The Use Of Artificial Intelligence In Reducing And Management Of Stress In Workplace

by Jana Publication & Research

Submission date: 21-May-2025 11:48AM (UTC+0700) Submission ID: 2664987245 File name: IJAR-51734.docx (47.9K) Word count: 3805 Character count: 23390

The Use Of Artificial Intelligence In Reducing And Management Of Stress In Workplace

Abstract: The integration of Artificial In gligence (AI) in enhancing employee mental health and well-being in workplace environments has the potential to create healthier, more producive workplace environments when coupled with ethical practices and human support systems. With growing concerns over stress, anxiety, and burnout in the workplace. Al offers novel solutions to monitor, assess, and improve mental health. By leveraging AI technologies such as sentiment analysis, chatbots, virtual assistants, and wearable devices, organizations concerned to a spectrum of health problems.

Computer aided artificial intelligence systems for diagnosis of stress would enable a more objective and consistent diagnosis and decisions. Al is helpful to examine how (via which activities, methods and capabilities) organizations' margement in deploying Artificial Intelligence (Al) systems to address stress management. We explore the potential application of Al in stress detection and screening through advanced computational techniques of machine learning algorithms that analyze biomarkers of stress and anxiety.

Keywords: Artificial Intelligence, Stress Management, productive work environment

1. Introduction

The modern workplace's fast pace and high demands often lead to stress, burnout, and mental health issues, negatively impacting employee well-being and organizational performance. Traditional approaches like Employee Assistance Programs (EAPs) are reactive, addressing problems after they arise. In contrast, Artificial Intelligence (AI) offers a proactive approach, enabling real-time monitoring, personalized support, and early intervention to prevent burnout or depression.

Al can detect stress indicators and provide personalized wellness solutions through tools like sentiment analysis, wearables, chatbots, and virtual assistants. These tools monitor mood, physiological data, and work patterns to offer timely support and tailored interventions, such as meditation or time management strategies.

Al also identifies stress in employees who may not openly express struggles, using behavioral data to trigger early interventions. With 24/7 access to mental health resources, Al tools provide anonymity and immediate help, helping prevent serious health issues and improving organizational outcomes like productivity and retention.

While AI offers significant benefits, it raises ethical and privacy concerns. It should complement human support and ensure employee data is handled responsibly. This study explores how AI can enhance workplace stress management while maintaining essential human support systems.

2. Literature Review

The increasing demands and pressures of modern workplace environments have given rise to a growing concern over stress, burnout, and mental health issues among employees. These issues

not only affect employees' physical and mental health but also have detrimental effects on organizational performance, productivity, and employee retention. Traditionally, organizations have relled on human support systems, such as counseling services and Employee Assistance Programs (EAPs), to address these challenges. However, these programs are often reactive, identifying mental health concerns only after they have escalated. Recent advancements in Artificial Intelligence (AI) offer promising, innovative solutions to proactively detect and address stress-related issues before they become more severe.

Al technologies, including machine learning algorithms, sentiment analysis, virtual assistants, chatbots, and wearable devices, have the potential to revolutionize how organizations approach workplace mental health. This literature review explores the existing body of research on Al's integration into the workplace and its impact on mental health, stress management, and employee well-being.

2.1 AI in Stress Detection and Monitoring

Al is transforming workplace stress management through real-time detection and monitoring. Unlike traditional methods like surveys or interviews, Al offers timely, objective insights by analyzing large volumes of data. One key tool is sentiment analysis, which assesses tone and emotional cues in employee communications—such as emails or chats—to detect early signs of stress or burnout (Liu & Lee, 2020).

Wearable devices also play a major role, tracking physiological indicators like heart rate, sleep, and activity levels. With AI, these devices can detect subtle stress patterns that might go unnoticed (Shanahan et al., 2019). This allows for early intervention before issues escalate. Moreover, AI enables organizations to spot trends in employee stress over time, helping leaders make data-informed changes to workloads, environments, or team dynamics (Chien et al., 2021). This proactive, preventative approach marks a shift from reactive traditional methods.

2.2 AI-Powered Personalized Wellness Programs

One of the most promising uses of Al in stress management is delivering personalized wellness programs. Unlike traditional one-size-fits-all approaches, Al analyzes individual stressors, habits, and lifestyles to provide tailored recommendations—such as meditation, breathing exercises, or time-management strategies (Tiwari et al., 2020).

Personalized support improves engagement. Goh et al. (2020) found that employees receiving customized wellness guidance were more likely to use mental health resources and saw improvements in well-being and performance. By aligning interventions with individual needs, AI helps reduce stress and promotes better mental health outcomes.

2.3 AI in Predicting and Preventing Stress-Related Issues

Al's predictive power marks a major shift from traditional stress management. Machine learning can analyze vast data sets to identify stress patterns often missed by humans. By evaluating behavioral changes, health indicators, and work stressors, Al predicts which employees are at risk of stress-related conditions. Alon-Barkat (2020) showed that Al models can forecast burnout risk using historical data, enabling early intervention. These systems also offer real-time monitoring and support. When rising stress is detected, AI can suggest breaks, mindfulness exercises, or notify a manager—helping prevent burnout and serious mental health issues.

2.4 Ethical Considerations and Challenges

While AI offers significant benefits for workplace well-being, it also raises ethical concerns. Privacy and data security are major issues, as employees may find continuous mental health monitoring intrusive. To address this, organizations must ensure transparency and data protection. AI systems should also be fair and inclusive, avoiding biases that could impact certain groups disproportionately (Binns et al., 2018).

Importantly, AI should complement—not replace—human support. While effective in detecting and managing stress, AI lacks the empathy of human interaction. Employees must still have access to professional mental health services.

Overall, AI has strong potential to enhance employee well-being through early stress detection, personalized wellness programs, and mental health prevention. However, ethical use—balancing innovation with privacy and human care—is essential for creating a supportive, healthy workplace.

3. Materials and Methods

This section outlines the detailed methods employed to explore the integration of Artificial Intelligence (AI) in the workplace for enhancing employee mental health, particularly focusing on stress management, anxiety, and burnout. The aim of this research is to assess how AI can offer innovative solutions in monitoring, detecting, and managing stress, while examining the potential of AI systems such as wearable devicer sentiment analysis, chatbots, and virtual assistants. The methods are divided into specific thematic areas: Mental Health Monitoring, Emotional Counseling and Support Personalized Wellness Programs, Risk Factor Identification, Training and Development, and the Discussion of Results in relation to the research objectives.

3.1. Mental Health Monitoring

The study begins with the revealed of the study begins with the study begins and fitness trackers collect real-time biometric data such as heart rate variability, sleep patterns, and physical activity, which AI algorithms analyze to detect stress-related irregularities. Sentiment analysis tools apply Natural Language Processing (NLP) to assess emotional tone in digital communications, identifying signs of stress through language patterns. Additionally, standardized surveys like the PSS and GAD-7 provide subjective profile of each employee's mental well-being, enabling early detection and intervention.

Purpose

Table 1: Summary of AI Technologies Used in Stress Management

Technology Description

Wearable Devices	Smartwithes, fitness trackers that monitor biometric data (heart rate, sleep patterns, activity levels).	Detects physiological indicators of stress.
Sentiment Analysis	NLP tools to analyze the emotional tone of written communication (emails, chats).	Monitors emotional shifts in employee communication.
Chatbots	AI-powered conversational agents offering emotional support and relaxation exercises.	Provides on- demand emotional support and guidance.
Virtual Assistants	Al assistants offering proactive stress management suggestions and reminders.	Promotes work-life balance and mindfulness.
Machine Learning	Algorithms that analyze biometric data and employee behavior to predict stress patterns.	Identifies early warning signs of stress or burnout.

3.2. Emotional Counseling and Support

Al systems enhance mental health support by providing real-time emotional counseling through chatbots and virtual assistants. Using Natural Language Processing, chatbots interpret employee emotions and offer personalized responses, including mindfulness prompts, breathing exercises, or referrals to professionals in critical cases. Virtual assistants support daily routines with reminders, stress tips, and work-life balance suggestions. Effectiveness is tracked through engagement metrics and employee feedback, helping improve the Al's responsiveness and relevance.

3.3. Personalized Wellness Programs

Al supports personalized wellness programs by analyzing data from wearables, sentiment analysis, and surveys to tailor interventions for each employee's mental well-being. By tracking sleep, activity, and heart rate, Al identifies stress patterns and recommends suitable strategies like exercise, yoga, or meditation. It can also suggest diet changes to support brain health and stress reduction. Progress is monitored through wearables, and ongoing feedback helps refine the Al for more effective future recommendations.

Table 2: AI-Driven Personalized Wellness Program Outcomes

Program Type	Employee Profile	Outcome/Impact	AI Adjustments

Program Type	Employee Profile	Outcome/Impact	AI Adjustments
Exercise Routines	Employees with low activity levels	Reduced stress levels, improved physical fitness and mental well- being	Personalized activity suggestions based on wearables' data
Mindfulness Practices	Employees with high anxiety levels	Decreased anxiety, enhanced emotional regulation	AI recommends breathing exercises, meditation routines
Dietary Plans	Employees reporting fatigue	Increased energy levels, reduced stress-related symptoms	AI suggests omega-3, antioxidant-rich diet options
Time Management Tips	Employees with work overload	Improved time management, reduction in stress and burnout	Virtual assistant offers tips and reminders for workload balance

3.4. Risk Factor Identification

Al technologies help identify workplace stressors by analyzing biometric, behavioral, and sentiment data. For instance, changes in sleep, cortisol levels, or work habits can signal chronic stress. Al tools use this data to predict risks like burnout, enabling early intervention through personalized support or workload adjustments. Additionally, Al assesses organizational factors such as leadership, job demands, and culture—by analyzing employee feedback to uncover systemic causes of stress like poor work-life balance or lack of recognition.

Table 3: Survey and Questionnaire Tools Used in the Study

Survey Tool	Purpose	Sample Questions
8 Perceived Stress Scale (PSS)	Measures the degree to which situations in one's life are appraised as stressful.	"In the last month, how often have you felt that you were unable to control the important things in your life?"
12 Generalized Anxiety Disorder-7 (GAD-7)	Assesses the severity of anxiety symptoms.	"Over the last two weeks, how often have you been bothered by feeling nervous, anxious, or on edge?"

Survey Tool	Purpose	Sample Questions
Employee Satisfaction Survey	Assesses overall job satisfaction, work- related stress, and well- being.	"Do you feel that your job contributes positively to your mental well-being?"

Table 4: Summary of Risk Factors Identified by AI Systems

Risk Factor	Detection Method	Significance
Work Overload	Sentiment Analysis & Surveys	Increases stress and anxiety, contributing to burnout.
Lack of Work-Life Balance	Wearable Data & Employee Feedback	Disrupts emotional well- being, leading to chronic stress.
Poor Sleep	Wearable Devices (Sleep Tracking)	Chronic sleep issues correlate with stress and anxiety.
High Heart Rate Variability	Wearable Devices & Sentiment Data	Indicates stress-related issues and emotional overload.

3.5. Training and Development

A crucial aspect of Al integration is the training and development of both employees and management in stress management. Al-driven learning management systems (LMS) provide employees with access to training materials that teach stress management techniques, emotional ptelligence, and resilience-building skills. These courses are designed to improve employees' ability to cope with stress and maintain their mental well-being, both at work and in their personal lives.

In addition, Al-driven training is used for managers to improve their leadership skills in the context of supporting employee mental health. Managers are trained to recognize the early signs of stress in their teams and are provided with strategies to offer support effectively. These strategies include promoting open communication, providing regular feedback, and fostering a culture of psychological safety.

Al also personalizes training for managers based on real-time data, such as employee sentiment and stress levels. By analyzing the workplace environment, AI systems suggest tailored interventions for managers to implement within their teams, thereby promoting a healthier, more supportive work culture.

3.6. Discussion of Results in Relation to Research Objectives

In this section, the findings of the study will be analyzed against the original research objectives. These objectives include:

Abjective 1: To assess the effectiveness of Al-based systems for monitoring employee stress and mental health.

Objective 2: To evaluate the impact of emotional support systems on reducing workplace stress. **Objective 3:** To explore the success of personalized wellness programs in improving mental health and job satisfaction.

Objective 4: To investigate the role of AI in identifying risk factors and early signs of stress. **Objective 5:** To analyze the effectiveness of training programs in enhancing employee stress management skills.

The results will discuss how AI interventions help employees manage stress and mental health, and whether these tools provide a scalable solution for improving well-being. The analysis will also address research limitations and suggest future study directions.

This section explores how AI technologies monitor and improve workplace stress, focusing on the methods used to assess their effectiveness. The study aims to demonstrate AI's potential to create healthier, more productive workplaces.

Conclusion

In conclusion, AI presents a significant opportunity to transform workplace stress management. With its ability to provide real-time monitoring, predictive analytics, and personalized support, AI helps organizations address stress proactive to leading to healthier, happier, and more productive employees. By integrating AI-driven tools such as wearables, sentiment analysis, and virtual assistants, organizations can track stress indicators like heart rate, sleep patterns, and communication tone, allowing for early detection of potential issues.

Al enables tailored wellness programs that cater to individual needs, recommending strategies like mindfulness exercises, physical activity, and nutrition adjustments. This personalized approach improves engagement with wellness initiatives, increasing their effectiveness and overall impact on mental health and productivity.

Moreover, AI's ability to analyze large datasets empowers managers with actionable insights to adjust workloads, improve team dynamics, and foster a supportive work environment. This datadriven approach helps prevent burnout and enhances job satisfaction.

However, the thical integration of AI is crucial. Organizations must prioritize data privacy, transparency, and ensure that AI complements, rather than replaces, human support. While AI can offer valuable insights and interventions, human empathy and professional care remain essential components of a holistic well-being strategy.

summary, AI offers a proactive, data-driven approach to managing stress in the workplace. When used ethically and in conjunction with human support, it holds the potential to create more resilient workforces, improve mental health, and drive organizational success.

		Scot	Scopus and WOS.				
Item Type		Year	Author(s)	Title	Publication Title	Keywords	Main Issue
			Vinnar C. I ac	AI-Based Real-Time	Journal of	wearable	Real-time stress
	Article	2020	Numar, 3.; Lee,	Stress Detection Using	Wearable Health	technology, stress	monitoring using AI-
				Wearables	Technology	detection	enabled wearables.
			Mitchell T.	AI-Powered Chatbots	Iournal of 41 in	chathots mental	Using chatbots for
	Article	2021		for Mental Health			workplace mental health
			Greenfield, K.	Support	Healthcare	health, Al	support.
\square					Journal of		Detecting stress through
	Research	2022	Singn, r.;		Behavioral	macnine learning,	performance data
			Sharma, R.	Stress Detection	Analytics	employee data	
				Sentiment Analysis to	Iammal of AI and	aontinoot	Amburd to the sector of the sector
	Article	2021	Fatel, J.;	Detect Employee	Journal of Al and	senument	Analyzing text and voice
			Carter, A.	Stress	Mental Health	analysis, Al	to detect stress.
			Brown E.	Advanced AI	Journal of Human-	predictive	Dradicting strace lough
	Article	2020	-	Algorithms in Stress	Computer	analytics, stress	rieucung suess levels
			Mcnale, J.	Prediction	Interaction	prediction	with AI algorithms.
				AI in Employee Well-		well-heing	Stress prediction via
	Conference	2022	Zhang, L.; Li, X.	hoing the project with	Intl. Conf. on AI	monhino loomina	machine learning and
				Demg			analytics.

ind WOS.	
e snd	
Used in the Study ta extracted from Sco	
Table A.2. Survey and Questionnaire Tools Used in the Study Source: Compiled by the authors based on data extracted from Scopus and WO:	
by the	
urvey piled	
A2. Su	
Table <i>i</i> Source:	

ŝm	ltem Type	Year	Year Author(s)	Title	Publication Title	Keywords	Main Issue
	Article 2021	2021	Davis, R.; Patel, P.	R; Employee Well-Being Survey Based on Al Insights	Journal of Applied Psychology	Employee well-being, survey tools, Al insights	Describes a survey-based study to assess employee well-being integrating AI-driven insights.
	Survey 2020	2020	Mitchell, G.; Davis, R.	Stress Level Survey for <i>Journal</i> Workplace <i>Occupal</i> Environments <i>Health I</i>	of tional ⁵ sychology	of Stress, workplace, survey, employee y engagement	Outlines a survey used to measure stress levels among employees in a variety of workplace environments.
	Article 2021	2021	Thomson, S.; Zhang, M.	Al Integration in <i>Journal</i> Employee Feedback <i>Employee</i> Surveys Engageme	ee ment	of Employee feedback, Al, surveys, workplace stress	Investigates the integration of AI tools in collecting and analyzing employee feedback related to stress.
	Article 2020	2020	A Qu Peterson, K.; for Brooks, J. Impac	A Questionnaire Tool for Measuring Al Impact on Workplace Stress	Journal of Applied Al Al in Workplace qu Well-Being w	Al impact, questionnaire, stress, workplace well-being	Journal of Applied Al Describes a detailed Al impact, questionnaire tool aimed at Al in Workplace questionnaire, stress, measuring the impact, of Al- Well-Being workplace well-being based solutions on workplace
	Study 2022	2022	Singh, H.; Rajput, N.	Employee Health and Wellness Questionnaire Incorporating Al	Journal of Wellness and Mental Health	Wellness, Al, employee health, survey tools	Discusses a customized wellness survey that integrates Al to measure various health parameters in employees.

em	Item Type	Year	Year Author(s)	Title	thor(s) Title Keyword	Keywords	Main Issue
							Focuses on how AI technologies
			Singh, K.;	etection of	Journal of Al and	stress risk factors,	can detect and categorize
	Article	0707	Mehta, P.	ouress	Occupational	AI, employee	different workplace stress risk
				KISK FACLOFS	Super	nearcn	factors.
				Identification of		newhological	Discusses the use of AI to identify
	ملمنام	1000	Gupta, A.;	Ctuo	Journal of	of ctunce web footons	psychological stress risk factors
		1707	Sharma, N.	I sychological Juless Dieb Factore Heing AI	Behavioral Health	81 539, 113N 14UU13,	by analyzing employee behavior
				IN BILLED CLOUDE I NEW			and health data.
				Hantifiing Dumberroo Dumed of AI and humant	Innual of AI and	h	Describes AI-based models to
	Doccorrect 2020	0000	Harris, R.;	Dimmont Dick Hoing	Creace	nolamo	predict and identify the risk of
	MC2Cal CII	0707	Kaur, S.	AI Docod Modelo	Managamant	mouers, emproyee	burnout in employees based on
				AI-DASEU MUUEIS	шашабриры	1 ISK 14C (01 S	work patterns.
				AI for Identificing Journal		of work strass AI	Examines the use of Al in
	Decounch 2022		Lee, D.;		Journui Mortralaco Ctur	, ,	identifying common work-related
	Veseal CII	7707	Rodriguez, J.	Triggore	vrui kpiuce Ctudiae	Juress unggens, mish	stress triggers and their impact
				11188613	Stuties	Includication	on employees.
				Al Systems for	Innual of Aunlied	time	Explores the role of real-time AI
	ملمنتصام	1000	Mitchell, T.;	Monitoring Employee	Journal of Applieu real-time	real-unite	monitoring systems in identifying
			Kelly, R.	Stress Risk in Real	AI IN Occupational	monuoring, suress	stress risk factors before they
				Time	Safety	risk, Al systems	escalate.

Item	Item Type	Year	Year Author(s)	Title	Publication Title	Keywords	Main Issue
-	Article	2021	Harris, M.; Sineh. R.	Personalized AI Wellness Programs for	Journal of Health and Al Solutions	Journal of Health personalized wellness, and Al Solutions Al. stress management	Discusses the outcomes of AI-based personaliged wellness programs designed to help employees manage
			6	Stress Management		0	stress and improve overall well- being.
			Greenfield,	Al-Driven Personalized Wellness Plans:		of wellness plans, AI,	Explores the effectiveness of personalized wellness plans
2	Article	2020	L.; Kumar, T.	on Em	Occupational Psychology	personalized programs, health impact	AI, focusing th outcomes.
			Patel, D.;	Al-Enabled Personalized Health	Journal of Al in	Journal of Al in Al health programs,	Investigates the effects of AI-enabled personalized health programs on
<u>ν</u>	Study	1202	Sharma, G.	Programs for Corporate Employees	Workplace Wellness	personalized wellness, corporate employees	employee wellness in a corporate setting.
.	-		Singh, N.;	Effectiveness of AI- Powered Personalized	Journal of Behavioral	stress reduction,	Looks at the effectiveness of AI- powered personalized stress
4	Kesearch 2022	7707	Greennela, E.	Stress Reduction Programs	Health Management	personalized wellness, AI	reduction programs for employees and their overall well-being.
			Li, X.	Al-Based Personalization in	Journal of Human	Journal of Human AI, wellness programs,	Focuses on how AI-based personalization enhancent
ъ	Article	2021	own, A.	Corporate Wellness Programs	Resources Development	employee personalization	effectiveness of corporate wellness programs tailored to individual emplovee needs.

References

- Grawitch, M.J.; Ballard, D.W. The Psychologically Healthy Workplace. American Psychological Association, 2016.Kirschner, P.A.; Karpinski, A.C. Facebook and Academic Performance. Computers in Human Behavior, 2010, 26(6), 1237–1245.
- Kotsou, I.; Mikolajczak, M.; et al. Emotional Intelligence and Social Skills at Work. J. Applied Social Psychology, 2011, 41(1), 13–27.
- Jha, A.; Krawczynski, M.; et al. Wearables for Monitoring Stress and Performance. J. Workplace Wellness, 2022, 34(2), 112–124.
- 4. Kourti, E.; Nikiforidis, P.; et al. AI in Health Monitoring and Prevention. Health Tech Journal, 2021, 15(3), 35-46.
- 5. Clough, P.; Chan, S.; McBain, R. Sentiment Analysis in Stress Management. AI & Society, 2021, 22(1), 101–115.
- 6. Parvez, M.; Ali, M.S.; et al. AI in Stress Management via Wearables. J. AI Research, 2020, 50(2), 87-102.
- 7. Smith, K.; Jones, L.; et al. AI Applications in Workplace Well-being. Int. J. Business and Tech., 2021, 7(4), 156–169.
- 8. Coopersmith, J.; Rosner, P.; et al. Chatbots for Emotional Support at Work. Behavioral Science and AI, 2020, 18(6), 71–83.
- 9. Kim, Y.; Lee, J.; et al. Personalized AI Wellness Programs. J. HR Management, 2022, 48(3), 44-57.
- Brackett, M.A.; Warner, R.; et al. Emotional Intelligence and Success at Work. Psychological Bulletin, 2019, 144(2), 144– 164.
- 11. Lomas, T.; Stoll, E. Al for Preventing Workplace Stress. J. Occupational Health Psychology, 2021, 26(5), 234-249.
- 12. Shapiro, S.; Goleman, D.; et al. Mindfulness and Al in Stress Management. Psychology & Tech Journal, 2019, 11(4), 55-63.
- 13. Borys, D.; Griffin, M. Al for Managing Work-Related Stress. Occupational Health Review, 2020, 34(1), 102-115.
- 14. Chaffin, L; Husein, A.; et al. AI Monitoring of Workplace Stressors. AI in Healthcare Review, 2022, 6(2), 120–135.
- 15. Goh, J.; Lim, B.; et al. Review of AI in Wellness Programs. J. Business Research, 2022, 74, 112–126.
- 16. Arora, P.; Gupta, R.; Sethi, R. AI-Driven Personalization in Well-being. Int. J. Health and Wellness, 2021, 19(3), 200–213.
- 17. Johnson, R.; Flynn, M.; et al. Machine Learning for Early Stress Detection. J. Al and Mental Health, 2022, 33(1), 34–49.
- 18. Williams, S.; Finn, C.; et al. AI Chatbots for Emotional Support. Technology and Mental Health Review, 2020, 25(2), 73-88.
- 19. Wang, Q.; Zhang, Y.; et al. AI and Mental Health in the Workplace. J. Organizational Psychology, 2021, 37(4), 101–118.
- 20. Green, T.; Moore, A.; Walters, L. Emotion Recognition via Wearables. J. Business Technology, 2021, 18(5), 245-263.
- 21. Liu, X.; Lee, K.; et al. AI-Powered Systems to Prevent Burnout. AI and Human Health, 2022, 3(1), 56-74.
- 22. Stone, L.; Ball, K.; et al. Stress, Emotional Intelligence, and AI. J. Human Resource Technology, 2022, 13(3), 81–94.
- 23. Hamilton, M.; Gupta, D.; et al. Wearables for Stress Management. J. Occupational Technology, 2021, 27(3), 194-208.
- Davis, S.; Miller, H.; et al. ML Algorithms for Predicting Workplace Stress. J. Applied AI in Workplace Studies, 2021, 5(2), 35–50.

The Use Of Artificial Intelligence In Reducing And Management Of Stress In Workplace

ORIGIN	ALITY REPORT	
SIMILA	4% 12% 10% 6% student F	PAPERS
PRIMAR	Y SOURCES	
1	zaguan.unizar.es Internet Source	4%
2	www.journalijar.com	4%
3	Bhakti Banwaskar Deshmukh, A. V. Senthil Kumar, Pooja Devi. "chapter 3 Revolutionary Potential of AI in HR and Mental Health Support", IGI Global, 2025 Publication	1 %
4	fastercapital.com Internet Source	1%
5	www.walshmedicalmedia.com	1%
6	Feng Liu, Qianqian Ju, Qijian Zheng, Yujia Peng. "Artificial intelligence in mental health: innovations brought by artificial intelligence techniques in stress detection and interventions of building resilience", Current Opinion in Behavioral Sciences, 2024 Publication	1 %
7	Submitted to Duquesne University Student Paper	1 %
8	pmc.ncbi.nlm.nih.gov Internet Source	1%
9	www.patientsmedical.com	1%
10	David B. Olawade, Ojima Z. Wada, Aderonke Odetayo, Aanuoluwapo Clement David- Olawade, Fiyinfoluwa Asaolu, Judith Eberhardt. "Enhancing Mental Health with Artificial Intelligence: Current Trends and	<1%

Future Prospects", Journal of Medicine, Surgery, and Public Health, 2024 Publication

11	Miguel-Ángel García-Madurga, Ana-Isabel Gil- Lacruz, Isabel Saz-Gil, Marta Gil-Lacruz. "The Role of Artificial Intelligence in Improving Workplace Well-Being: A Systematic Review", Businesses, 2024 Publication	<1%
12	www.researchgate.net	<1%
13	pmarketresearch.com Internet Source	<1%
14	Hannah D. Walters, Rachel M. Hammond. "Al in Marketing - Applications, Insights, and Analysis", Routledge, 2025 Publication	<1%
15	"Revolutionizing Healthcare: Impact of Artificial Intelligence on Diagnosis, Treatment, and Patient Care", Springer Science and Business Media LLC, 2025 Publication	<1%

Exclude quotes On Exclude bibliography On Exclude matches

Off