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Design of a stepped disk for continuous kinetic energy storage: an 1 

educational toy 2 

Abstract 3 

In this study, the design of a stepped disk for continuous kinetic energy storage is 4 

considered.  5 

The system includes a stepped disk made of a large disk for kinetic energy storage and 6 

a small disk to wrap and unwrap a string; and a relatively small mass attached to the 7 

string for potential energy to drive the stepped disk. The disk rotates around a fixed 8 

point and the mass drops down in a straight-line motion. 9 

While the mass drops down, the string is unwrapped, the stepped disk rotates and 10 

transfers the potential energy into kinetic energy. When the mass reaches its lowest 11 

point, the string wraps around the small disk and the mass gains potential energy. By 12 

neglecting friction, the stepped disk rotates back and forth continuously.  13 

The importance of the stepped disk system is twofold: it is used as an educational toy 14 

thus enabling research activities and demonstrating the process of kinetic energy 15 

storage.   16 
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1. introduction 17 

Gravitational energy and flywheel technology represent two promising avenues for 18 

renewable energy generation and storage. Gravitational energy, often overlooked, can 19 

be harnessed through innovative systems that capitalize on the potential energy 20 

derived from gravitational forces. Shyu Shyu (2011) introduced a Vertical Type 21 

Potential Energy Generator (VTPEG), demonstrating that gravitational energy can be 22 

effectively converted into usable energy, thus positioning it as a viable renewable 23 

resource. This concept is further supported by Shyu (Shyu, 2010), who posits that 24 

universal gravitation itself can be viewed as an ultimate renewable energy source, 25 

emphasizing the potential for large-scale applications. The integration of gravitational 26 

energy systems could significantly contribute to sustainable energy solutions, 27 

particularly in regions where conventional energy sources are limited. 28 

Flywheel energy storage systems (FESS) also play a crucial role in the renewable 29 

energy landscape. These systems store kinetic energy in a rotating mass, allowing for 30 

rapid energy release when needed. Li et al. (2013) highlighted advancements in 31 

flywheel technology, particularly the use of composite materials that enhance the 32 

mechanical properties and efficiency of energy storage. The application of flywheels 33 

in conjunction with renewable energy sources, such as wind power, has been explored 34 

by Shao et al. (Shao et al., 2014), who demonstrated that integrating flywheels with 35 

lead-acid batteries can optimize energy storage and reduce losses. Furthermore, Wen 36 

et al. (2013) discussed the design of multi-ring carbon fiber composite flywheels, 37 

which exhibit high energy density and longevity, making them suitable for various 38 

applications, including aerospace and automotive industries. 39 

The synergy between gravitational energy and flywheel technology can lead to 40 

innovative energy solutions. For instance, the potential for using flywheels to store 41 

energy generated from gravitational systems is an area ripe for exploration. Erd et al. 42 

(2024) provided insights into the power flow simulation of flywheel systems, 43 

particularly in tramway applications, where energy savings can be achieved through 44 

regenerative braking. This highlights the practical implications of combining 45 

Additionally, Ratniyomchai et al. (2014) emphasized the importance of energy storage 46 

devices in electrified railways, showcasing the effectiveness of flywheels in managing 47 

regenerative braking energy. 48 
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 49 

In summary, both gravitational energy and flywheel technology present significant 50 

opportunities for renewable energy generation and storage. The integration of these 51 

systems could lead to enhanced energy efficiency and sustainability. As research 52 

continues to evolve in these fields, the potential for innovative applications and 53 

improvements in energy systems remains promising. 54 

In this article, a stepped disk system is proposed to demonstrate kinetic energy 55 

storage. The system includes a stepped disk as a simplified version of a flywheel. The 56 

stepped disk continuously stores the potential energy supplied by a moving mass in a 57 

gravitational field as kinetic energy. 58 

The article is arranged as follows: system description is given in section 2; 59 

mathematical model is described in section 3; solutions of the mathematical model are 60 

given in section 4; numerical example is given in section 5; and finally summary and 61 

conclusion are given in section 6.  62 
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2. System description 63 

in this section the system is described including its components and its function. 64 

2.1 components 65 

The stepped disk system is designed to run continuously in a prosses to store and 66 

release kinetic energy. The successful operation of the system is granted by proper 67 

design and assembly of its components. 68 

There are three main elements in the system including a stepped disk; a relatively 69 

small mass and a string and a wood bar to serve as a disk holder. 70 

The stepped disk has a mass M with radius R, and a smaller disk with radius r (see 71 

figure 1). 72 

 73 

Figure 1: Schematics of the stepped disk. The large disk with a radius R and thickness 74 

z. the small disk with a radius r and thickness w. 75 

The second component is a relatively small mass m which is connected to the small 76 

disk with a string (the third component), (see figure 2). 77 

 78 
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 79 

Figure 2: Schematics of the small mass attached to a string with length H. 80 

The last component is a wood bar to serve as a disk holder. 81 

2.2 Assembly and operation 82 

The system is assembled together in a few simple steps as follows: the stepped disk is 83 

fixed on top of a table by means of a wooden bar. The height of the table and the 84 

wooden bar should be greater than the length of the string to insure smooth operation 85 

of the system. Then the string is pinned or screwed to the smaller disk, and finally the 86 

mass is attached to the free side of the string, (see figure 3). 87 

 88 

  89 
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Figure 3: Schematics of the stepping disk system. 90 

The string is wrapped around the smaller disk number of rounds n such that 2nr=H. 91 

The maximal displacement of the mass is H+r meters. 92 

When the system us released from rest, the mass m drops down H+r meters and 93 

afterwards it restores the same height in the case of negligible friction and thus moves 94 

up and down forever. 95 

 96 

3. Mathematical model 97 

In section 2, the stepped disk system for continuous kinetic energy storage was 98 

described. The motion of the disk is rotational and the motion of the mass is linear, 99 

thus the potential energy of the mass is converted into rotational kinetic energy and 100 

vice versa. 101 

3.1 Separate models 102 

The system is split by imagination into two separate components. The free body 103 

diagrams are shown in figure 4. The internal force in the spring now acts as an 104 

external force.  105 

Newton's second law of motion is written for the disk and for the mass by introducing 106 

the tension force in the string as an external force, (see figure 4). 107 
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 108 

Figure 4: free body diagrams for separated components. 109 

Newton's second law for a rotational motion is given by: 110 

 𝑀𝑜 = 𝐼𝑜 𝛼 

          (1) 111 

Where Mo is the external moment and Io is the moment of inertia of the disk around its 112 

axis of rotation, and  is the appropriate angular acceleration. 113 

After writing the external moment explicitly, equation (1) is rewritten and is given by: 114 

𝑇𝑟 = 𝐼𝑜 ∝ 

          (2) 115 

      116 

Where T is the tension in the string and r is the radius of the small disk. 117 
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Similarly, Newton's second law is written for the linear motion of the mass and is 118 

given by: 119 

 𝐹 = 𝑚𝑎 

          (3) 120 

Where F is the external force, m the mass of the driving component and a is the 121 

appropriate acceleration. 122 

After writing the balance of the external forces explicitly, equation (3) is rewritten 123 

accordingly and is given by: 124 

𝑚𝑔 − 𝑇 = 𝑚𝑎 

          (4) 125 

The relation between the linear acceleration and the angular acceleration is given by: 126 

𝑎 =∝ 𝑟 

          (5) 127 

An expression for the angular acceleration is derived from equations  128 

(2), (4) and (5) after mathematical manipulations and is given by: 129 

∝=
𝑚𝑔𝑟

𝐼𝑜 +𝑚𝑟2
 

          (6) 130 

3.2 Whole system model  131 

Equation (6) could be derived based on the whole system model without splitting the 132 

systems into two free body diagrams. Applying Newton's second law for the whole 133 

system (see figure 5), equation (1) is rewritten and is given by: 134 

𝑚𝑔𝑟 = (𝐼𝑜 +𝑚𝑟2) ∝ 

          (7) 135 

Clearly, equation (6) could be derived easily from equation (7). 136 

 137 
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 138 

Figure 5: free body diagram for the whole system. 139 

The moment of inertia I of the whole system while neglecting the smaller disk 140 

contribution about the axis of the disk is given by: 141 

𝐼 =
1

2
𝑀𝑅2 +𝑚𝑟2 

          (8) 142 

It is important to note that for the range of the vertical motion from r to H the 143 

acceleration is constant, but for the range between from zero to r the acceleration is 144 

not a constant and should be considered appropriately. 145 

 146 

3.3 Non-constant acceleration 147 

when the mass drops down H meters the driving gravitational force is constant but its 148 

effect on the moment is changed with respect to the cos(θ), where θ is the angle of 149 

rotation measured from the x-axis in the counterclockwise direction, (see figure 6). 150 
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 151 

Figure 6: non-constant acceleration model 152 

 153 

Equation (6) is modified to account for the dependence of the angular acceleration 154 

with respect to angle θ and is given by: 155 

𝜃 =
𝑑2𝜃

𝑑𝑡2
= 𝛼cos⁡(𝜃) 

          (9) 156 

Towords finding a solution equation (9)  is rearranged in terms of the angular velocity 157 

𝜃  and is given by: 158 

𝜃 
𝑑𝜃 

𝑑𝜃
= 𝛼cos⁡(𝜃) 

          (10) 159 

Equation (10) is integrated to express the angular velocity as a function of the angle 160 

and is given by: 161 

𝜃 =  𝜃 𝑖
2 + 2𝛼sin⁡(𝜃) 
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          (11) 162 

Where 𝜃 𝑖 is the initial angular velocity. 163 

Now, by applying the method of separation of variables to equation (11) , a relation 164 

between the time and the angle could be easily derived and it is given by: 165 

𝑡 =  
𝑑𝜃

 𝜃 𝑖
2 + 2𝛼sin⁡(𝜃)

𝜃

0

 

          (12) 166 

4 Solution of the equation of motion 167 

The motion is descibed by two regions: height between r and H and height between 168 

zero and r. 169 

4.1 Height between r and H 170 

In this region the motion is described by a constant acceleration motion. The 171 

acceleration is given by equations (5) and (6). 172 

The angular velocity 𝜔 is given by: 173 

𝜔 = 𝛼𝑡 

          (13) 174 

And the linear velocity 𝑣 is given by: 175 

𝑣 = 𝜔𝑟 

          (14) 176 

And finally, the vertical position is given by: 177 

𝑦 = 𝐻 + 𝑟 −
1

2
𝑎𝑡2 

          (15) 178 

The elapsed time 𝑡𝑟𝐻 from r to H is extracted from equation (15) by substituting y=r, 179 

and is given by: 180 
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𝑡𝑟𝐻 =  
2𝐻

𝑎
 

          (16) 181 

4.2 Height range from zero to r 182 

Equation (12) could be solved exactely or by approximations. 183 

4.2.1 Exact solution 184 

This equation coul be solved exactely by using a calculator; wolfram alpha or by 185 

using trapezoidal integration rule from angle zero to 
𝜋

2
 with the aid of microsoft excel. 186 

4.2.2 Zero order approximation 187 

The sine term is neglected, due to small contribution, and the elapsed time from zero 188 

to r is given by: 189 

𝑡0𝑟 =
𝜃

𝜃𝑖 
 

          (17) 190 

4.2.3 First order approximation 191 

The separated diffrential equation is given by: 192 

𝑑𝑡 =
𝑑𝜃

 𝜃 𝑖
2 + 2𝛼sin⁡(𝜃)

 

          (18) 193 

The square root is approximated up to the first term of Talor's expamsion and the 194 

approximation of equation (18) is given by: 195 

𝑑𝑡 =
𝑑𝜃

𝜃 𝑖(1 + 𝜀 sin 𝜃 )
 

          (19) 196 

Where 𝜀 is given by: 197 
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𝜀 =
𝛼

𝜃 𝑖
2
 

          (20) 198 

Equation (19) is solved analytically by using the substitution 𝑢 = tan⁡ 
𝜃

2
  199 

And the time 𝑡 as a function of angle 𝜃 is given by (see appendex1 for more details.): 200 

𝑡 =
2

𝜃 𝑖 1 − 𝜀2 
 𝑎𝑟𝑐𝑡𝑎𝑛  

𝑢 + 𝜀

  1 − 𝜀2 
 − 𝑎𝑟𝑐𝑡𝑎𝑛  

𝜀

  1 − 𝜀2 
   

          (21) 201 

Finally, the vertical position in the range zero to r is given by: 202 

𝑦 = 𝑟 − 𝑟𝑠𝑖𝑛(𝜃) 

          (22) 203 

5. Numerical example 204 

For demonstration, the following values are used as appropriate for lab 205 

considerations: 206 

Large disk 207 

Radius R=0.35 m 208 

Radius r=0.03 m 209 

Mass M=3.5kg 210 

Moment of inertia (neglecting small contributions of the small disk and the relatively 211 

small mass) =0.0536kgm
2
, 212 

Small mass 213 

Mass m=0.1kg 214 

String 215 

Length H=1m 216 

Based on these values the following are calculated: 217 
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Angular acceleration 218 

𝛼 −
𝑚𝑔𝑟

𝐼
=

0.1 𝑥 9.81 𝑥0.03

0.0536
= 0.55

𝑟𝑎𝑑

𝑠
 

The fall time  219 

𝑡𝑟𝐻 =  
2𝐻

𝛼𝑟
=  

2𝑥1

0.55𝑥0.03
= 11𝑠 

Fall time in the range 0-r 220 

The initial angular velosity is needed 221 

𝜃 𝑖 = 𝛼𝑡 = 0,55𝑥11 = 6.04𝑟𝑎𝑑/𝑠 

Calculator calculation 222 

𝑡0𝑟 = 0.258 𝑠 

Zero order approximation 223 

𝑡0𝑟 =
𝜋

2𝜃 𝑖
= 0.26𝑠 

First order approximtion (equation 21) 224 

𝑡0𝑟 = 0.2592𝑠 

The time in the range 0-r is calculated by approximating the integral by a trapezoidal 225 

rule and compared with the zero orde approximation. The results are shown in figure 226 

7, (see figure 7). 227 
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 228 

Figure 7: exact and zero order approximation of time versus angle in radians in the 229 

range 0-r. 230 

In order to check the accuracy of the approximation, the relative difference between 231 

the exact and zero order approximation of time is shown in figure 8, (see figure 8). It 232 

is shown in figure 8 that the relative error is less than the 1% for the whole range of 233 

the considered angle of rotation. 234 
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 235 

Figure 8: Relative % time difference between exact and zero order approximation 236 

versus angle in radians for the range 0-r. 237 

The fallig time (s) in the range r-H is plotted is plotted versus the mass m (kg) in 238 

figure 9, see figure 9). It is shown that the time is inversly related to mass in non-239 

linear fashion. 240 

 241 

Figure 9: falling time (s) in the range r-H versus mass (kg). 242 
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 243 

Finally the vertical position versus time is shown fo the range 0-H. Figure 10 shows 244 

the drop down position, (see figure 10). The motion upwards is symetric to the motion 245 

downwards and could be visualised as its mirror image.   246 

 247 

Figure 10: Vertical position (m) versus time (s) for the range 0-H. 248 
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 250 

6. Summary and conclusions 251 

In this article, the stepped system for countiouous kinetic energy storage is introduced 252 

and described.  The system includes a stepped disk, a relatively small mass and a 253 

connecting string. The mass drops in a gravitational field and its potential energy 254 

trasferd and stored in the disk. The mass gains potential energy after reaching its 255 

minimal position. In the case of neglicting friction, the system runs forever. 256 

The importance of the system is two folds: it serves as an educational toy for research 257 

activities and it demonstrates kinetic energy storage as a renewble source of energy. 258 

The system was described mathematically and its motion was derived analytically and 259 

approximatly, especially for the region 0-r where the acceleration is not constant but 260 

rather depends on the rotational angle. Due to its small contribution, the depencence 261 

could be described by zero order approximation. 262 

As a final note it might be possuble to further develop the system to include a 263 

generator to convert the kinetic energy into electricity, and thus it would be possible to 264 

demonstrate the applicablility of the system for producing electrical power. 265 

266 



 

19 
 

  267 

 268 

Appendix 1 269 

Derivation of equation (21) 270 

The substitution 𝑢 = tan⁡ 
𝜃

2
  leads to the following relations: 271 

cos  
𝜃

2
 =

1

 1 + 𝑢2
 

sin  
𝜃

2
 =

𝑢

 1 + 𝑢2
 

𝑑𝜃 =
2𝑑𝑢

1 + 𝑢2
 

𝑑𝑡 =
2𝑑𝑢

𝜃 𝑖 1 + 𝑢2  1 + 𝜀2 sin  
𝜃

2
 cos  

𝜃

2
  

 

𝑑𝑡 =
2𝑑𝑢

𝜃 𝑖 1 + 𝑢2  1 + 2𝜀
𝑢

 1+𝑢2

1

 1+𝑢2
 
 

After simplification the expresion is given by: 272 

  273 

𝑑𝑡 =
2𝑑𝑢

𝜃 𝑖 1 + 𝑢2 + 2𝜀u 
 

By completing the square we get the following expression: 274 

𝑑𝑡 =
2𝑑𝑢

𝜃 𝑖  𝑢 + 𝜀 2 + 1 − 𝜀2 
 

Finally this could be arranged as an arctangens differential and is given by: 275 

𝑑𝑡 =
2𝑑𝑢

𝜃 𝑖 1 − 𝜀2  1 +  
𝑢+𝜀

 1−𝜀2
 

2
 
 

After integration the previous expression from angle zero to 90 degrees in radians, 276 

equation (21) is derived. 277 
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