ISSN: 2320-5407

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

Date:

www.journalijar.com

REVIEWER'S REPORT

Manuscript No.:50790	Date: 29-03-2025

Title: Optimization of feature extraction for the prediction of macromolecular interactions: OTE-24 Approach

Recommendation:	Rating	Excel.	Good	Fair	Poor
Accept as it isyesyes	Originality Techn. Quality Clarity Significance			Yes	
Accept after minor revision Accept after major revision				Yes	
Do not accept (Reasons below)				Yes	
			Yes		

Reviewer's Comment for Publication.

Reviewer Name:

The paper's main contribution is the development of a new feature extraction method, OTE-24, which combines bigram and APAAC approaches to improve the accuracy of predicting macromolecular interactions.

Detailed Reviewer's Report

- This paper introduces a new feature extraction method, OTE-24, for predicting macromolecular interactions, combining bigram and APAAC approaches. The method demonstrates high accuracy, precision, and recall in tests using the HPRD database. OTE -24 outperforms existing methods, showing improvements in accuracy, precision, sensitivity, and MCC.
- 2. The study uses a rigorous 5-fold cross-validation technique to validate the model's performance.
- 3. However, the ROC AUC value is lower than other metrics, suggesting potential for improvement in reducing false positives or negatives.
- 4. The computational complexity of the Random Forest model is acknowledged as a limitation, particularly during hyperparameter optimization. Future work could explore alternative algorithms or feature selection methods to address this complexity and further enhance performance.