O 00 N o U

10
11
12

13
14

15

16
17

18

19

20
21
22

23

24
25

26

27

Least Squares Estimators of Drift Parameter for Discretely Observed
Fractional Vasicek-type Model

Abstract: We study the drift parameter estimation problem for a fractional
Vasicek-type model X: = {X;, t > 0}, thatis defined as dX, = 0 (u + X,)dt +
dBf, t > 0 with unknown parameters 8 >0and u €R, where {B,t > 0}isa
fractional Brownian motion of Hurst index H €]0, 1[. Let 8, and [i; be the least
squares-type estimators of 8 and |, respectively, based on continuous
observation of X. In this paper we assume that the process {X;,t > 0} is
observed at discrete time instants t;=i4,,, i=1,...,n. We analyze discrete
versions @; and [, for é\t and [1; respectively. We show that the sequence

Jna, (9\,: — 9) is tight and \/n4,, (i, — 1) is not tight. Moreover, we prove the
stronge consistency of 0, .

Key words: Fractional Brownian motion; Vasicek-type model; Young integral;
Parameter estimation; Discrete observations; Tightness.
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1. Introduction

Let Bf: = {Bf,t > 0} be a fractional Brownian motion (fBm) of Hurst index
H € ]0,1], that is, a centered Gaussian process starting from zero with
covariance

1
E(B{BY) = E(tz“ + 520 — |t — 5|2H)

1
Note that when H = %, B2 is a standard Brownian motion.

Consider the fractional Vasicek-type of the first kind X: = {X,,t > 0}, defined
as the unique (pathwise) solution to

— H
{dXt = 9(u+X,)dt + dBH, t >0, w.1)

X0=0,

where u € Rand 6 > 0 are considered as unknown parameters.
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Let 5; and fir Dbe the least squares-type estimators of and p, respectively,
based on continuous observation of X. As we known, least squares estimators
method are motivated by the argument of minimize a quadratic function p a
and 0, respectively,

T
(1, 0) = f X, — 6 + X)) dt
0

where X, denotes the differentiation of X, with respect to t. Taking the partial
derivative for p a and 0, separately. Then solving the equations, we can obtain
the east squares estimators of i a and 0, denoted by §; and [iy respectively,

1 T
— STXF—Xr [y Xsds

7 (1.2)

&)
ﬂ
Il

T fy X2ds—(Jy Xods)

T 1 T
Jy X§ds—Xr [§ Xsds

—~

254

TXr—Jy Xods (1.3)
In recent years, the study of various problems related to the model (1.1) has
attracted interest. In finance modeling L can be interpreted as the long-run
equilibrium value of X whereas 0 represents the speed of reversion. For a
motivation in mathematical finance and further references, we refer the reader
to [2,3, 4, 5]. When B is replaced by a standard Brownian motion, the model
(1.1) with u = 0 was originally proposed by Ornstein and Uhlenbeck and then it
was generalized by Vasicek, see [14]. In the ergodic case, the statistical infe-
rence for several fractional Ornstein-Uhlenbeck (fOU) models has been recently
developed in the papers [8], [11] and [15]. The case of non-ergodic fOU process
can be found in [1], [6], [7], [9] and [10].

Let us describe what is known about the asymptotic behaviors of the
estimators (1.2) and (1.3), studied in [9]:

® foreveryH € (0,1), we have almost surely, as T = oo,
(6r.17) > (6, (1.4)

® assume that H € (0,1), and N;~N(0,1), N,~N(0,1), and B are
independent, thenas T — oo ,

(o7 (87 — 0), T (157 — ) ) — ( (1.5)

p'+ (BH,oo ,6 v)



54

55
56
57
58
59

60
61

62

63
64
65
66

67

68
69

70

71

72

73
74

ol = %, and {pn ,,~N(0, 524 ) is independent of Ny and N,.

From a practical point of view, in parametric inference, it is more realistic and
interesting to consider asymptotic estimation for (1.1) based on discrete
observations. Then, in the present paper, we will assume that the process X
given in (1.1) is observed equidistantly in time with the step size 4,,: t;=i4,,
i=1,...nand T,, = n4,, denotes the length of the "observation wmdow :

Here, based on discrete-time observations of X defined in (1.1), we will analyse
the following discrete versions 8, and I, for 8, and [i; respectively, defined as

1 XTn

_ S XT, Lici Xy,
0, = - 5 (1.6)
vAM Zi=1 tic1 7 (Zizl Xti—l)
1
A, Zn 1th 1 EthAn Z?=1th. 1

o= g (1.7)
“ToXr, — A S0 Xy,

Our paper is organized as follows. In Section 2, we give the basic knowledge
about Young integral and some preliminary results, which will be very useful to
our main proof. In Section 3, based on discrete observations of X defined in
(1.1), we study the rate consistency of the estimators 8,, and [i,.

2. Preliminaries

In this section, we briefly recall some basic elements of Young integral (see
[16] ), which are helpful for some of the arguments we use.

Forany a € [0,1], , we denote by H*([0,1]) the set of Holder continuous
functions, that is, the set of functions f: [0, T] — R such that

Sup lf(¢) - f(5)|

T0<s<t<T (t—s)“

|fla

We also set |f|o: = Supieor1lf (t)| and equip H*([[0, T]|) with the norm

Iflle :=1fla + Iflo -

Let f € H*([0,T]), and consider the operator T; : C*([0,T]) = €°([0,T])
defined as



75

76
77

78

79
80
81

82
83
84

85

86
87

88

89

90
91
92
93

94
95
96

97

98

99

100

101

102

T (9)(®) = [, f(w)g' Wdu, t € [0,T].

It can be shown (see, [13]) that, for any B € |1 — a, 1], there exists a constant
Cqpr > 0 depending only on a, f and T such that, forany g € H([0,T),

s g’ @dul | < Caprlifllaliglls.

We deduce that, forany a € ]0,1[any f € H*([0,T]) andanyB € ]1 — o, 1]
the linear operator Ty : ct([o,T) c #F([0,T]) » HF([0,T]), defined as
T;(g) = fdf(u)g’(u)du is continuous with respect to the norm ||. [[5 .

By density, it extends (in an unique way) to an operator defined on H”. As
consequence, if £ € H*(|[0,T]]), if g € HP(|[0,T]]) andif & + 8 > 1 then
the (so-called) Young integral f(;f(u)dg(u) is (well) defined as being T¢ (g).

The Young integral obeys the following formula. Let f € 7% ([0, T]) with

a €]0,1[ and g € HA ([0, T]) with B € ]0,1[ such that o + > 1. Then
f(; f.dg, and f(;ﬁldgu are well-defined as Young integrals. Moreover, for all
t € [0, T],

fi9: = fogo + Jy gudfu + [, f.dgu - 2.1

In order to study the strong consistency, we will need the following direct
consequence of the BorelCantelli Lemma (see Kloeden and Neuenirch (2007)),
which allows us to turn convergence rates in the p-th mean into pathwise
convergence rates .

Lemma 2.1. ([12]) Let 8 > 0 and let (Z,),,cy be a sequence of random
variables. If for every p = 1 there exists a constant c,, > 0 such that for all
n €N,

(E1Z,I) e < CpunF
then for all € > 0 there exists a random variable n, such that
1Z,] < n..n"P*¢ almost surely
forall n e N. Moreover, E|n,|P < oo forallp > 1.

Next, let us note that the unique solution to (1.1) can be written as

X, = u(ef —1) + e fot e %dBl , t>0, (2.2)
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We will also need the following processes, for every t >0
= fote_gtdBSH P WEES fOtXSdsZt = fote_etBsts (2.3)
Using (2.2), we can write
X, =u(e¥ —1)+e7%¢,. (2.4)
Furthermore, by (1.1),
X, = ubt + B! (2.5)

Moreover, applying the formula (2.1), we have

t
{ =e 9Bl + 9] e %'Blids = e 0Bl + 027, . (2.6)
0

From (2.4) we can also write
X, =e%Z, withz, =u(1—-e)+¢ t=0. (2.7)

Lemma 2.2. ([6]). Assume that the process B has Hélder continuous path of
ordery € ]0,1[. Let { be given by (2.3). Then for all € € 10, Y[ the process ¢
admits a modification with (y — €)-Hélder continuous paths.

Moreover
Z, > Zo = [, e ?'Blds, 0= o:i=0Z, (2.8)
almost surely and in L?>(Q) as T — oo,

Lemma3.2. ([9]). Assume that H €(0, 1). Then, almost surely, as

e "Xy = u+ o (2.9)
T
—oT 1
e X, ds —>5(u+fm) (2.10)
0
o—0T (T 1
j sXsds - =(U+{w) (2.11)
T J, 9
e 0T T
—Jy |Xsldsds > 0 forany §>0 (2.12)
! 1
e‘mf Xids = — (u+ 4 )? (2.13)
. 20

where is defined in Lemma 2.2.
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From now on, the generic constant is always denoted by C(.) which depends on
certain parameters in the parentheses.

3.Main results

Lemme 3.1. Let (S,,n = 1) and (R,, n > 2) be a random sequences defined by
=0, T X2, 0 Swi= A, Xie (it (Z2 — 72 ). (3.1)

Then for every n > 2,

Sue ¥ = (72 —R,). (3.2)
In addition if A,— 0 and nAl**— oo for some o > 0,
R, — 0 almost surely as n — co. (3.3)
In particular,

S,e 20T - @Ha)® o most surely asn - c. (3.4)

Proof. Using (2.7), we can write for every n > 2,

n
S e 20T = A z 20—y o =200 72

ti—1

n
— An Z e—Z@(n—i)An 1 — 1 ZZ
efbn — 1 e204, ti—1"
i=1

This imply that

S 20T — e29A z (e20(=08n _ g=20(n+1-080) 72

\ 4 eng [Ztn ) Z (Ztl ) _thl 2)6—29(n+1—i)An]

A
705, — 7|46~ Ral

which implies (3.2).

Let us now prove (3.3). First, observe that A,— 0 and nAL™*— oo imply that
nA,— oo. On the other hand, (2.8) implies

ZT - u+t (oo (35)



136 almost surely and in L?(Q) as T — oo.

137 Thus, by using (2.7), {¢;,t = 0} is Gaussian and (3.5), we obtain for every p >
138 0,

(E”thl o Zt21—1|p]); = (E[l(zti _Zfi—l)(zfi + Zti—1)|p]);
< C(w 8, H)(E”Zti o Zti—1|p])5

< a0, (Je=0 = 01| + GBIl — o, DY

< C(p, 1 6, H) <e—9ti|39An — 1| + (E ['(ti - (tz—1|2])5>

< C(p, 1, 8, H)(A e 0t + AHe—0idn)

< C(p,n, 0, H)A =0t (3.1)

e00n _

139  where we used L 0andthe following inequality given in [10] for every

n

140 i=1,...,n, n=1,

1

(E[lge, = ¢l ])* < comatres

141  Thus foreveryp = 1,

. n—1 %
(BRI < ) e7200-0 (E|z2 ~ 22, ['])
i=1
n—1
< C(p,u, 6,H)e 4 pll Z e 0 (n=Dhn
i=1

1 — =01,
< C(p, 1,8, H)e 4 Al g=04n

1—e 9
142 < C(p,u, 6, H)A~1g=0nsn : (3.7)
143 The last inequality comes from A,,— 0 and 1_eA—f9An - % :

e+l—y

144  Taking a constant 3 verifying 1/31 < a<f, thereise> 0suchthata =

145 Hence, we can write
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(nA,)P A = nf (nALte)P—

As a consequence, by (3.7) and (3.8),

1
(E[IR,[P1)» < C(p, 6, u, H)A,  e=0ntn

1

(n4,)P

< C(p,6, 1, H)

< C(p,6,u, H)n=.

ne (nA,ll*'“)/’)_f efniy

(3.8)

(3.9)

Therefore, by combining (3.9) and Lemma 2.1, the convergence (3.3) is proved.

On the other hand, the convergence (3.4) is a direct consequence of (3.2), (3.3)

and (3.5). 0

Lemme 3.2. Define foreveryn > 1

D,:=

e—20Tn

Z?Zl Xti_l .

n

(3.10)

Assume that A,— 0 and nAL™®— oo for some a > 0, then, for everyn > 1,

E(D,2) < €8, H,a)n Tse

Moreover, for every 0 <

0 <1,

2a(1-H)

E [((DAH)SDH)Z] <C(O,u,Ho)n 1+«

As a consequence, forevery 0 < 6 < 1,

(nA,)? - 0 almost surelyasn — oo.

Proof. We first prove (3.11). Using (2.7) and (3.5), we have

n

—-20T —-20T
e n e n
2y — —
E(Dn) DY) z : E (Xti—lxtj—l) Y
ij=1
e—20T, n
< C(6, 1, H)

= C(6, 1, H)(

n2
ij=1

e—GTn eenAn -1

edn — 1

>2

n

(3.11)

(3.12)

(3.13)

z eOti-1+0t_1 | (Zti_1th—1)

ij=1

Z thi_1+6tj_1 — C(e, i, H) (e

-oT,

n

i=1

)

2
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1 A, N\
< COwhH) (nA efhn — 1)
n

1

<COnH) o5 (3.14)
Setting y = 1% . We obtain
2a
-2y n_m 2
E(DZ) < C(6,, = C(6, b, H) ———— < C(6, 1, H, o)n T+<,

TR (natoyiie
which proves (3.11).

For (3.12), by (3.14), we have,

E[((nA,)"D,)?] < C(8, b, H)(nA,) 720,

Thus, using similar arguments as in (3.8), we can conclude

2a(1-H)

E[((nA,)"D,)?] < C(6,p, Hy)n™ 1+a

which implies the desired result.

Finally, the convergence (3.13) is a direct consequence of (3.12) and Lemma
2.1. 0

Definition 3.1. Let {Z,,} be a sequence of random variables defined on (Q, F, P).
We say {Z,} istight (or bounded in probability), if for every € > 0, there
exists M, > 0 such that,

P(|Z,| > M,) <e, foralln.

Theorem 3.3. Let H € (0,1). Suppose that A,— 0 and nAl**— oo for some
a > 0. Then, forevery q = 1,

AlefTn (8, — ) is not tight. (3.15)
In addition if we assume that nA3— 0 asn — oo, then the estimator 8, is

/T, -consistent in the sens that the sequence

JT.(6, — 8) is tight (3.16)
and
JTa (@ — w) is not tight. (3.17)

Proof. Fix q = 1. From (1.6) and (2.7) we can write
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Age®™ (8, —0)

1,2
= AlefTh 2%~ 21n >— 0
n
e20Tn s, —(\/T, Dy)

Al ebTn
2e29Tn5 -2(JT,D )
An 2

e20An 1 ZTn_l)]

Moeover,

(2, ~ %4, )+ (1~ ) 74, — 20 (72s,

20T, ¢ _ _ Bn 2 — o207 20t;_172 Ay 2
e nS ezeAn_lzTn_1 = nA, Yl et Ztl 17 o268y 1 ZTn_1

= (Zl— e_ze(Tn_ti)th_ _Zl_ e_zg(Tn_ti—l)ZtZ_ LT Z%

eZGAn 1

A
= —r Rn1

2200y _1
where R,, is given by (3.1).
Thus we obtain

84" (8 - 0)
Aelln 20A, .,
= 9g20T, S, [(ZT - ZTn—l) + (1 T e20h, _ 1) L1, 1

+ (#) ] (3.18)

According to (3.6), we get

1

.
(E [(AgeﬂTn (23, -7, ) Dz < c(6,, A5 0.
(3.19)

We also have

20A +1 e208n _1-20A A
Al e9Tn (1 ——n 1) = A" e ( n__tn ),

0260y _ Y] 2200y 1

o (3.20)

since

a1 g7 26
+1 + e’'n e n—1-20A A
AT T = (nAl™™) « =47 - oo and ( L _n ) - 0.

T A2 e208n—1
Tn

Furthermore, by (3.7),

vt
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(E [(AfleeTan)ZD% < (8,1, M)A, 0. (3.21)

Combining (3.18), (3.19), (3.20), (3.21) and (3.4), we conclude that for every
q=1, Ale®™(6, — ) is not tight.

For 0 < q <1 we have
AL (B, —6) = AL (8,7 (8, - 0)),

which completes the proof of (3.15), where we used the previous case and the
fact that A? ' - co.

Let us now prove (3.16). It follows from (3.18) that
— 204,
V@ - ) = 5l (B, -2, )+ (1- ) 24,0+
204,
() Ral
Combining this with

(| (VTu(23, - Z%n_l))z])% < COVAL/Te T - 0,

= 200, \ 3 (e20fn—-1-204A, A,
L, (1 N e29An—1) = vnh; ( A? 260 _1) 0,

2 % L T% 1oz;ye—HTn
(E[(VTra)])" < cOMALT Y Tie™®™ = C0,9) 22—~ 0,
(nA1+a)

and the convergence (3.4), we deduce that
JT.(6, —8) -0 (3.22)
in probability, which proves (3.16).

Now it remains to prove (3.17). Using (1.6) and (1.7), we can show that 8,, and
I, satisfy

2
n tl 1 (Zl 1¢t— 1)

T, — é;An Z Xti_l'
i=1



219  Combining this with (1.1), we obtain

220 T80, (i — )

=uTn(9_@‘;)+ef

0

Ty, ~ n
X, dt + Bf — 6,4, Z X,
i=1

221 =yTn(9—@;)+@;(f0T”Xtdt n 21 Xe, 1)+(9 H)f X, dt + Bf .
222 Thus, we obtain

JTT,@; — )

224 (f Xedt — A, Y7 Xy, 1) ©- gn)f X, dt +
BTTL

225 T

226 :=A,+B,+C,+D,

227  Theorem 3.2 and the convergence (3.22) imply that A,, — 0 in probability.

228 We can write C, (9 gn)f X, dt = ‘/_(9 ) )(1 fOT" X, dt).

229  Then, Theorem 3.2 and the convergence (3.22) imply that *¥——— J_( n) - 0in
230  probability. Moreover, using 'Hopital rule,
1 (T
lim — [ X, dt=lim X; = lim (u(1—e™™) +{; ) = u+ .
Tn—o 1y Jo Ty 7 T, > n

231 Hence C, — 0 in probability.

232 Recall that E[(Bff — BF)?] = |t —s|?! ; t,s > 0.

233 ThenforH € ]0%[ , we have almost surely, as T,, = o

H
Br,

N

234 — 0, by Borel-Cantelli Lemma.

H

Bf
O0n\Tn

235 Combining this with Theorem 3.2 we obtain that D,,: = — 0 in probability.
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1 ( T n
B,:=— f Xtdt—Anz X 1)
\/T_n 0 i=1
e Tn n
= e T f X, dt —e %A, z X, (3.23)
\/T_n 0 i=1

By lemma 2.3, we have e~ ?T» fOT” X, dt — %(u + {,,) almost surely.

We also have
n 2 n n

E (e_HTnAn an_l> = AZe 20Ty Z E (X, Xy, ) = Ade 20T Z eOu-140G1E (7, 7, )
i=1 ij=1 ij=1

Then, by using the same arguments as in Lemma 3.2, we obtain

2
) < C(16,H)AZ- 0. (3.24)

eenAn -1

e94n —1

E[(e 8, S0 X, ) | < € 8, H)AZe 2T

e0Tn

N

Combining (2.10), (3.23), (3.24), and the fact that — 00, we conclude that

B, — oo.

Consequently, the convergence (3.17) is proved. Thus the desired results are
obtained. o

Theorem 3.2. Assume that 0 < H < 1. Suppose that A,— 0 and nA}™*— 0 for
some a>0. Thenasn — oo,

6, —» 6 almost surely. (3.25)

Proof. We can write

1yv2 n
9~ EXTTI - Zi=1XtL'_1

n — A, 2
Ay Xiq thi—l T (Z?=1 Xti—l)

1 20T, yv2
e nXf —Zr, Dn

B e20Tns, —( nAnDn)2 .

Xr,

n

Thus, according to (2.9), (3.4), (3.5) and (3.13), we can deduce that

6, — 6 almost surely asn — . O
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