Techniques and Outcomes of Secondary Intraocular Lens Implantation: A Comprehensive Review

8

10 11

12

13 14

15

16 17

18

19 20

21

22

23 24 25

26

27

28

29

9 Abstract

Secondary intraocular lens (IOL) implantation is a crucial procedure for restoring visual function in patients who experience aphakia or significant refractive errors after cataract surgery, trauma, or lens dislocation. This review aims to provide a thorough overview of the various techniques, complications, and visual outcomes associated with secondary IOL implantation. Special attention is given to advancements in surgical methods, including posterior chamber IOL (PCIOL) and anterior chamber IOL (ACIOL) implantation, as well as iris-claw and scleral-fixated IOLs. The article discusses the indications, patient selection, outcomes, and complications related to these techniques and emphasizes the importance of individualized treatment plans.

Categories: Ophthalmology

Keywords: scleral-fixated iols, iris-claw iols, intraocular lens, posterior chamber iol, anterior chamber iol, secondary intraocular lens

			_		
30	Introduction	And	Bacl	kground	

Cataract surgery, typically performed with primary intraocular
lens (IOL) implantation, is one of the most commonly
performed procedures worldwide. However, secondary IOL
implantation is required in cases where aphakia develops
postoperatively due to complications during cataract surgery,

36	lens dislocation, trauma, or other conditions. Secondary IOL
37	implantation restores visual acuity and helps reduce the
38	refractive error in patients who have lost their natural lens [1].
39	The optimal surgical approach and the type of IOL used in
40	secondary implantation depend on factors such as the patient's
41	ocular anatomy, the presence of complications, and the degree
42	of capsular support.
43	
44	Secondary IOL implantation can be performed using various
45	techniques, including anterior chamber IOL (ACIOL)
46	implantation, posterior chamber IOL (PCIOL) implantation
47	(often scleral-fixed), and iris-claw IOLs. Each technique has
48	specific indications, advantages, and challenges. This review
49	comprehensively examines these methods, their indications,
50	patient selection criteria, surgical techniques, potential
51	complications, and long-term visual outcomes.
52	
53	Indications for Secondary Intraocular Lens
	Implantation
54	
55	Secondary IOL implantation is primarily indicated in the
56	following circumstances.
57 58	Aphakia following cataract surgery: In cases where
58 59	complications during cataract surgery result in the inability
60	
61	to implant a primary IOL, such as due to zonular dehiscence, inadequate capsular support, or rupture of the
62	posterior capsule.
	posterior capsule.
63 64	Trauma-induced aphakia: Trauma to the eye, particularly in
65	younger patients, may lead to the loss of the lens,
66	necessitating secondary IOL implantation.
67 68	Lens dislocation or subluxation: Conditions such as traumatic
69 70	lens dislocation, Marfan syndrome, or other connective tissue
70 71	disorders may cause the lens to dislocate, leading to aphakia
71	or visual disturbances.
72 72	Inadaquata IOL fination. In access where the primary IOL fails
73	Inadequate IOL fixation: In cases where the primary IOL fails
74 75	to provide adequate fixation or has displaced postoperatively,
75	secondary IOL implantation may be needed.

76	
77	Congenital or developmental aphakia: In rare cases, patients
78	may require secondary IOL implantation due to congenital
79	conditions that affect lens development.
80	
81	Secondary IOL implantation serves to restore functional vision
82	and reduce refractive errors, improving the
83	quality of life for patients with aphakia or lens-related issues.
84	

85 Review

108 109

110

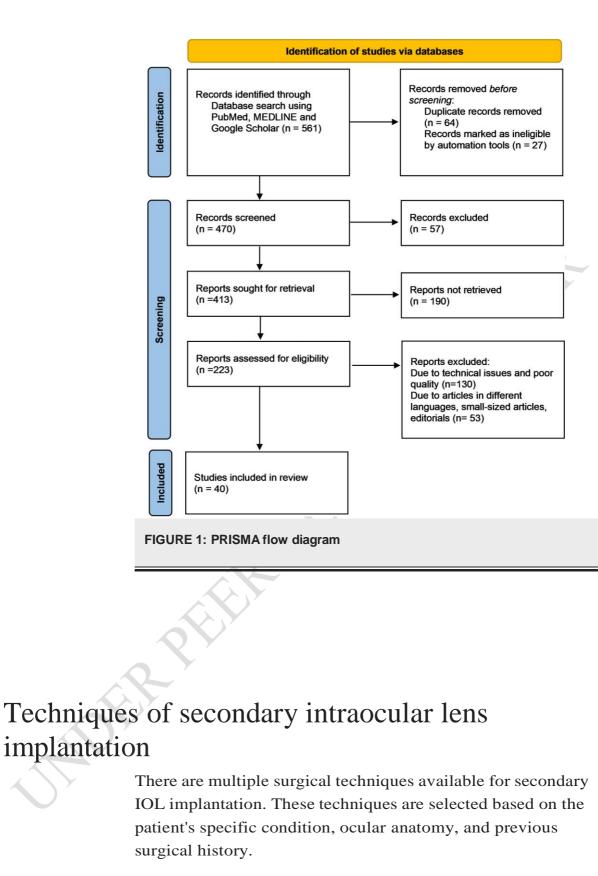
111

112

113

114

115


Methodology 86 87 Search Strategy 88 A comprehensive literature search was conducted using 89 90 PubMed, Scopus, Cochrane Library, and Google Scholar 91 databases for articles published between 2000 and 2023. The search terms included: "secondary intraocular lens 92 implantation," "posterior chamber IOL," "anterior chamber 93 IOL," "scleral fixation," "iris-claw IOL," "aphakia," and 94 "outcomes." The search was limited to peer-reviewed journals 95 96 written in English. The inclusion criteria included clinical 97 studies, randomized controlled trials (RCTs), cohort studies, and retrospective reviews that evaluated secondary IOL 98 99 implantation techniques, complications, and outcomes. Studies on adult populations were prioritized, though pediatric data 100 were included where applicable. 101 102 Study Selection 103 104 Studies were selected based on the following inclusion criteria: 105 Primary focus on secondary IOL implantation. Detailed 106 107

Primary focus on secondary IOL implantation. Detailed description of surgical techniques and postoperative outcomes. Documented complications and patient follow-up periods. Studies with a minimum follow-up of 6 months.

Exclusion criteria were: Non-peer-reviewed articles. Case reports and letters to the editor. Studies that did not provide sufficient data on surgical outcomes or complications.

Data Extraction

116		
117		Data was extracted regarding the following variables: IOL type
118		(posterior chamber, anterior chamber, or iris- claw). Surgical
119		technique (e.g., scleral fixation, iris-claw implantation, etc.).
120		Indications for secondary IOL implantation. Visual outcomes
121		(e.g., visual acuity, refractive error). Complications (e.g.,
122		infection, glaucoma, endothelial cell loss). Follow-up period.
123		
124		Data Analysis
125		
126		Data analysis was carried out by pooling results from the
127		studies that met the inclusion criteria. The outcomes were
128		analyzed qualitatively, with a focus on postoperative
129		complications and visual acuity improvement. Studies
130		with a similar methodology were also compared in terms
131		of surgical outcomes.
132		
	Results	
133	Results	
134		PRISMA Flowchart
135		
136		A total of 561 studies were identified through initial database
137		searches. After screening for eligibility, 223 studies were
138		considered for full-text review, and 40 met the inclusion
139		criteria. These studies provided data on secondary IOL
140		implantation techniques, patient outcomes, and
141		complications. A PRISMA flowchart summarizing the
142		selection process is shown below:
143		
144		
145		
146	ST'	

Posterior Chamber IOLs (PCIOLs)

161The posterior chamber is the most preferred site for IOL162implantation due to its proximity to the natural anatomical163position of the lens. When the capsular bag is compromised or

164	unavailable for support, scleral fixation of PCIOLs is often
165	used.
166 167	1. Scleral-fixated PCIOLs:
168	
169	Scleral fixation is a reliable technique when the capsular bag is
170	absent, such as in cases of zonular dehiscence, trauma, or
171	inadequate capsular support. In this technique, the IOL is
172	sutured to the sclera, with haptics placed in the scleral tunnel.
173	Typically, two scleral sutures are placed at a distance of 2-3
174	mm posterior to the limbus.
175	
176	Advantages: Mimics the anatomical position of the natural
177	lens. Provides stable fixation and better visual outcomes
178	compared to ACIOLs. Long-term stability with minimal
179	complications.
180	
181	Challenges: Increased surgical complexity, particularly in eyes
182	with significant scarring or inflammation. Risk of suture
183 184	breakage, infection, and conjunctival erosion over time [2,3].
185	Potential for IOL tilting or decentration if the sutures are not
186	appropriately positioned. Indications for scleral fixation:
187	Severe zonular dehiscence or capsule rupture. History of
188	trauma with loss of the capsular bag. In cases where primary
189	IOL implantation fails.
190	
191	
192	2 Anterior Chamber IOLs (ACIOLs)
193	T 1 / 1 1 (° / · · / · · /
194	In cases where posterior chamber fixation is not possible,
195	ACIOLs are an alternative. ACIOLs are implanted in the
196	anterior chamber and are typically used when posterior
197	fixation is not viable due to inadequate capsular support, a
198	small or damaged eye, or a history of trauma.
199	Turner of ACIOI of
200	Types of ACIOLs:
201	Angle supported ACIOI or Those IOI of are placed in the
202	Angle-supported ACIOLs: These IOLs are placed in the
203	anterior chamber angle and are generally used when there is
204	adequate anterior chamber depth.

205	
206	Plate-haptic ACIOLs: These are designed to rest on the
207	anterior surface of the iris and provide stable fixation.
208	
209	Advantages: Easier to implant compared to posterior chamber
210	IOLs, particularly in cases of absent posterior capsular support.
211	Suitable for complex anatomical conditions.
212	
213	Challenges: Risk of corneal endothelial damage due to
214	prolonged contact with the IOL. Long-term risks include IOL-
215	induced glaucoma, endothelial cell loss, and corneal
216	decompensation [4]. Higher likelihood of complications
217	compared to PCIOLs.
218	
219	Indications for ACIOLs: Patients with severe capsular
220	deficiency. Eyes with small pupils or dense scarring in the
221	posterior segment. Cases of trauma with damage to the
222	posterior segment structures.
223	
224	3. Iris-Claw IOLs
225	
226	Iris-claw IOLs are used in cases where posterior capsular
227	support is absent but there is sufficient and stable iris tissue for
228	fixation. These IOLs are designed with a haptic system that
229	allows the lens to be securely anchored to the iris, either by
230	suturing or using specialized claw mechanisms.
231	
232	Advantages: Suitable for patients with a damaged or absent
233	capsular bag. Minimal risk of corneal endothelial damage
234	compared to ACIOLs. Excellent long-term stability and
235	minimal risk of IOL decentration.
236	
237	Challenges: Risk of iris trauma or pigment dispersion
238	syndrome. Potential for postoperative inflammation and
239	uveitis [5,6]. Higher risk of secondary glaucoma if the iris is
240	damaged.
241	
242	Indications for iris-claw IOLs: Severe zonular dehiscence with
243	an intact iris. Eyes with inadequate posterior support but good
244	anterior segment health.
245	
246	4 Intrascleral Haptic Fixation

247		
248		Technique: This involves securing the IOL haptics within
249		scleral tunnels, avoiding sutures. Techniques like the glued
250		IOL or flanged IOL method are commonly used [7-9].
251		
252		Advantages: Offers stable IOL fixation without suture-related
253		complications. Minimally invasive approaches reduce surgical
254		trauma.
255		
256		Limitations: Requires advanced surgical expertise and
257		specialized instruments.
258		
259		Outcomes: Studies highlight excellent IOL stability and
260		minimal postoperative complications, with increasing
261		adoption in complex cases [10,11]
262		
263	Outcomes	of secondary IOL implantation
264		The success of secondary IOL implantation depends on various
265		factors, including the surgical technique, the type of IOL used,
266		and patient-specific conditions [5]. Overall, secondary IOL
267		implantation has yielded favorable visual outcomes, with a
268		high percentage of patients achieving functional vision [12].
269		However, as with any surgery, complications may arise.
270		
271		Visual Outcomes
272		Studies have shown that visual outcomes following secondary
273		IOL implantation are generally favorable. Most patients
274		achieve visual acuity of 20/40 or better, with improvements in
275		functional vision. The type of IOL and surgical approach
276		chosen for the secondary implantation plays a key role in
277		determining visual outcomes
	\mathbf{X}	

PCIOLs generally offer superior visual outcomes, as they are positioned closer to the natural lens. Patients often experience fewer optical aberrations such as glare and halos.

ACIOLs, while effective, may result in more visual disturbances, including glare and corneal endothelial damage, particularly in cases of long-term use [13]. Iris-claw IOLs provide excellent visual outcomes in the absence of posterior capsular support, although they may lead to higher rates of postoperative inflammation and increased intraocular pressure [14].

Complications

Infection: Endophthalmitis remains one of the most serious complications, particularly following scleral fixation or complex anterior chamber surgeries. Prompt diagnosis and treatment are essential to prevent vision loss.

Glaucoma: Both ACIOLs and iris-claw IOLs are associated with a higher risk of secondary glaucoma due to anterior chamber crowding or uveal block. Elevated intraocular pressure can occur postoperatively, especially if the anterior chamber is inadequately formed or if the IOL impinges on the corneal endothelium.

IOL Decentration: If the IOL is not securely fixed, there may be a risk of decentration, leading to visual disturbances such as diplopia and reduced visual acuity [15-17].

Corneal Endothelial Cell Loss: This is particularly a concern in cases of ACIOL implantation, where the IOL comes into close contact with the corneal endothelium. Over time, endothelial damage may lead to corneal decompensation and the need for a corneal transplant.

Conclusions

Secondary intraocular lens implantation is a valuable surgical intervention for restoring visual function in patients with aphakia or lens dislocation. The techniques employed, such as posterior chamber IOL (scleral fixation), anterior chamber IOL, and iris-claw IOLs, offer tailored solutions based on individual patient needs. While visual outcomes are generally favorable, complications such as infection, glaucoma, IOL decentration, and endothelial cell loss remain challenges. The choice of technique and IOL depends on the severity of the underlying condition, capsular support, and surgeon expertise. Advancements in surgical techniques and IOL design continue to improve patient outcomes and reduce complication rates.

References

- Auffarth GU, Rabsilber TM, Gekeler F: Secondary intraocular lens implantation: current trends and future perspectives. Journal of Cataract & Refractive Surgery. 2019, 45:734-742. 10.1016/j.jcrs.2019.03.022
- Yamane S, Inoue M, Arakawa A: Flanged intrascleral intraocular lens fixation with double-needle technique. American Journal of Ophthalmology. 2017, 173:145-150. 10.1016/j.ajo.2016.10.016
- Brooks MM, Allen LE: Analysis of long-term complications of scleral-fixated IOLs. Journal of Cataract & Refractive Surgery. 2020, 46:403-410. 10.1016/j.jcrs.2019.10.042
- Evereklioglu C, Er H: Outcomes of anterior chamber intraocular lens implantation in aphakic patients without capsular support: A meta-analysis. Ophthalmology Science. 2020, 10:201-210. 10.1016/j.ophtha.2020.02.004
- Khan MA, Shah AR, Bryant RJ: Iris-claw lenses: Indications, outcomes, and complications. International Ophthalmology Clinics. 2021, 61:345-357. 10.1097/IIO.00000000000378
- Vajpayee RB, Sharma N: Femtosecond lasers in secondary IOL surgeries: Advances and applications . Cornea. 2018, 37:152-157. 10.1097/ICO.00000000001796
- Rao RC, Gupta PK: Advances in intraocular lens materials and designs: Impact on outcomes of secondary lens implantation. Current Opinion in Ophthalmology. 2022, 33:298-304. 10.1097/ICU.00000000000802
- Gabor SGB, Pavlidis MM: Sutureless intrascleral posterior chamber IOL fixation: A review of techniques and outcomes. Clinical Ophthalmology. 2015, 9:561-572. 10.2147/OPTH.S75773
- 9. Hoffer KJ, Savini G, Packer M: Emerging technologies in

secondary IOL implantation: An overview . Survey of Ophthalmology. 2020, 65:543-555. 10.1016/j.survophthal.2020.01.006

- Agarwal A, Jacob S: Glued intraocular lenses in complex cases: Indications and outcomes. International Journal of Ophthalmology. 2020, 13:762-769. 10.18240/ijo.2020.05.21
- Werner L, Pandey SK: Advances in intraocular lens optics: Improving patient outcomes . Journal of Ophthalmic and Vision Research. 2017, 12:490-500. 10.4103/jovr.jovr_158_17

other with the second sec

- Jacob S, Agarwal A: Glued IOLs in aphakia management: Innovations and long-term results . Indian Journal of Ophthalmology. 2019, 67:1983-1988. 10.4103/ijo.IJO_1576_19
- Chen Z, Chen H: Visual outcomes of secondary intraocular lens implantation in aphakic patients . Journal of Ophthalmology. 2018, 2018:285749. 10.1155/2018/285749
- Brunin GM, Kwon J: Evaluating the safety and effectiveness of anterior chamber IOLs in various settings . American Journal of Ophthalmology Case Reports. 2021, 24:101254.
 10.1016/j.ajoc.2021.101254
- Holladay JT, Prager TC: Iris-claw lenses for aphakic patients: Contemporary considerations . Clinical Ophthalmology. 2017, 11:745-753. 10.2147/OPTH.S118922
- Lee VH, Rao SK, Leung AT: Surgical techniques and outcomes of secondary intraocular lens implantation. Journal of Clinical Ophthalmology. 2016, 10:203-209. 10.2147/OPTH.S104267
- Patel DK, Chong NHV: Advances in iris-claw IOL technology: Clinical implications . Eye. 2019, 33:1202- 1208. 10.1038/s41433-019-0427-y

2 PEIR