVPR 
2012 

 

22 

 

15K 

 

Urban 

 

S+O 

 

RGB & LiDAR 

2D/3D object boxes, 2D 
panoptic segmentation 

 

 

V. NERF METHODS 

The below table shows the comparative analysis of various 
NeRF methods used for space applications: 

Neural Radiance Fields (NeRF) have been adapted into 

various methodologies to enhance their applicability in 

space applications, each designed to tackle specific 

challenges associated with rendering and reconstructing 

space environments. Several adaptations of Neural Radiance 

Fields methods have been developed to address the specific 

challenges of space applications. These methods leverage 

NeRF's ability to create high-fidelity 3D models from 2D 

images but are tailored to the unique constraints and 

requirements of space environments, such as limited data, 

computational restrictions and the need for high precision in 

remote sensing. 

Below are the descriptions of some notable NeRF methods 

designed specifically for space applications: 

A. SparseNeRF for Space Exploration 

This method is adapted to work effectively with the sparse 

image data typically available from space missions, where 

comprehensive data collection is often challenging due to 

the high costs and technical limitations of space travel. 

SparseNeRF for Space Exploration incorporates techniques 

to reconstruct detailed 3D environments from limited 

viewpoints and under varied lighting conditions, enhancing 

its utility for planetary exploration and asteroid mapping. 

Useful for reconstructing detailed terrain models of celestial 

bodies with limited rover or satellite passes. 

 

B. DynamicNeRF for Orbital and Rover Operations 

Designed to handle dynamic scenes in space, such as 

moving objects in orbit or changes in planetary surfaces, 

DynamicNeRF incorporates temporal dynamics into the 

traditional NeRF model. This allows it to update the 

reconstructed scene continuously as new data comes in, 

making it ideal for applications that require monitoring and 

responding to changes in real-time. Ideal for monitoring 

orbital debris fields and assisting in autonomous rover 

navigation on planetary surfaces with changing 

environmental conditions. 

C. Multi-Spectral NeRF 

This variant of NeRF extends the traditional RGB image 

input to include multi-spectral data, which is common in 

satellite imagery. By incorporating additional spectral 

bands, Multi-Spectral NeRF can provide more detailed 

information about material properties and enhance the 

detection and analysis of various geological and 

atmospheric phenomena. Used for enhanced analysis of 

planetary surfaces and atmospheres, aiding in the detection 

of water, minerals and other resources. 

D. RobustNeRF for Extreme Environments 

RobustNeRF is engineered to perform reliably under the 

extreme conditions of space, such as varying temperatures 

and radiation levels that can affect sensor performance. This 

method includes enhancements for noise reduction and error 

correction, ensuring high-quality 3D reconstructions despite 

the harsh operating conditions. Suitable for long-duration 

missions in deep space or on surfaces of planets with harsh 

atmospheres, like Venus or Jupiter’s moons. 

E. ReflectiveNeRF for Illumination Challenges 

ReflectiveNeRF tackles one of the major challenges in space 

handling the vast differences in illumination. It models not 

only the geometry but also the reflective properties of scene 

surfaces, allowing it to predict how surfaces would look 

under different lighting conditions. This is crucial for 

creating accurate models from images taken during different 

times of the day or year. Particularly valuable for lunar and 

Martian missions where sunlight varies significantly, 

affecting visibility and navigation. 

36

Page 15 of 30 - Integrity Submission Submission ID trn:oid:::1:3183687366

Page 15 of 30 - Integrity Submission Submission ID trn:oid:::1:3183687366



 

These NeRF methods represent significant advancements in 

the application of 3D reconstruction technologies for space 

exploration. Each method addresses specific challenges 

encountered in the unique and demanding environment of 

space, from data sparsity and dynamic changes to extreme 

conditions and illumination issues. As these technologies 

continue to evolve, they will play a crucial role in enhancing 

our understanding and exploration of outer space, providing 

detailed and reliable data that can support both manned and 

unmanned missions. 

 

Each NeRF variant is tailored to overcome specific 

challenges in space applications, from sparse data conditions 

and dynamic scenes to multi-resolution needs and adverse 

weather effects. These adaptations make NeRF a versatile 

tool for space exploration, aiding in everything from 

satellite imagery analysis to rover navigation and planetary 

surface study. 

 

 

 
Table 2 shows the list of existing research papers on NeRF 
which are used for space applications, their key features, 
strengths and weaknesses: 

 

Table 2: Existing papers related to NeRF used for space 
 

Paper Key Features Strengths Weaknesses 

 

FastNeRF [73] 

Uses a novel sampling strategy to achieve 
high frame rates 

Produces high-fidelity images at 200fps Requires more training data than 
other methods 

 

KiloNeRF [74] 

Uses a hierarchical representation of the 
scene to reduce the number of parameters 

Very efficient, can train on a single GPU 
in a few hours 

Produces lower-quality images than 
other methods 

 

Block-NeRF [75] 

Divides the scene into blocks and renders 
each block independently 

Scales to very large scenes Requires more memory than other 
methods 

 

Mega-NeRF [76] 

Uses a dynamic grid that is adapted to the 
scene being rendered 

Produces high-quality images of large 
scenes 

Very computationally expensive 

 

MobileNeRF [77] 

Exploits the polygon rasterization pipeline to 
render NeRFs on mobile devices 

Very fast on mobile devices Produces lower-quality images than 
other methods 

 

VI. CASE STUDIES 

The following are the case studies of how Neural Radiance 

Fields or NeRF is used in Space related applications: 

A. Enhancing Lunar Surface Imagery with NeRF 

One notable case study involves the application of Neural 

Radiance Fields to enhance the quality of imagery captured 

on the lunar surface. Traditional methods of capturing and 

processing lunar images often struggle with issues like low 

light conditions and high contrast [78], which can obscure 

important surface details. Researchers at the Lunar 

Reconnaissance Orbiter mission utilized NeRF to synthesize 

high-resolution 3D models from existing low-resolution 

images, significantly enhancing the detail and accuracy of 

lunar surface features. This improved imaging supports 

better planning of landing sites and safer navigation for 

future missions. The study demonstrated NeRF's potential to 

overcome environmental lighting limitations, providing 

clearer, more detailed surface imagery than previously 

possible [79]. The application of Neural Radiance Fields 

(NeRF) in enhancing lunar surface imagery represents an 

improvement in the field of lunar exploration and mapping. 

NeRF's capability to generate detailed and high-resolution 

3D reconstructions from standard 2D images can profoundly 

improve the quality of lunar surface imagery, facilitating 

better scientific research, exploration planning and mission 

safety. 

NeRF models are trained using a series of 2D images taken 

from various angles, often captured by lunar orbiters or 

landers. These images are input into the NeRF system, 

which uses deep learning techniques to infer and reconstruct 

the 3D scene. The model learns to predict the color as well 

as the density of light at any point in space, allowing it to 

generate novel views of the lunar surface with high fidelity: 

 The initial step involves collecting comprehensive 

image datasets from multiple lunar missions. These 

datasets include images taken at different times of day 

to capture varying lighting conditions and angles [80]. 

 Using these images, a NeRF model is trained to 

understand the 3D structure of the lunar surface. This 

training process requires significant computational 

resources and may take several days or weeks, 

depending on the complexity of the terrain and the 

resolution required. 

 Once trained, the NeRF model can be used to 

reconstruct high-resolution 3D images of the lunar 

surface. These images are not only more detailed than 

any single 2D image but also free from common issues 

like shadows and occlusions. 

The application of NeRF technology in lunar surface 

imaging offers several compelling benefits that significantly 

advance lunar science and exploration: 

 Increased resolution and detail where NeRF provides 

higher resolution and more detailed images than 

traditional 2D imaging techniques. This enhancement is 
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crucial for identifying small-scale features such as 

craters, rocks and regolith properties [81]. 

 For improved surface analysis, with high-resolution 3D 

models, scientists can perform more accurate geological 

and compositional analyses of the lunar surface. This 

capability is vital for identifying areas of scientific 

interest and planning future exploration missions. 

 Virtual exploration where NeRF-generated models 

allow researchers and mission planners to virtually 

explore the lunar surface in three dimensions, 

facilitating better mission planning and training of 

astronauts for surface operations. 

While the use of NeRF in enhancing lunar imagery is 

promising, several challenges must be addressed: 

 NeRF's computational requirements are substantial, 

which can be a limiting factor, especially for processing 

onboard spacecraft. Efforts to optimize and streamline 

NeRF algorithms are ongoing. 

 NeRF requires huge volume of higher quality images, 

which can infact be challenging to obtain for regions of 

the lunar surface that are not frequently imaged by 

orbiters [82]. 

 The harsh lighting conditions and extreme contrasts of 

the lunar surface pose unique challenges in training 

NeRF models, which typically perform best under 

consistent lighting conditions. 

Looking forward, the application of NeRF in lunar surface 

imaging is set to expand with advancements in 

computational technologies and machine learning: 

 Future developments may allow NeRF models to be run 

in real-time or near-real-time on lunar orbiters or 

landers, providing immediate data for mission control 

and surface operations. 

 NeRF could be integrated into the guidance systems of 

robotic explorers [83], enhancing their ability to 

navigate and operate autonomously on the lunar 

surface. As NeRF technology matures, it could play a 

crucial role in mission planning by providing detailed 

3D visualizations of proposed landing sites and 

exploration zones, significantly reducing the risks 

associated with lunar missions. 

 NeRF stands as a transformative technology for 

enhancing lunar surface imagery, offering 

unprecedented detail and accuracy that can significantly 

benefit scientific research, exploration and mission 

planning [84, 85]. As computational and data handling 

challenges are overcome, the potential applications of 

NeRF in lunar exploration are expected to grow, 

opening new horizons in our understanding and 

exploration of the Moon. 

B. NeRF for Satellite Constellation Calibration 

Another critical application of NeRF in space technology is 

in the calibration of satellite constellations. A study 

conducted by a European space agency focused on using 

NeRF to simulate and optimize the camera alignment and 

calibration process for a satellite constellation designed to 

monitor atmospheric conditions [86]. By generating and 

utilizing 3D models of the Earth’s atmosphere from multiple 

satellite images, NeRF helped in significantly reducing the 

time and effort required for calibration, while improving the 

precision of atmospheric data collected by the constellation. 

This case study highlights NeRF’s capability to enhance 

satellite operations and data accuracy, contributing to better 

climate monitoring and environmental management [87]. 

The application of Neural Radiance Fields (NeRF) for 

calibrating satellite constellations represents a novel 

approach to optimizing the alignment and functionality of 

satellite systems in orbit. NeRF's ability to create highly 

accurate 3D models from sparse 2D images enables precise 

calibration of inter-satellite sensors and optical instruments. 

 

Calibration of satellite constellations involves aligning the 

sensors and optical systems of multiple satellites to ensure 

that they work cohesively, producing consistent and 

accurate data. NeRF aids this process by generating precise 

3D models of the area or object under observation from a set 

of 2D images captured by different satellites in the 

constellation [88]. 

 Satellites in a constellation capture a series of images 

from different angles and orbits. These images cover 

various lighting conditions and angles, providing a 

comprehensive dataset for model training. 

 The collected images are used to train a NeRF model, 

which learns to synthesize a 3D model of the target 

object or area. This model helps in understanding 

discrepancies and misalignments in the data captured by 

individual satellites. 

 By comparing the synthesized 3D model with the 

individual images and their expected outcomes, 

discrepancies can be identified and corrected, allowing 

for the fine-tuning of each satellite's sensors and optical 

alignment. 

Integrating NeRF into the calibration process of satellite 

constellations offers several significant advantages: 

 For enhanced accuracy and consistency, NeRF helps 

achieve a high level of accuracy in the 3D 

representation of the observed area, which is crucial for 

calibrating the sensors across the constellation. This 

leads to more consistent and reliable data from different 

satellites [89]. 

 For the reduction in calibration time and effort, 

traditional calibration methods can be time-consuming 

and require extensive manual input. NeRF automates 

much of the process, significantly reducing the time and 

effort needed for calibration. 

 Improved Data Integration where accurately calibrated 

satellites provide data is easier to integrate and analyze 

[90], improving the overall quality of the information 

used for earth observation, climate monitoring and 

other critical applications. 

Despite its promising applications, deploying NeRF for 

satellite constellation calibration faces several challenges: 

 NeRF's processing demands are substantial, requiring 

significant computational resources that might not 

always be readily available in space or at ground 

stations. 
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 Managing the large datasets required for effective 

NeRF training involves complexities in data 

transmission, storage and processing, especially given 

the bandwidth limitations inherent in satellite 

communications [91]. 

 Satellite images are affected by various dynamic factors 

such as atmospheric conditions, changing angles and 

lighting. Adapting NeRF to reliably work under such 

variable conditions remains a technical challenge. 

As technology progresses, the application of NeRF in 

satellite constellation calibration are expected to evolve: 

For onboard processing capabilities, future satellite designs 

may include more advanced computational capabilities, 

allowing NeRF models to be processed directly on satellites. 

This would enable real-time calibration and adjustments 

without the need to transmit large amounts of data back to 

Earth. Further integration of NeRF with other AI and 

machine learning technologies could enhance automated 

decision-making processes, enabling satellites to adapt their 

calibration dynamically based on observed data anomalies 

[92]. 

Efforts to make NeRF models more scalable and flexible 

could allow for their application across different types of 

satellite constellations and instruments, broadening the 

scope of this technology. 

NeRF holds significant potential to transform the calibration 

process for satellite constellations, offering a way to 

enhance the accuracy and reliability of satellite data 

significantly. By addressing the computational and 

adaptability challenges [93], NeRF could become an integral 

part of the standard toolkit for satellite constellation 

management, ensuring that satellite systems deliver optimal 

performance throughout their operational life. 

 

Figure 7 shows the different case studies for NeRF used for 

space applications: 
 

Fig 7: Case Studies of NeRF used for space applications 

C. Virtual Reality Training for Astronauts Using NeRF 

In a groundbreaking application of NeRF, NASA developed 

a virtual reality (VR) training program for astronauts 

preparing for extravehicular activities (EVAs) on the 

International Space Station (ISS) [94]. Using NeRF, the 

program creates photorealistic, interactive 3D environments 

from video footage captured during previous missions. This 

technology allows astronauts to train in a highly realistic 

simulation of the ISS exterior, improving their familiarity 

with the station's layout and potential hazards they might 

encounter during EVAs. The VR training program has been 

credited with significantly improving astronaut’s 

performance and reducing the risks associated with 

spacewalks. This case demonstrates NeRF’s utility in 

enhancing the effectiveness and safety of astronaut training 

programs [95]. The utilization of Neural Radiance Fields 

(NeRF) in virtual reality (VR) training for astronauts marks 

a significant advancement in simulation technology, 

offering an unprecedented level of realism and immersion. 

NeRF’s capability to generate photorealistic 3D 

environments from sparse 2D images provides astronauts 

with highly detailed simulations of space environments, 

aiding in both routine training and mission-specific 

preparations. 

 

NeRF’s integration into astronaut VR training involves 

several key steps, from collection of data and training of 

model to simulation deployment: 

 The data collection involves extensive datasets 

comprising images of actual space environments, 

equipment and spacecraft interiors are collected. These 

may include images from previous missions, training 

modules and specially designed setups that replicate 

space conditions. 

 For model training, these images are then used to 

actually train a NeRF model to reconstruct the space 

environment in 3D. The training process involves 

mapping both the visible light and depth information 

from the 2D images to create a continuous, volumetric 

scene [96]. 

 For VR integration, the trained NeRF model is 

integrated into a VR system. Astronauts can interact 

with the environment through VR headsets and 

controllers, which simulate the physical presence in 

these meticulously reconstructed space settings. 

NeRF significantly enhances VR astronaut training 

programs by offering several unique advantages: 

 For high-fidelity simulations, NeRF produces highly 

realistic 3D simulations of space environments, 

including accurate representations of spacecraft 

interiors, extravehicular activity (EVA) environments 

[97] and even other planetary terrains [98]. 

 One of NeRF’s standout features in VR training is its 

ability to simulate complex lighting dynamics and 

shadows, which are crucial for preparing astronauts for 

the visually challenging environments of space. 

 Advanced NeRF models can be adapted to include 

dynamic elements, such as moving objects and 

changing conditions, allowing astronauts to practice 

responses to anomalies and emergencies. 
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While NeRF offers substantial benefits, several challenges 

must be addressed to maximize its effectiveness in astronaut 

training: 

 NeRF models require significant computational 

resources to render in real-time, which can be a 

limitation for VR systems that need to operate smoothly 

to avoid motion sickness and ensure user comfort [99]. 

 Collecting and processing the large volumes of high- 

quality images needed to train accurate NeRF models is 

resource-intensive and can be logistically challenging. 

 Seamlessly integrating NeRF-based simulations into 

established astronaut training curricula requires careful 

validation to ensure the simulations meet educational 

standards and training objectives. 

The future of NeRF in VR astronaut training looks 

promising, with several developments on the horizon: 

 Future improvements in NeRF could include better 

interactivity features, allowing astronauts to manipulate 

objects and environments in more complex ways, 

closely mimicking real-world physics and interactions 

[100]. 

 For customization and scalability, as NeRF technology 

matures, it could allow for more customized and 

scalable training scenarios that can be quickly adapted 

to specific mission needs or modified based on the 

evolving skills of astronauts. 

 Integration with AI as combining NeRF with AI could 

lead to adaptive training environments that respond in 

real-time to the actions of astronauts [101], providing 

personalized feedback and adjusting difficulty levels 

dynamically. 

NeRF's application in VR training for astronauts offers a 

transformative tool that significantly enhances the realism 

and effectiveness of pre-mission preparations [102]. By 

providing an immersive, accurate simulation of space 

environments, NeRF helps astronauts prepare more 

thoroughly for the challenges of space missions. Continued 

advancements in computing power and algorithmic 

efficiency are expected to further enhance the capabilities 

and applications of NeRF in astronaut training, making 

these simulations an integral part of astronaut training 

programs. 

D. Rover Navigation on Mars with NeRF 

The final case study explores the usage of NeRF for 

enhancing navigation capabilities of Mars rovers. 

Leveraging sparse and varied image data sent back by 

rovers, NeRF was employed to create detailed 3D 

reconstructions of the Martian terrain [103]. These models 

enable more accurate hazard assessment and path planning, 

crucial for the rover’s long-term operational success and 

scientific missions. The technology allowed for a more 

robust exploration strategy by providing high-quality 

visualizations of the terrain ahead, aiding in the discovery of 

new geological features and optimizing scientific data 

collection. This case underlines NeRF’s role in supporting 

autonomous operations in remote and challenging 

environments [104]. The integration of NeRF into the 

navigation systems of Mars rovers represents a significant 

technological advancement in planetary exploration. NeRF’s 

potential to build detailed and accurate 3D models from a 

collection of 2D images allows for enhanced navigation and 

operational planning, crucial for the success of missions on 

Mars’s challenging terrain. 

 

Implementing NeRF for rover navigation involves several 

key steps, tailored to overcome the unique challenges of the 

Martian environment: 

 Mars rovers are equipped with cameras that capture 

images of the surrounding landscape. These images are 

taken at various angles and times, providing a diverse 

dataset that captures the terrain under different lighting 

conditions [105]. 

 The collected images are used to train a NeRF model. 

This training process involves creating a volumetric 

representation of the Martian surface, where the model 

learns to predict the color and opacity of light passing 

through different points in space, effectively 

reconstructing the 3D landscape. 

 For navigation and path planning, the trained NeRF 

model is then used to generate real-time 3D maps of the 

terrain ahead of the rover [106]. These maps are crucial 

for identifying obstacles, assessing potential paths, and 

making informed decisions about the rover’s route to 

avoid hazards and optimize scientific data collection. 

The application of NeRF technology in Mars rover 

navigation offers several compelling advantages: 

For enhanced terrain modeling, NeRF provides high- 

resolution 3D reconstructions of the Martian surface, 

offering greater detail than traditional stereo vision methods 

[107, 108]. This capability is vital for identifying and 

avoiding potential hazards such as rocks, ditches and loose 

soil. With better terrain models, mission planners can more 

accurately predict the time and energy required for different 

routes, optimizing the rover’s path for efficiency and safety. 

NeRF models can be updated in real-time with new images 

captured by the rover [109], allowing the navigation system 

to keep adapting to new obstacles or the changes in terrain 

as mission progresses. 

 

While NeRF holds great promise, its deployment in the 

context of Mars rover navigation presents several 

challenges: 

NeRF models are computationally intensive, requiring 

significant processing power that might exceed the current 

capabilities of rover onboard computers. The large datasets 

needed for NeRF training and updating necessitate high 

bandwidth for data transmission [110], which can be a 

bottleneck given the limited communication capabilities 

between Mars and Earth. The Martian environment poses 

unique challenges, including extreme variations in lighting 

and weather conditions that can affect the accuracy and 

reliability of the 3D models generated by NeRF. 

As technology and Mars exploration strategies evolve, the 

role of NeRF in rover navigation is expected to expand and 

improve: 

 For onboard processing enhancements, advances in 

edge computing and AI might allow future Mars rovers 

to process NeRF models directly onboard, significantly 
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reducing the need for data transmission and enabling 

more autonomous navigation capabilities. 

 Combining NeRF with data from other sensors, such as 

LIDAR and radar, could provide a more extensive 

understanding of Martian environment, improving the 

rover’s ability to handle complex navigation tasks. 

 Ongoing developments in machine learning and 

optimization algorithms are expected to minimize the 

overall computational load of NeRF models [111], 

ensuring they are more feasible for real-time 

applications in space exploration. 

 NeRF technology offers a transformative approach to 

Mars rover navigation, providing detailed 3D 

reconstructions of the terrain that enhance the safety, 

efficiency and scientific output of missions. 

 As computational technologies continue to advance, 

NeRF is likely to become a critical component of 

planetary exploration strategies [112], enabling more 

sophisticated and autonomous rover operations on Mars 

and potentially other celestial bodies. 

VII. EVALUATION METRICS 

In the evaluation of Neural Radiance Fields and similar 3D 
reconstruction technologies for space applications, several 
quantitative metrics are commonly used to assess the quality 
of generated images compared to ground truth images. These 
metrics include Peak Signal-to-Noise Ratio (PSNR), 
Structural Similarity Index Measure (SSIM) and the Learned 
Perceptual Image Patch Similarity (LPIPS). 

1. Peak Signal-to-Noise Ratio (PSNR) 

• I and K are the original and reconstructed images, 
respectively. 

• m and n are the dimensions of the images. 

2. Structural Similarity Index Measure (SSIM) 

SSIM is a perceptual metric that quantifies image quality 
degradation caused by processing such as data compression 
or by losses in data transmission. It considers changes in 
texture, brightness and contrast between two images. SSIM 
values range between -1 and 1, where 1 indicates perfect 
similarity. 

SSIM(x,y)=(μ 2+μ 2+c1) (σ 2+σ 2+c2) / (2μxμy+c1) (2σxy+c2) 

where, 

• μx, μy are the average of x and y. 

• σ 2, σ 2 are the variance of x and y. 

• σxy is the covariance of x and y. 

• c1 and c2 are constants used to stabilize the division with 
weak denominator. 

3. Learned Perceptual Image Patch Similarity (LPIPS) 

LPIPS is a metric that uses deep learning to assess perceptual 
similarity between images, reflecting more closely how 
humans would perceive differences. It compares the distance 
between deep features of images extracted by pre-trained 
neural networks, typically those used in vision tasks like 
image classification. 

LPIPS= ∑ wl || ϕl(I)h,w − ϕl(K)h,w ||
𝟐

 
𝟐 

PSNR is a widely used metric in image processing that 
measures the ratio between the maximum possible power of 
a signal and the power of corrupting noise that affects the 
fidelity of its representation. 

In the context of NeRF, PSNR is used to evaluate the fidelity 
of reconstructed images relative to the original images, with 
higher values indicating better quality. 

PSNR=20×log10(MSE.MAXI) 

where, 

• MAXI is the maximum possible pixel value of the image 
(e.g., 255 for 8-bit images). 

• MSE is the mean squared error between the original and the 
reconstructed image. 

where, 

• ϕl(I) and ϕl(K) are the feature maps at layer l of networks 
for images I and K, respectively. 

• Hl and Wl are the dimensions of the feature map at layer l. 

• wl are learned or predefined weights for each layer. 

These evaluation metrics are crucial for assessing the 
performance of NeRF models, especially when fine-tuning 
for accuracy, perceptual quality and overall effectiveness in 
applications like virtual reality, film production and scientific 
visualization. Each metric offers a different perspective on 
image quality, from statistical fidelity (PSNR, SSIM) to 
human-perceived similarity (LPIPS) and is essential for 
comprehensive assessment in research and practical 
applications of NeRF for space applications. 

MSE= n ∑𝒎 

where, 

𝒏 
𝒋=𝟏 𝒋 = (I(i,j)−K(i,j))2 

Table 3 shows the different values of evaluation metrics and 
dataset used for various NeRF methods used for space 
applications: 

Table 3: Different evaluation metrics and dataset used 
 

Paper Dataset Used PSNR LPIPS SSIM 
NeRF [1] DTU 8.00 0.703 0.286 

CoCo-INR [113] DTU 26.738 0.298 0.852 

DietNeRF [114] DTU 14.242 0.487 0.481 

PointNeRF [115] NeRF Synthetics 33.31 0.049 0.978 

NuroFusion [116] NeRF Synthetics 31.25 0.069 0.953 

FastNerf [117] NeRF Synthetics 29.155 0.053 0.936 

KiloNeRF [118] NeRF Synthetics 31.00 0.03 0.95 

SteerNeRF [119] NeRF Synthetics 30.97 0.065 0.948 
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MobileNeRF [120] Syntatic 360 30.90 0.062 0.947 

Mip-NeRF [121] Blander 33.09 0.043 0.961 

Mega-NeRF [122] UrbanScene3d 22.08 0.489 0.628 

Pix2NeRF [123] ShapeNet-SRN 18.14 - 0.84 

Block-NeRF [124] Alamo Square dataset 23.60 0.0417 0.649 

LOLNeRF [125] CelebA-HQ 25.3 0.491 0.836 

FDNeRF [126] VoxCelebdataset 24.847 0.142 0.821 

ECRF [127] PhotoShapes 37.67 0.022 - 

NeRF-Editing [128] Mixamo 29.62 0.024 0.975 

D2NeRF [129] Bag 34.14 0.090 0.979 

DFFs [130] Replica dataset 32.85 0.162 0.932 

LOCNeRF [131] ToyDesk 15.0607 0.522 0.585 

NARF [132] THUman 30.86 - 0.9586 

HumanNeRF [133] Multi-view dataset 36.01 0.0356 0.9897 

 

VIII. COMPARATIVE ANALYSIS 

Table 4 shows the key features, advantages, disadvantages and applications of different NeRF Methods used for space 

applications. 

 

Table 4: Comparative analysis of various NeRF methods 

 

NeRF Method Key Features Advantages Disadvantages Space Applications 

Basic NeRF [1] Dense MLP, 

Positional Encoding 

High fidelity in static 

scenes 

Slow rendering, High 

computational cost 

Satellite imagery 

enhancement 

FastNeRF [134] 
Caching Intermediate 

values, Accelerated 
Rendering 

Faster rendering 

times 
Slight loss in detail Real-time navigation and 

docking 

NeRF++ [135] Scene decomposition Better scalability for 

large scenes 

Increased complexity, 

Higher setup time 

Comprehensive Satellite 

data reconstructions 

Dynamic NeRF 

[136] 

Dynamic Scene 

handling, 

Time variant 

modeling 

Adapts to changing 

conditions 

Requires extensive 

training data 

Astronaut training in 

dynamic environments 

Mip-NeRF [137] Mipmapping for 

resolution 

management 

Enhanced detail at 

multiple scales 

Greater memory 

requirements 

High-resolution 

planetary mapping 

Fourier Feature 

NeRF [138] 

Advanced fourier 

features for encoding 
Captures fine details Can overfit to noise Detailed asteroid and 

comet surface mapping 

Sparse NeRF 

[139] 

Utilizes sparsity in 

data input 

Lower memory and 

computational 

requirements 

May miss finer details 

in sparse areas 

Efficient modeling of 

sparse stellar phenomena 

Multiscale NeRF 
[140] 

Operates at multiple 

scales simultaneously 

Captures global and 

local details 

Complex model 

architecture 

Detailed analysis of 

Celestial bodies surfaces 

Reflectance NeRF 
[141] 

Models surface 

reflectance properties 

Accurate material and 

surface analysis 

Requires precise initial 

data 

Material analysis in 

Moon and Mars missions 

Fusion NeRF 

[142] 

Fuses data from 

multiple sensors 

Robust against 

individual sensor 

failures 

Complex calibration 

between different data 

types 

Enhanced 3D Modeling 

of Space Station 

Environments 
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IX. CHALLENGES AND LIMITATIONS 

There are many challenges and limitations in using NeRF for 
space applications. The following are the list of challenges 
and limitations of using NeRF for space applications. 

A. Computational Complexity 

The computational demands of NeRF, especially for high- 
resolution 3D reconstructions, remain a significant challenge. 
The original NeRF model requires significant memory and 
processing power, making it impractical for real-time 
applications. Advances in optimization techniques, such as 
those introduced by Liu et al. [143] and others, are critical 
for reducing these computational costs but further research is 
needed to enable efficient on-board processing for space 
missions. The integration of Neural Radiance Fields (NeRF) 
into various applications, particularly in space technology, 
presents substantial computational challenges. NeRF models 
are complex and require significant processing power for 
training and inference [144], which can limit their 
deployment in environments with restricted computational 
resources, such as spacecraft or remote planetary missions. 

NeRF operates by modeling a scene as a continuous volume 
of light, color and density, which is computed from a 
collection of 2D images. The model predicts volume density 
as well as the color at any point in space, synthesizing new 
views of the scene with high fidelity. 

This process involves: 

 High-dimensional data processing where NeRF 
processes high-dimensional data through a neural 
network to then estimate color as well as the density at 
numerous points along the rays passing through the 
scene. This requires handling millions of parameters and 
operations [145]. 

 To generate images, NeRF integrates the predicted 
colors and densities along camera rays, a process known 

as volume rendering. This step is computationally 
intensive because it involves evaluating the model at 
many points along each ray to accurately render 
complex scenes. 

 NeRF requires numerous iterations to optimize its 
parameters for best rendering performance. Each 
iteration involves forward and backward passes through 
deep neural networks, which are computationally 
expensive. 

The computational intensity of NeRF presents several 
challenges, particularly in constrained environments: 

 In space missions, computational resources are limited 
due to power constraints and the need for radiation- 
hardened hardware, which often lacks the processing 
power of ground-based systems [146]. 

 The need for real-time or near-real-time processing in 
applications like spacecraft navigation or rover 
operations is hard to meet with the standard NeRF setup 
due to its slow processing speed. 

 Scaling NeRF to larger scenes or higher resolutions 
exacerbates the computational load, making it 
challenging to maintain performance without significant 
hardware or algorithmic enhancements. 

Addressing the computational demands of NeRF involves 
several strategies, ranging from hardware solutions to 
algorithmic optimizations: 

 Hardware acceleration is achieved by making use of 
specialized hardware such as GPUs or TPUs which can 
significantly quicken up the training and inference 
phases of NeRF [147]. For space applications, 
developing advanced, radiation-resistant versions of 
such hardware could be a solution. 

 Simplifying the NeRF model by reducing the 
complexity or the number of parameters without 
significantly impacting the quality of the output can 
help. Techniques like pruning, quantization or 
employing lighter neural network architectures are 
potential avenues. 

 Improving the efficiency of ray sampling and volume 
rendering by adopting adaptive or importance sampling 
techniques can reduce the number of evaluations 
needed, thereby decreasing computational overhead. 

 Implementing multi-resolution schemes where detailed 
computations are only performed in areas of high 
interest and caching results for frequently queried 
regions can reduce redundant calculations. 

Future research and development are crucial in making 
NeRF more feasible for computationally constrained 
environments: 

 By algorithmic innovations, continued innovation in 
algorithm design to increase the efficiency of NeRF 
models is essential. This could involve developing new 
types of neural architectures [148] that are inherently 
more efficient. 

 On-the-fly Adaptation by developing dynamic systems 
that adapt the complexity of the NeRF model based on 
available computational resources could help optimize 
performance in real-time. 

 For terrestrial applications, leveraging cloud computing 
to handle the heavy lifting of NeRF processing could 
offload the need for local computation, though this 
approach is less viable for deep-space applications. 

 While the computational demands of NeRF are 
significant, ongoing advancements in hardware 
technology and algorithmic efficiency are continuously 
improving its feasibility. 

 Overcoming these computational challenges is essential 
to unlocking the complete potential of NeRF across a 
range of applications, from virtual reality and film to 
advanced simulations and autonomous vehicle 
navigation [149] in space and on other planets. 

B. Data Acquisition and Integration 

High-quality, multi-angle data from space is often 
difficult to acquire due to orbital constraints, sensor 
limitations and environmental factors like cloud cover or low 
light conditions. The success of NeRF in space applications 
relies on the availability of diverse and high-quality data. 
Integrating data from different sources (e.g., ground-based 
telescopes, space probes and satellites) can also be complex 
and requires sophisticated data fusion techniques. 

C. Model Generalization 

NeRF models trained on specific environments (e.g., 

Earth’s surface) may not generalize well to other contexts, 

such as planetary surfaces or deep space environments [150, 
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151] . Further research is needed to improve the adaptability 

and transferability of NeRF models, particularly for 

applications in diverse and remote environments. 

D. Data Requirement 

NeRF’s performance heavily relies on the availability of 

high-quality, diverse training data. In space applications, 

acquiring such data can be particularly challenging due to 

the limited number of sensors on spacecraft and the 

infrequent opportunities for capturing comprehensive 

datasets of extraterrestrial environments. Moreover, NeRF 

requires a wide baseline of images taken from different 

viewpoints to effectively learn and reconstruct a scene in 

three dimensions. This requirement is often hard to meet in 

space missions where the camera positions and angles are 

constrained by the spacecraft’s design and mission 

parameters [152]. Neural Radiance Fields (NeRF) have 

shown promising results in synthesizing the photorealistic 

3D scene from the 2D images. However, the performance 

and accuracy of NeRF heavily depend on the quantity and 

quality of data available for training. In the context of 

specialized applications, especially in environments like 

space exploration, these data requirements pose significant 

challenges. 

 

NeRF models are trained using sets of images that 

comprehensively cover the scene from multiple viewpoints. 

To accurately reconstruct and render any scene, NeRF 

requires: 

 NeRF relies on high-resolution, high-quality images, 

low-noise images to accurately infer the fine details of a 

scene. The quality of these images directly impacts the 

fidelity of the generated 3D model. 

 To understand the depth and volume of the scene 

accurately, NeRF needs images taken from a wide 

range of angles or diverse viewpoints. Limited or biased 

viewpoints can lead to incomplete or distorted 3D 

reconstructions [153]. 

 Changes in lighting can significantly affect the 

appearance of objects in images. For NeRF to perform 

well, the training dataset should include consistent 

illumination across different views or the model must 

be capable of disentangling lighting from surface 

properties. 

The intensive data requirements of NeRF models present 

several challenges, particularly in constrained or 

unpredictable environments: 

 In applications like space exploration or underwater 

mapping, collecting comprehensive datasets can be 

prohibitively expensive, risky or technically 

challenging. 

 For storage and transmission, the large volumes of 

high-quality images required by NeRF demand 

substantial storage capacity and bandwidth for data 

transmission [154], which can be a limiting factor in 

bandwidth-constrained environments such as space 

missions. 

 In many practical applications, controlling for 

consistent lighting or capturing images from diverse 

viewpoints is difficult. This variability can degrade the 

performance of NeRF models unless specifically 

addressed in the model architecture or training 

procedure. 

To address the challenges associated with the data 

requirements of NeRF, several strategies can be employed: 

 Data augmentation techniques such as synthetic image 

generation, image augmentation (e.g., adjusting 

brightness, contrast), and virtual camera movement can 

artificially increase the diversity and volume of training 

data, helping to improve the robustness of NeRF 

models [155, 156]. 

 Transfer learning by leveraging and utilizing pre- 

trained models on similar tasks or environments which 

can reduce the amount of data required to fine-tune 

NeRF for a specific application. This approach is 

particularly useful when data collection is challenging 

or expensive. 

 Active learning and adaptive sampling by implementing 

active learning strategies where the model identifies 

which additional data would be most beneficial to 

improve itself can optimize data collection efforts, 

focusing resources on capturing the most valuable 

images. 

 Multi-source data fusion by combining NeRF with 

other data sources such as LIDAR, radar or existing 3D 

models, can enhance the model’s understanding of the 

scene with fewer images [157]. This fusion helps 

compensate for gaps in visual data, particularly in terms 

of depth perception and object positioning. 

Continued research and innovation are needed to enhance 

the data efficiency of NeRF models: 

 Developing more data-efficient architectures, perhaps 

by integrating assumptions about physical properties of 

the scene or by improving the model’s capability to 

generalize from limited data [158]. 

 Utilizing edge computing to preprocess data locally can 

reduce the need for transmitting large datasets, allowing 

for more efficient data usage. 

 Collaborative and decentralized learning by enabling 

collaborative learning approaches where multiple 

systems or devices share model updates rather than raw 

data can also mitigate the challenges posed by large 

data requirements. The data requirements for training 

NeRF models are substantial, presenting a significant 

barrier to their deployment in environments where data 

is scarce, expensive to acquire or difficult to process 

[159]. Addressing these challenges through 

technological innovation and strategic data management 

is crucial for extending the applicability of NeRF to a 

broader range of practical and impactful scenarios. 

E. Handling Diverse Environmental Conditions 

The effectiveness of NeRF in space is also hindered by 

its sensitivity to varying environmental conditions. For 

instance, the lighting conditions in space can vary 

dramatically, which affects the consistency of the images 

used for training and inference. NeRF's reliance on static 

scenes is another limitation, as it struggles with dynamic 

elements such as moving objects or changing shadows 

[160], common in space environments. This limitation 

requires  additional  adjustments  or  hybrid  approaches 
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combining NeRF with other techniques to ensure robust 

performance across different scenarios [161]. Neural 

Radiance Fields (NeRF) offer groundbreaking capabilities in 

generating three-dimensional reconstructions from two- 

dimensional images. However, NeRF's performance 

depends heavily on the consistency as well as the quality of 

input data [162], which can be significantly affected by 

diverse environmental conditions. 

Environmental conditions such as lighting, weather and 

physical obstructions can drastically affect the input data 

quality for NeRF, posing significant challenges: 

 Changes in lighting can alter the appearance of scenes 

dramatically. NeRF needs to disentangle the light 

effects from the actual scene properties to build 

accurate models. This is particularly challenging in 

outdoor environments where sunlight varies throughout 

the day and through cloud cover. 

 Weather variations like fog, rain, snow and dust can 

obscure and distort the visual data captured, 

complicating the task of accurately reconstructing the 

environment [163]. Such conditions can reduce the 

visibility of key features needed for high-quality 3D 

modeling. 

 For dynamic scenes, moving objects within a scene 

(such as vehicles, people or even swaying trees) create 

discrepancies between different images taken from the 

same viewpoint at different times. This can lead NeRF 

to produce artifacts or inaccuracies in the rendered 

scene. 

 

To address the hurdles posed by diverse environmental 

conditions, several strategies can be employed to improve 

the robustness as well as adaptability of NeRF models: 

 Developing NeRF models that can normalize or 

compensate for environmental variables is crucial. This 

could involve training NeRF under a wide range of 

conditions or developing specialized preprocessing 

algorithms [164] to standardize input data, reducing the 

impact of variables like lighting and weather. 

 Incorporating temporal consistency checks and motion 

estimation can help NeRF better handle dynamic 

scenes. Techniques such as background subtraction or 

the use of predictive models to estimate and 

compensate for moving elements can significantly 

improve model stability and accuracy [165]. 

 Leveraging additional data sources, such as depth 

sensors, infrared imaging or radar, can provide 

supplementary information that helps the NeRF model 

overcome visual ambiguities caused by poor weather 

conditions or low light. 

Continued research and advanced techniques are necessary 

to further enhance the capability of NeRF to operate 

effectively under diverse environmental conditions: 

 Integrating physics-based models that account for light 

reflection, refraction and absorption can help NeRF 

better understand and simulate how environmental 

conditions affect scene appearance [166]. 

 Employing advanced machine learning techniques such 
as unsupervised and semi-supervised learning can allow 

NeRF to adapt to new or changing conditions without 

needing extensive labeled data for every possible 

scenario. 

 Developing adaptive learning systems that can update 

the NeRF model incrementally as new data becomes 

available can allow the system to adjust to changes in 

the environment continuously. This is particularly 

useful for long-term deployments in dynamic 

environments. 

Handling diverse environmental conditions is a critical 

challenge for the deployment of NeRF in real-world 

applications, especially those involving outdoor scenes or 

other variable settings. By developing more robust and 

adaptable models and integrating additional data sources 

and advanced rendering techniques [167], NeRF can be 

made more resilient to the complexities of real-world 

environments. This will enhance its utility in a broader 

range of applications, from autonomous vehicle navigation 

to virtual reality and remote sensing [168]. 

F. Scalability and Flexibility 

Finally, scalability and flexibility remain significant 

challenges for NeRF applications in space. The current 

NeRF models are designed for relatively small-scale 

environments and often require extensive customization to 

adapt to the vast and complex nature of space scenes. 

Furthermore, updating NeRF models with new data to adapt 

to changing conditions or new tasks is not straightforward 

and typically involves retraining the model from scratch, 

which is not feasible during space missions [169]. 

Scalability and flexibility are crucial for practical 

deployment of NeRF across various applications, especially 

in environments characterized by large-scale scenes or 

rapidly changing conditions. NeRF's initial demonstrations 

have shown promising results in controlled settings; 

however, extending these capabilities to broader, more 

dynamic scenarios presents several challenges. 

 

The scalability and flexibility of NeRF are influenced by 

several factors that affect its deployment in diverse 

environments: 

 NeRF typically operates well within relatively small, 

controlled scenes [170]. Scaling up to larger 

environments such as entire cities or expansive natural 

landscapes requires exponentially more computational 

resources and data, which can be impractical with 

current technology. 

 NeRF models are generally trained on specific scenes. 

Adapting a trained model to new or unseen 

environments without extensive retraining is a 

significant challenge [171], limiting the flexibility of 

the approach. 

 For real-time adaptation, many potential applications of 

NeRF, such as in augmented reality or autonomous 

navigation, require real-time performance. Current 

NeRF implementations struggle with the latency needed 

for on-the-fly adaptations to changing environmental 

conditions or interactive user inputs. 

To address the issues of scalability, several approaches can 

be considered: 
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 Implementing hierarchical and multi-resolution 

techniques [172] can allow NeRF to focus 

computational resources where they are most needed, 

reducing the need to model entire scenes at the highest 

level of detail uniformly. 

 Breaking down large scenes into smaller, more 

manageable segments can make the problem more 

tractable. Each segment can be processed 

independently, potentially in parallel, and then stitched 

together seamlessly. 

 Leveraging cloud computing resources and distributed 

processing frameworks can provide the necessary 

computational power to scale NeRF models to larger 

scenes or more complex simulations. 

Improving the flexibility of NeRF involves making it 

capable of adapting to new environments and conditions 

more readily: 

 Using transfer learning techniques [173, 174] to adapt 

NeRF models trained on one set of data to perform well 

on different but related data can significantly reduce the 

need for retraining from scratch. 

 Developing NeRF models that support incremental 

learning, where the model can infact learn from the new 

data without ever forgetting previously acquired 

information or knowledge, can help the model adapt 

dynamically to changes in the environment. 

 Implementing meta-learning approaches, where NeRF 

models learn how to learn new scenes quickly, can 

facilitate rapid adaptation to new environments with 

minimal data. 

Looking forward, advancing NeRF's scalability and 

flexibility will involve both technical innovations and new 

conceptual approaches: 

 Exploring more efficient ways to represent and process 

data could reduce the computational load. Sparse 

representations, quantization and pruning could be key 

areas for research. 

 Developing new neural network architectures that are 

inherently more scalable and adaptable, perhaps 

drawing on recent advances in fields like neural 

architecture search (NAS) [175] and generative 

adversarial networks (GANs) [176], could open new 

avenues for NeRF applications. 

 For applications that involve data from multiple sources 

or locations, employing collaborative and federated 

learning models could allow different instances of 

NeRF to learn from each other, improving overall 

performance and adaptability. 

 Enhancing the scalability and flexibility of NeRF is 

critical for its application in real-world scenarios, from 

large-scale environmental modeling [177] to dynamic 

interactive systems. Addressing the various challenges 

through innovative solutions in data processing, model 

training and system architecture will be essential for 

unlocking the full true potential of NeRF technology. 

X. FUTURE DIRECTIONS 

A. Real-Time Rendering and On-Board Processing 

Future research should focus on optimizing NeRF for real- 

time rendering and on-board processing in space 

applications. Real-time rendering is essential for 

autonomous navigation and decision-making on spacecraft, 

rovers and satellites. This requires advancements in 

hardware, such as space-grade GPUs and software 

optimizations to enable efficient processing in resource- 

constrained environments. 

B. Multi-Modal Integration 

Integrating NeRF with other space technologies such as 

LIDAR, synthetic aperture radar (SAR) and deep 

reinforcement learning could significantly improve its 

applicability in space. Combining these technologies could 

lead to more robust models capable of handling the 

complexities of space environments. 

C. Improved Space Debris Detection and Collision 

Avoidance 

Given the growing concern over space debris, NeRF could 

play a key role in improving debris detection, collision 

prediction and mitigation strategies. Future work could 

focus on integrating NeRF with active debris removal 

systems and autonomous space vehicles to enhance space 

traffic management. 

D. Accelerating NeRF Computations 

A key area of ongoing research is the acceleration of NeRF 

computations to make them work for real time applications, 

particularly in space missions where rapid decision-making 

is critical. Innovations in hardware such as the development 

of the specialized processors and GPUs tailored for deep 

learning tasks, offer promising solutions. Additionally, 

algorithmic improvements, including pruning and 

quantization techniques, are being explored to reduce the 

model complexity without significantly compromising the 

quality of the reconstructions. These advancements could 

significantly decrease the computational load, enabling the 

deployment of NeRF on spacecraft for tasks such as 

navigation and obstacle avoidance. 

E. Enhancing Data Efficiency 

To address the high data requirements of NeRF, researchers 

are exploring methods to enhance its efficiency with limited 

datasets. Techniques such as transfer learning, where a 

model trained on terrestrial datasets is adapted for space 

environments and few-shot learning which aims to achieve 

high performance with a minimal number of training 

images, are particularly promising. These approaches could 

reduce the dependency on extensive training data, making 

NeRF more adaptable and easier to deploy in space missions 

where data collection is challenging. 

F. Robustness to Environmental Variability 

Improving NeRF’s robustness to environmental variability 

is crucial for its success in space applications. Ongoing 

research is focusing on developing models that can handle 

dynamic changes in the environment, such as moving 

objects or fluctuating lighting conditions. This includes 

integrating NeRF with other computational techniques such 

as dynamic scene reconstruction algorithms as well as 
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machine learning models that specialize in predicting 

environmental changes. These hybrid models aim to 

leverage the strengths of NeRF in rendering high-fidelity 3D 

environments while maintaining flexibility in dynamic 

conditions. 

 

G. Scalability and Flexibility 

Finally, enhancing the scalability and flexibility of NeRF to 

handle large-scale and complex environments, such as those 

encountered in space, is a critical area of research. This 

includes developing modular NeRF systems that can be 

updated incrementally as new data becomes available, 

without the need for retraining from scratch. Additionally, 

efforts are being made to create more generalized NeRF 

models that can be easily adapted to various space 

applications, from satellite imagery analysis to planetary 

exploration without extensive customization for each 

specific application. 

XI. CONCLUSION 

Neural Radiance Fields holds immense potential for space 

applications by offering realistic 3D reconstructions from 

just sparse 2D data. Despite challenges like the 

computational complexity, data acquisition and model 

generalization, NeRF is poised to make significant 

contributions to satellite imaging, planetary exploration, 

space debris monitoring and astronomy. As advancements in 

optimization techniques and hardware continue, NeRF will 

likely play a central role in the future of space exploration 

and Earth observation. This review has comprehensively 

explored the integration of Neural Radiance Fields (NeRF) 

in space applications, highlighting its transformative 

potential across various domains such as satellite imagery, 

spacecraft navigation, mission simulation and planetary 

exploration. As evidenced by the discussed case studies, 

NeRF offers significant improvements over traditional 

methods, particularly in terms of the photorealism and 

accuracy of 3D reconstructions from limited 2D data sets. 

These capabilities are crucial for enhancing the quality and 

safety of space missions, providing detailed environmental 

models and supporting complex navigation and operation 

tasks in extraterrestrial settings. Despite its promising 

applications, NeRF faces substantial challenges, primarily 

due to its computational intensity and high data 

requirements. The current limitations regarding real-time 

processing and adaptation to the dynamic space 

environment pose significant hurdles for operational 

deployment. Moreover, the scalability issues related to 

handling large-scale and complex scenes typical in space 

exploration need to be addressed to fully harness NeRF's 

capabilities in off-Earth environments. 

 

Looking forward, the future of NeRF in space applications 

lies in addressing these challenges through technological 

advancements in computational efficiency and data 

processing. Innovations in machine learning, such as the 

development of more robust models capable of handling 

environmental variability and reducing the dependency on 

extensive training data, will be key. Additionally, the advent 

of more powerful onboard computing platforms and 

advanced data compression techniques could enable the 

practical deployment of NeRF for real-time applications in 

space. 

In conclusion, while Neural Radiance Fields are still in the 

early stages of being adapted for space technology, their 

ability to transform and revolutionize how we visualize, 

navigate and interact with space environments is undeniable. 

Continued research and development efforts are crucial to 

overcoming the existing barriers and unleashing the 

complete potential of NeRF in enhancing the capabilities of 

future space missions. 
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