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Optimization of feature extraction for the prediction of macromolecular interactions : 1 

OTE-24 Approach 2 

 3 

 4 

1. Abstract 5 

 6 

In the field of molecular biology, where every interaction between macromolecules is of 7 

crucial importance, analyzing the structural features of biological macromolecules remains a 8 

major challenge. Traditional feature extraction techniques from protein sequences often 9 

prove to be inefficient. The reliability of the extracted information is sometimes questionable 10 

due to the complexity and volume of the data involved. The volume and complexity of this 11 

biological data compel researchers in the field to turn to computational feature extraction 12 

techniques. Over the years, several computational methods have been proposed to 13 

accurately extract relevant and representative information from macromolecule sequences 14 

within these large datasets. However, these extraction techniques are sometimes 15 

impractical, and the relevance of the extracted information may be limited. In this study, we 16 

propose a large-scale feature extraction method based on the correlation analysis of two 17 

physicochemical properties of amino acids: hydrophobicity and hydrophilicity, as well as the 18 

correlation between amino acids. The results of this research, evaluated using databases 19 

commonly utilized in previous studies, show an accuracy improvement of over 2.58% 20 

compared to existing methods. 21 

Keywords : Molecular biology, Feature extraction, Physicochemical properties of amino 22 

acids, Hydrophobicity and hydrophilicity, Macromolecular interaction prediction 23 

2. Introduction 24 

 25 

In the drug development process, the study of interactions between biological 26 

macromolecules is crucial. This step is of paramount importance in the fields of biology, 27 

bioinformatics, and medical research. Biological macromolecules, such as proteins, nucleic 28 

acids, lipids, and polysaccharides, are the fundamental components of living organisms. Their 29 

interactions, whether at the cellular or macromolecular level, are responsible for regulating 30 

various biological processes, transmitting genetic information, and modulating immune 31 

responses, among other key functions [1]. Several high-throughput chemometric techniques, 32 

such as protein microarrays [2], Nuclear Magnetic Resonance (NMR) [3],[4], Biacore 33 

(Surface Plasmon Resonance) SPR [5], [6], and Isothermal Titration Calorimetry (ITC) [7], 34 

have been developed to detect these interactions. While these techniques have revealed 35 

numerous unknown interactions, they are often time-consuming and expensive. These 36 

constraints, combined with the volume and complexity of experimental data, have driven the 37 

development of computational models to predict large-scale macromolecular interactions. 38 

Since the 1970s and 1980s, when computational techniques were introduced for detecting 39 

interactions between biological macromolecules, various approaches have been proposed to 40 
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predict macromolecule-macromolecule interactions (MMI) using datasets available in 41 

biological databases. Several techniques, such as gene fusion [8],[9],[10], Archer FusionPlex 42 

panels, QIAseq RNAscan, and Oncomine Focus [11], 3D structural information [12], and 43 

gene ontology and annotation [13] ,[14], have contributed to this goal. 44 

However, these approaches are not universal due to their high computational complexity. 45 

Their precision and reliability heavily depend on the information previously collected from 46 

the datasets used during implementation. The practical implementation of these approaches, 47 

as well as the practical information on gene annotation and ontology, is often incomplete for 48 

several reasons. First, although the Gene Ontology database is widely used, it is not 49 

exhaustive, and many annotations are incorrect or missing. This limits a comprehensive 50 

understanding of gene functions and gene products in different biological contexts [15]. 51 

Furthermore, the 3D structure of many proteins remains unknown. A significant portion of 52 

proteins has yet to be resolved using techniques such as X-ray crystallography or cryo-53 

electron microscopy, despite considerable efforts to determine these structures [16]. Finally, 54 

macromolecule-macromolecule interactions (MMI) in many species are often rare and poorly 55 

documented. This is partly due to the limitations of current experimental techniques, which 56 

are costly and time-consuming, thereby restricting the amount of available data on MMIs [17]. 57 

Unlike amino acid data, which are widely available in biological databases, most of the 58 

proposed approaches in the past use data extracted from sequences to study and predict 59 

macromolecule interactions. 60 

Several sequence-based approaches for macromolecule analysis have been proposed. For 61 

example, the Biological Jaccard Index [16] measures the similarity between macromolecule 62 

sequences. This method identifies k-mers (subsequences of length k) in each macromolecule 63 

and calculates the Jaccard similarity between these sets. However, this method is sensitive to 64 

variations (it performs less well for low sequence similarity) and does not account for 65 

structural information, which may limit its accuracy for certain complex interactions. Another 66 

approach is the ISLAND method, which uses various feature representations of 67 

macromolecular sequences, including amino acid composition (AAC), the average features of 68 

the BLOSUM-62 substitution matrix, Position Specific Scoring Matrix (PSSM) features, and 69 

descriptors derived from the biophysical properties of amino acids to model evolutionary 70 

relationships and physicochemical properties of macromolecules [18]. However, the diversity 71 

of features used in this method increases computational complexity, and its accuracy depends 72 

heavily on the quality of the data. 73 

Another approach, the Stacked Autoencoder method, transforms macromolecular sequences 74 

into numerical features using methods such as autocovariance and conjoint triad, then trains 75 

an autoencoder to learn compact and informative representations of the sequences [19]. In 76 

addition to sharing the same data dependency limitation as the ISLAND method, this 77 

approach may suffer from overfitting. 78 

N-gram-based approaches are also used for the analysis and prediction of interactions. These 79 

approaches focus on analyzing macromolecule sequences as fixed-length (n-gram) or 80 

variable-length segments [20]. The approach proposed by Kopoin et al. for predicting protein-81 

protein interactions uses bigrams, where n = 2. It examines consecutive pairs of amino acids 82 

in the sequences. The physicochemical properties of hydrophobicity and hydrophilicity of 83 
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amino acids are used to create these bigrams. This method is also combined with the Position 84 

Specific Scoring Matrix (PSSM), which provides information on the probability of amino acid 85 

substitutions according to their position. This allows for the generation of an enriched matrix 86 

that captures both the relationships between amino acids and contextual information. These 87 

features are then used to train an artificial neural network, which improves the accuracy of 88 

protein-protein interaction prediction. Although n-gram-based models effectively capture 89 

local patterns, they often experience contextual information loss. These approaches are also 90 

sensitive to the choice of n, as their performance varies depending on the size of the selected 91 

n-grams. 92 

In this study, we propose an approach that combines the amino acid correlation calculation 93 

method proposed by Chou [21] with the bigram method proposed by Kopoin et al. in 2020 94 

[20] to extract features from macromolecular sequences. In our research on macromolecule-95 

macromolecule interactions, we employ the Random Forest algorithm [22], [23]  to effectively 96 

learn the representations of macromolecule pairs. To evaluate the effectiveness of our model, 97 

we applied it to a large dataset of macromolecule-macromolecule interactions from the work 98 

of Vazquez et al. [24]. 99 

3. Materials and Methods 100 

3.1  General Overview 101 

 102 

This study relies on a dataset of macromolecular interactions from the Human Protein 103 

Reference Database (HPRD), as described in the study by [25]. This reference database, 104 

widely used by many researchers for predicting interactions between macromolecules, is 105 

publicly accessible. 106 

The developed approach focuses on extracting features from macromolecular sequences, 107 

enabling the extraction of the physicochemical properties of amino acids. Random forests, 108 

known for their robustness and efficiency in classification and pattern recognition, were used 109 

to predict macromolecular interactions [26]. The effectiveness of this classification method 110 

guided our choice of model, allowing us to achieve promising results [26], demonstrating a 111 

significant improvement in the predictive accuracy of macromolecular interactions. A detailed 112 

illustration of the process is presented in Figure 1. 113 

3.2  Dataset 114 

 115 

In this study, we focus on implementing a model based on macromolecular sequences to 116 

predict macromolecule-macromolecule interactions (MMI). The dataset of macromolecular 117 

interactions was derived from the Human Protein Reference Database (HPRD) [27]. To ensure 118 

data quality, duplicates were removed from the carefully selected positive data. For the 119 

construction of negative pairs, which represent non-interacting macromolecule pairs, the 120 

authors [15]  paired macromolecules located in distinct subcellular localizations, using the 121 

observable macromolecular localization information available in version 57.3 of the Swiss-122 

Prot database (uniprot.org). In their approach, they excluded shorter sequences (fewer than 50 123 

amino acids) as well as those with multiple localizations, ensuring a high level of 124 

representativeness. 125 
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Our dataset includes a total of 36,630 positive interactions involving 9,630 different human 126 

macromolecules. To balance the dataset, we also selected 36,480 negative interaction pairs 127 

derived from 1,773 macromolecules [28], [29]. We also use datasets from Swiss-Prot [30], the 128 

Protein Data Bank (PDB) [31], BioGrid, and STRING [32] to compare the effectiveness of 129 

our method with other recent approaches in the field of MMI. 130 

3.3  Random forest   131 

Random Forest is a supervised learning algorithm that works by creating a collection of 132 

decision trees, where each tree is built from a random sample of the training data. This 133 

technique, known as bagging (Bootstrap Aggregating), allows for the creation of subsets of 134 

data from the original dataset 𝑿, where each subset 𝑺𝒊  is a randomly drawn sample with 135 

replacement of size 𝑁. 136 

𝑺𝒊 = 𝑺𝒂𝒎𝒑𝒍𝒆 𝑿, 𝑵                            [𝟏] 

Each tree is then trained on a distinct sample, which enhances the robustness and accuracy of 137 

the model . In classification, each tree produces a prediction, and the final result is determined 138 

by a majority vote from the trees, as represented by: 139 

𝓗 = 𝒎𝒐𝒅𝒆(𝒉𝟏,𝒉𝟐, 𝒉𝟑, …… , 𝒉𝑻)         [𝟐] 

where 𝒉𝒕 is the prediction of the t-th tree, and 𝑇 is the total number of trees. In regression 140 

problems, the final prediction is the average of the tree predictions: 141 

𝓗 =
𝟏

𝑻
 𝒉𝒕 

𝑻

𝒕=𝟏
                          [𝟑] 

One of the key concepts in Random Forest is the use of measures such as Gini impurity or 142 

entropy to determine the most appropriate splits in the trees. 143 

Gini Impurity: In binary classification, Gini impurity 𝑮 measures the probability that an 144 

observation will be misclassified if it were randomly assigned according to the class 145 

distribution in the node. It is calculated using the formula : 146 

𝑮 = 𝟏 −  𝑷𝒊
𝟐

𝑪

𝒊=𝟏
                    [𝟒] 

where 𝑷𝒊  is the proportion of instances belonging to class ii, and 𝑪 is the number of possible 147 

different classes that the target variable can take. 148 

Entropy (Alternative to Gini Impurity): Entropy is another measure of node homogeneity, 149 

often used with information gain. It is defined as : 150 

Å(𝑺) = − 𝑷𝒊 𝒍𝒐𝒈𝟐 𝑷𝒊                 [𝟓]
𝑪

𝒊=𝟏
 

These measures allow each tree to choose the features that provide the best splits by 151 

minimizing impurity or maximizing information. 152 
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 153 

Resistance to Overfitting and Feature Selection 154 

 155 

Random Forest is also resistant to overfitting, particularly when the number of trees is 156 

sufficiently large. It combines multiple weak models to create a more powerful one. 157 

Additionally, Random Forest efficiently handles datasets with a large number of features. 158 

Each tree in the forest uses a subset of these features, randomly selected at each node, which 159 

increases diversity between the trees. The importance of features can be measured by the 160 

average reduction in impurity (Gini or Entropy) for each feature 𝑿𝒋across all trees, according 161 

to the following formula:  162 

𝑰(𝑿𝒋) =
𝟏

𝑻
 ∆𝑮𝒕 (𝑿𝒋)                [𝟔]

𝑻

𝒊=𝟏
 

where ∆𝑮𝒕 (𝑿𝒋) is the impurity reduction for tree tt when the feature 𝑿𝒋 is used. 163 

Key Hyperparameters of Random Forest: Random Forest has several hyperparameters that 164 

directly influence its performance. These parameters include: 165 

 The number of trees (n_estimators) : This is the total number of trees in the forest. A 166 

higher number of trees tends to improve overall accuracy, although it also increases 167 

computation time. The relationship between the number of trees and model accuracy 168 

can be approximated by: 169 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚𝑹𝑭 ≈ 𝒇 𝒏𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒐𝒓𝒔                     [𝟕] 

 Maximum depth (max_depth): This controls the depth of each tree. A greater depth 170 

allows for capturing complex relationships in the data but may lead to overfitting. 171 

 Number of features selected at each split (max_features): This parameter 172 

determines how many features are available for each tree when making decisions. A 173 

restricted selection promotes diversity among the trees, thus reducing the risk of 174 

overfitting. 175 

4. Proposed Feature Extraction Approach 176 

This section explains our feature extraction approach, named OTE-24. This approach is 177 

inspired by the Bi-gram method proposed by Kopoin et al. [20] and the method for calculating 178 

amino acid correlation features by Chou in the APAAC method [21]. The computational 179 

models proposed in the literature require learning relevant and representative features of 180 

sequence pairs from the training dataset in order to perform prediction tasks on the test 181 

dataset. 182 

Kopoin et al.'s approach extracts protein features using physicochemical properties in the 183 

form of bigrams. It involves calculating the physicochemical distance values for each amino 184 

acid sequence in the dataset, forming an 𝐿 × 20 matrix represented by C, where L is the 185 
length of the amino acid sequence, and creating a bigram feature vector from the data matrix 186 

for training. It uses the ANN classifier to predict protein interactions. Chou's Amphiphilic 187 
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Pseudo Amino Acid Composition (APAAC) method is an improvement over the Pseudo 188 

Amino Acid Composition (PseAAC) method, designed to capture both hydrophobic and 189 

hydrophilic features of amino acids in protein sequences [33]. This method accounts for both 190 

the order of amino acids and the physicochemical properties of proteins, which is crucial for 191 

applications such as protein function prediction or their interaction with other 192 

macromolecules. APAAC is calculated using two key properties of amino acids: 193 

hydrophobicity and hydrophilicity. These values are integrated into a correlation function, 194 

which measures the similarity between two amino acids, and are then used to generate 195 

additional descriptors related to the amino acid sequence order [34]. 196 

4.1  Description of Our Approach 197 

Our approach uses the bigram method and the pseudo-amino acid composition with 198 

autocorrelation (APAAC) method to generate feature vectors from macromolecular 199 

sequences, thereby facilitating the prediction of interactions between biological 200 

macromolecules. First, bigrams are calculated to extract local interactions between 201 

consecutive residues based on their physicochemical properties, such as hydrophobicity and 202 

hydrophilicity, resulting in a 400-value vector. Then, the APAAC amino acid correlation 203 

calculation method is applied to integrate global correlations on a larger scale, adding 2×2×λ 204 

additional values to capture long-distance interactions. λ represents the interaction length, 205 

defining the range of interactions between amino acid residues. This process results in a final 206 

vector of 800 + 2×2×λ values for each sequence, providing a rich and detailed representation 207 

of the structural and functional features of macromolecules. 208 

Our general formula is as follows: 209 

𝐴𝑡 =

 
 
 

 
  𝐶𝑘 ,𝑖 .𝐶𝑘+1;𝑗

𝐿−1

𝑖=1
 , 𝑤𝑖𝑡ℎ 1 ≤ 𝑖 ≤ 20 𝑎𝑛𝑑 1 ≤ 𝑗 ≤ 20

𝑁(𝑡)

1 +  𝜑 𝑓𝑡
𝐿
𝑡=1

  ,    𝑤𝑖𝑡ℎ 1 ≤ 𝑡 ≤ 𝐿

  [8]  

Where 𝐴𝛼    is the numerical value or feature of the amino acid A at position α in the 210 

macromolecular sequence, 𝑁 𝑡  is the number of occurrences of amino acid t in the sequence. 211 

L is the length of the macromolecule sequence. 𝜑 is the weight parameter that adjusts the 212 

influence of the physicochemical properties of the amino acids relative to their base 213 

frequency, thus balancing the contribution of residue interactions and the simple composition 214 

of the macromolecular sequence. 𝑓𝑙    is the correlation function based on the physicochemical 215 

properties of the amino acids, calculated as follows: 216 

𝑓𝑙 =
1

𝑁 − 𝑙
 𝐻1 𝑗 . 𝐻1 𝑗 + 𝑙 + 𝐻2 𝑗 . 𝐻2 𝑗 + 𝑙                 [9]

𝑁−𝑙

𝑗=1
 

𝑁 is the length of the macromolecule sequence, i.e., the total number of amino acid residues. 217 

𝐻1  and 𝐻2   are the values of hydrophobicity and hydrophilicity properties, respectively. They 218 

are used to represent the similarity or difference between amino acids at two positions 𝑗 and 219 

𝑗 + 𝑙. l is the offset between two indices in the macromolecule sequence. If 𝑙 = 1, we study 220 

interactions between adjacent amino acid residues, and for 𝑙 > 1, we consider interactions 221 

between residues separated by a specific number of positions in the sequence, allowing us to 222 

capture long-range interactions. 223 



 

 7 [Date] 

 

Here, 𝐶𝑖,𝑗 =
1

𝑖
𝐷 𝑅𝑖 , 𝑅𝑗    𝑤𝑖𝑡ℎ  𝑖 = 1 …… 20  𝑎𝑛𝑑  𝑗 = 1 …… 20       [10]  .  224 

The 𝐶𝑖 ,𝑗  represent the physicochemical distance values between amino acids in the sequence. 225 

Specifically, 𝐶𝑘 ,𝑖  is the physicochemical distance value at position k for amino acid i. 𝐶𝑘+1,𝑗  is 226 

the physicochemical distance value at position k+1 for amino acid j. These values are used to 227 

calculate the transition frequency between amino acids i and j in the sequence. L is the length 228 

of the macromolecule sequence. 
1

i
 is the weighting function for rank i. 229 

𝐷 𝑅𝑖 , 𝑅𝑗  =
1

2
    ℎ1 𝑅𝑗  − ℎ1 𝑅𝑖  

2
+  ℎ2 𝑅𝑗  − ℎ2 𝑅𝑖  

2
           [11] 

𝑅𝑖and 𝑅𝑗 are the amino acid residues of rank i and j, respectively. Then, ℎ1 𝑅𝑗  and ℎ1 𝑅𝑖 are 230 

the respective numerical values of the hydrophobicity of residues 𝑅𝑖  and 𝑅𝑗 , and ℎ2 𝑅𝑗   and 231 

ℎ2 𝑅𝑖 are the values of hydrophilicity for 𝑅𝑖and 𝑅𝑗 . These values are calculated using the 232 

following formulas: 233 

 
  
 

  
 ℎ1 𝑅𝑖 =

𝐻1
0 𝑅𝑖 −  𝐻1

0 ℝ𝑘 /2020
𝑘=1

  [𝐻1
0 𝑅𝑖 −  𝐻1

0 ℝ𝑘 /2020
𝑘=1 ]2/2020

𝑡=1

 

  ℎ2 𝑅𝑖 =
𝐻2

0 𝑅𝑖 −  𝐻2
0 ℝ𝑘 /2020

𝑘=1

  [𝐻2
0 𝑅𝑖 −  𝐻2

0 ℝ𝑘 /2020
𝑘=1 ]2/2020

𝑡=1

 

  [12] 

The ℝ𝒌  values range from 1 to 20 and represent the 20 natural amino acids according to the 234 

alphabetical order of their one-letter codes: A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, 235 

W, and Y. 236 

  237 
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 238 

4.2  The architecture (flowchart) 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

Figure 1 : Algorithmic diagram of the OTE-24 approach 259 

In our study, we undertook a methodical approach to extract meaningful features from amino 260 

acid sequences. First, for each sequence, we calculated the physicochemical distance values, 261 

which allowed us to construct an L×20 matrix, where L is the length of the sequence. Next, 262 

we determined the pseudo-amino acid components specific to each amino acid, which are 263 

essential for capturing important information about the sequence. 264 

At the same time, we generated a bigram feature vector from the data of the matrix C. These 265 

bigram vectors capture the local relationships between amino acids, taking into account 266 

successive pairs, enriching the sequence representation. These two vectors (the APAAC 267 

component vector and the bigram vector) were then concatenated to form a global vector that 268 

captures both the physicochemical characteristics and sequential relationships. 269 

Finally, this global vector was fed into a classifier based on the Random Forest algorithm for 270 

the learning and prediction phases. 271 
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4.3  The evaluation metrics of the model. 272 

We use widely recognized measurement criteria in the literature [35], [36] to evaluate the 273 

performance of our proposed approach and compare it with other existing models. These 274 

criteria include accuracy (Acc), precision (Pre), sensitivity (Sen), negative predictive value 275 

(NPV), F1 score (F1), and Matthews correlation coefficient (MCC). Accuracy (Acc) assesses 276 

the overall proportion of correct predictions made by the model, including both correctly 277 

predicted positives and negatives. Precision (Pre) measures the proportion of positive 278 

predictions made by the model that are actually correct, indicating its ability to limit false 279 

positives. Sensitivity (Sen), also called recall, evaluates the proportion of true positives 280 

detected by the model among all the actual true positives, which is crucial for identifying all 281 

real interactions. Negative predictive value (NPV) quantifies the proportion of true negatives 282 

among all negative predictions, ensuring that the model minimizes false negatives. The F1 283 

score (F1) is a harmonic mean of precision and sensitivity, offering a balance between the 284 

ability to detect true positives and avoid false positives. The Matthews correlation coefficient 285 

(MCC) evaluates the correlation between the model's predictions and the actual observations, 286 

taking into account all cells of the confusion matrix to provide a global assessment of the 287 

model’s performance. These metrics allow us to assess the model's ability to effectively 288 

discriminate between interactions and non-interactions between biological macromolecules, 289 

which is crucial for the reliability and practical usefulness of the model in biomedical research 290 

[27]. The AUROC and AUPRC measures are essential for evaluating models predicting 291 

interactions between biological macromolecules. AUROC assesses the model's ability to 292 

distinguish true interactions from non-interactions by integrating the ROC curve, which 293 

represents sensitivity versus 1 - specificity across all classification thresholds. A high AUROC 294 

score near 1 indicates strong discrimination capability. In contrast, AUPRC focuses on 295 

precision and recall across different classification thresholds, with a high value indicating 296 

good precision and high recall, both of which are essential for applications requiring accurate 297 

detection of biological interactions. These metrics provide a comprehensive evaluation of the 298 

model’s performance by integrating both its discriminative ability and its precision across the 299 

full range of decision thresholds for interactive and non-interactive macromolecules. The 300 

formulas for calculating these measures are: 301 

 Accuracy (Acc) 302 

     𝑨𝑨𝑪 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
         [13] 303 

 304 

 Precision (Pre) 305 

 𝑷𝒓𝒆 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                [14] 306 

 Sensitivity (Sen) (Recall) 307 

 𝑺𝒆𝒏 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                 [15] 308 

 Negative Predictive Value (NPV) 309 

 𝑵𝑷𝑽 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
                 [16] 310 

 Score F1 (F1) 311 

 𝑭𝟏 = 2.
𝑃𝑟𝑒  .∗ 𝑆𝑒𝑛

𝑃𝑟𝑒  +  𝑆𝑒𝑛
         [17] 312 

 Specificity (Spe) 313 
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 𝑆𝑝𝑒 =
𝑇𝑁

𝑻𝑵+𝑭𝑷
      [18] 314 

 Matthews Correlation Coefficient (MCC) 315 

 𝑴𝑪𝑪 =
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

  𝑻𝑷+𝑭𝑷 ∗ 𝑻𝑷+𝑭𝑵 ∗ 𝑻𝑵+𝑭𝑷 ∗(𝑻𝑵+𝑭𝑵)
      [19] 316 

 Area Under the ROC Curve  (AUC-ROC) 317 

  𝑨𝑼𝑪𝑹𝑶𝑪 =  𝑆𝑒𝑛 𝐹𝑅𝑃−1 𝑡  𝑑(1 − 𝑆𝑝𝑒 𝐹𝑅𝑃−1 𝑡  
1

0
      [20] 318 

 319 

Where 𝐹𝑅𝑃−1 𝑡  is the inverse function of the false positive rate for a 320 

decision threshold t. 321 

 Area under the precision-recall curve (AUPRC) 322 

 𝑨𝑼𝑷𝑹𝑪 =  𝑃𝑟𝑒  𝑡  𝑑(𝑅𝑒𝑐𝑎𝑙𝑙)
1

0
      [21] 323 

True Positives (TP): Represent the interactions between macromolecules that we correctly 324 

predicted. For example, when we predict that an interaction occurs between two proteins, and 325 

this prediction is confirmed by experimental data, it constitutes a true positive. 326 

True Negatives (TN): Correspond to pairs of macromolecules for which we correctly 327 

predicted that no interaction occurs. For example, if we predict that a specific enzyme does 328 

not interact with a particular substrate, and this is confirmed by the data, it is counted as a true 329 

negative. 330 

False Positives (FP): Are situations where we incorrectly predicted that an interaction 331 

occurred between two macromolecules, while in reality, it does not occur. For example, if our 332 

model suggests that protein A interacts with protein B, but this interaction is not observed 333 

experimentally, it constitutes a false positive. 334 

False Negatives (FN): Occur when our model fails to detect an interaction that actually exists 335 

between two macromolecules. For example, if two macromolecules do interact but our model 336 

does not predict this interaction, it is counted as a false negative. 337 

By analyzing these categories (TP, TN, FP, FN), we evaluate the overall performance of our 338 

prediction models. This evaluation is crucial for refining our approaches and improving the 339 

accuracy of our results in predicting interactions between biological macromolecules. 340 

5. Results 341 

 342 

In this section, we present the results obtained and compare them with those reported by other 343 

researchers using different methods. For this project, we developed a method based on 344 

sequence analysis to predict interactions between biological macromolecules. Unlike some 345 

previous studies, we used Python version 3.11.6 with JupyterLab in the Anaconda 346 

environment version 2.5.4, which allowed us to benefit from improved dependency 347 

management and a powerful interactive development environment. 348 

5.1  Predictive performance of the proposed approach 349 

 350 

In the predictive part, we used the same principle of splitting our datasets to train the chosen 351 

model with our extracted data. These features, in the form of numerical vectors, are used as 352 

input for our OTE-24 model. We performed 5-fold cross-validation on our reference dataset, 353 

which allowed us to train 3 different models. The results obtained are presented in Figure 2. 354 
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Model 2 showed the best performance with a precision of 99.29%, an accuracy of 99.52%, a 355 

recall of 99.75%, an F1-score of 99.52%, and an area under the ROC curve (ROC AUC) of 356 

99.99%. On average, the performances are 98.83% for precision (PRE), 99.4721% for 357 

accuracy (ACC), 98.83% for recall (SEN), 98.67% for the F1-score, and 83.67% for the ROC 358 

AUC. The high values of these different metrics, all above 98% except for the ROC AUC, 359 

indicate excellent predictive performance. 360 

 361 

Figure 2 : Performance comparison of the three models trained on the HPRD database. 362 

5.2  Comparison of our approach with other techniques 363 

 364 

We compared our method with several other commonly used feature extraction techniques 365 

from the literature, applied to the same human dataset. These techniques include the bigram 366 

method [20], DWKNN (Ensemble) [37], BOW-GBDT [38], and DTI-BERT [39]. The 367 

comparison is based on various evaluation metrics. Figure 3 highlights these different 368 

comparison metrics between our approach and the approaches from the literature. 369 
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 370 

Figure 3: Comparison of the OTE-24 model with models from the literature 371 

We compared our method with several other commonly used feature extraction techniques 372 

found in the literature, applied to the same human dataset. These techniques include the bi-373 

gram method [20], DWKNN (Ensemble) [35], BOW-GBDT [36], and DTI-BERT [37]. The 374 

comparison is based on various performance metrics. Figure 3 highlights the differences in 375 

these metrics between our approach and those from the literature. 376 

This comparison revealed an accuracy (ACC) of 96.62%, 91.90%, 88.50%, and 85.10% for 377 

the bi-gram, DTI-BERT, BOW-GBDT, and DWKNN (Ensemble) methods, respectively, 378 

compared to 99.52% for our approach (OTE-24). This represents an improvement of 2.90%, 379 

7.62%, 11.02%, and 14.42%, respectively. 380 

Regarding precision (PRE), the rates are 95.38%, 92%, 93.10%, and 87.10% for the bi-gram, 381 

DTI-BERT, BOW-GBDT, and DWKNN (Ensemble) methods, respectively, compared to 382 

99.28% for our approach. This corresponds to an improvement of 3.90%, 7.28%, 6.18%, and 383 

12.18%, respectively. 384 

For sensitivity (SEN), we observed rates of 97.81%, 92.20%, 79.80%, and 81.10% for the bi-385 

gram, DTI-BERT, BOW-GBDT, and DWKNN (Ensemble) methods, respectively, compared 386 

to 99.75% for our approach. This results in an improvement of 1.94%, 7.55%, 19.95%, and 387 

18.65%, respectively. 388 

As for the Matthews Correlation Coefficient (MCC), the rates are 91.77%, 84%, 74%, and 389 

67% for the bi-gram, DTI-BERT, BOW-GBDT, and DWKNN (Ensemble) methods, 390 

respectively, compared to 97.42% for our approach. This represents an improvement of 391 

5.65%, 13.42%, 23.42%, and 30.42%, respectively. 392 

Our analysis shows that our technique surpasses the bi-gram method by at least 1.94%, 393 

DWKNN (Ensemble) by 12.18%, BOW-GBDT by 6.18%, and the DTI-BERT method by 394 

7.28% on all the studied metrics. 395 
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In the study of macromolecular interaction prediction, authors commonly use classification 396 

algorithms such as Support Vector Machine (SVM) [20], Random Forest (RF) [38], and K-397 

Nearest Neighbors (KNN). In our case, we used the Random Forest algorithm and determined 398 

the hyperparameters using the grid search method. The optimal hyperparameters obtained are: 399 

Bootstrap: True, max_depth: None, min_samples_leaf: 1, min_samples_split: 5, 400 

n_estimators: 100.  401 

6. Discussion 402 

The results obtained in our study reveal better performance of our method for predicting 403 

interactions between biological macromolecules. Through five-fold cross-validation, we 404 

trained three distinct models, and the performances achieved, particularly for model 2, 405 

demonstrate the efficiency of our approach. With a precision (PRE) of 99.29%, an accuracy 406 

(ACC) of 99.52%, a recall (SEN) of 99.75%, an F1-score of 99.52%, and an area under the 407 

ROC curve (ROC AUC) of 99.99%, our method significantly outperforms other techniques 408 

compared in the literature. On average, the observed performances, with values of 98.83% for 409 

precision, 99.4721% for accuracy, 98.83% for recall, 98.67% for F1-score, and 83.67% for 410 

ROC AUC, confirm the robustness and effectiveness of our approach. 411 

A comparison with commonly used feature extraction techniques in the literature, such as the 412 

bi-gram method, DTI-BERT, BOW-GBDT, and DWKNN (Ensemble), highlighted the 413 

superiority of our method. For instance, our approach achieves an accuracy rate of 99.52%, 414 

surpassing the bi-gram, DTI-BERT, BOW-GBDT, and DWKNN (Ensemble) methods by 415 

2.90%, 7.62%, 11.02%, and 14.42%, respectively. Similarly, for precision, our method 416 

outperforms the other techniques by 3.90% to 12.18%. The Matthews Correlation Coefficient 417 

(MCC) also shows an improvement ranging from 5.65% to 30.42%, depending on the method 418 

compared. These results not only confirm the efficiency of our approach but also its ability to 419 

better capture the complex interactions between biological macromolecules. 420 

One of the main strengths of our approach lies in the optimized use of Random Forest, 421 

combined with a particularly effective feature extraction method. Our feature extraction 422 

method appears to better capture the relevant information from amino acid sequences 423 

compared to other methods. Unlike models like DTI-BERT, which may require larger data 424 

volumes for effective learning, our method seems more suitable even for moderately sized 425 

datasets. The choice of Random Forest proved to be wise due to its ability to handle complex 426 

datasets with nonlinear relationships. Moreover, the optimization of hyperparameters through 427 

the grid search method allowed us to maximize the model's performance, making our method 428 

not only precise but also robust and generalizable to other datasets. 429 

Another key advantage of our method is its flexibility. Unlike methods like DTI-BERT, which 430 

require substantial data volumes for optimal learning, our approach performs well even with 431 

smaller datasets. This feature is particularly valuable in the context of predicting interactions 432 

between biological macromolecules, where data can be limited. 433 

Although our method shows exceptional overall performance, certain limitations deserve to 434 

be discussed. The average value of the ROC AUC, although respectable at 83.67%, is lower 435 

than the other metrics. This could suggest sensitivity to false positives or false negatives, an 436 

aspect that could be improved in future work. 437 
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Furthermore, the complexity of the Random Forest model, although beneficial for precision, 438 

can pose challenges in terms of computation time, especially during hyperparameter 439 

optimization. Future research could explore alternative approaches to reduce this complexity 440 

without sacrificing precision, such as integrating lighter ensemble learning techniques or 441 

using more efficient feature selection methods. 442 

7. Conclusion 443 

In this study, we presented a new feature extraction method to predict interactions between 444 

biological macromolecules. By generating feature vectors from macromolecule sequences 445 

using a combination of bigram methods and pseudo-amino acid descriptors, our approach 446 

demonstrated its effectiveness. The results obtained, with precision and accuracy rates 447 

exceeding 99%, attest to the robustness and reliability of our method. 448 

The superiority of our approach compared to traditional techniques lies in its ability to extract 449 

relevant and representative information from macromolecule sequences, even from 450 

moderately sized datasets. This flexibility, combined with the use of an optimized Random 451 

Forest model, allowed us to maximize predictive performance while ensuring a high 452 

generalization of results. 453 

We can therefore conclude that our proposed extraction approach constitutes a significant 454 

advancement in the field of molecular biology. It offers a practical and effective solution for 455 

the analysis of macromolecular interactions, thereby contributing to the understanding of 456 

fundamental biological processes and the development of new therapeutic applications. 457 

  458 
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