
 

 

Least Squares Estimators of Drift Parameter for Discretely Observed 1 

Fractional Vasicek-type Model  2 

 3 

 4 

Abstract: We study the drift parameter estimation problem for a fractional 5 

Vasicek-type model X: =  Xt , t ⩾ 0 , that is defined as 𝑑𝑋𝑡 = 𝜃(µ + 𝑋𝑡)𝑑𝑡 +6 

𝑑𝐵𝑡
𝐻 ,   𝑡 ⩾ 0 with unknown parameters θ > 0 and µ ∈ℝ, where  𝐵𝑡

𝐻 , 𝑡 ⩾ 0  is a 7 

fractional Brownian motion of Hurst index H ∈]0 , 1[. Let 𝜃𝑡
  and µ𝑡  be the least 8 

squares-type estimators of θ and μ, respectively, based on continuous 9 

observation of X. In this paper we assume that the process  Xt , t ⩾ 0  is 10 

observed at discrete time instants 𝑡𝑖=i𝛥𝑛 , 𝑖=1,...,n.  We analyze discrete 11 

versions 𝜃𝑛
  and µ𝑛  for 𝜃𝑡

  and µ𝑡   respectively. We show that the sequence 12 

 𝑛𝛥𝑛 𝜃𝑛
 − 𝜃  is tight and  𝑛𝛥𝑛(𝜇𝑛 − 𝜇)  is not tight. Moreover, we prove the 13 

stronge consistency of  𝜃𝑛
  . 14 

 15 
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1. Introduction  19 

Let 𝐵𝐻 : =  𝐵𝑡
𝐻 , 𝑡 ⩾ 0  be a fractional Brownian motion (fBm) of Hurst index  20 

H ∈  0,1 , that is, a centered Gaussian process starting from zero with 21 

covariance  22 

E(Bt
H Bs

H) =
1

2
 t2H + s2H −  t − s 2H  

Note that when H =
1

2
, B

1

2 is a standard Brownian motion.  23 

Consider the fractional Vasicek-type of the first kind  X: =  Xt , t ⩾ 0 , defined 24 

as the unique (pathwise) solution to  25 

 
𝑑𝑋𝑡 = 𝜃(µ + 𝑋𝑡)𝑑𝑡 + 𝑑𝐵𝑡

𝐻 ,   𝑡 > 0,
𝑋0 = 0,                                                  

                                           (1.1) 26 

 where μ ∈ ℝ and θ > 0 are considered as unknown parameters.  27 



 

 

Let 𝜃𝑇
  and µ𝑇   be the least squares-type estimators of  and µ, respectively, 28 

based on continuous observation of X . As we known, least squares estimators 29 

method are motivated by the argument of minimize a quadratic function μ a 30 

and θ, respectively,  31 

 𝜇, 𝜃 ↦   Ẋ𝑡 − 𝜃 𝜇 + 𝑋𝑡  
2

𝑇

0

𝑑𝑡 

where Ẋ𝑡  denotes the differentiation of 𝑋𝑡  with respect to t. Taking the partial 32 

derivative for μ a and θ, separately. Then solving the equations, we can obtain 33 

the east squares estimators of μ a and θ, denoted by 𝜃𝑇
  and µ𝑇   respectively,  34 

 35 

𝜃𝑇
 =

1

2
𝑇𝑋𝑇

2−𝑋𝑇  𝑋𝑠𝑑𝑠
𝑇

0

𝑇  𝑋𝑆
2𝑑𝑠−

𝑇

0   𝑋𝑠𝑑𝑠
𝑇

0  
2                    (1.2)  36 

   µ𝑇 =
 𝑋𝑆

2𝑑𝑠−
1

2
𝑋𝑇  𝑋𝑆𝑑𝑠

𝑇

0

𝑇

0
1

2
𝑇𝑋𝑇− 𝑋𝑠𝑑𝑠

𝑇

0

                     (1.3)                                                     37 

In recent years, the study of various problems related to the model (1.1) has 38 

attracted interest. In finance modeling μ can be interpreted as the long-run 39 

equilibrium value of X whereas θ represents the speed of reversion. For a 40 

motivation in mathematical finance and further references, we refer the reader 41 

to [2,3, 4, 5]. When 𝐵𝐻  is replaced by a standard Brownian motion, the model 42 

(1.1) with µ = 0 was originally proposed by Ornstein and Uhlenbeck and then it 43 

was generalized by Vasicek, see [14].  In the ergodic case, the statistical infe-44 

rence for several fractional Ornstein-Uhlenbeck (fOU) models has been recently 45 

developed in the papers [8], [11] and [15]. The case of non-ergodic fOU process 46 

can be found in [1], [6], [7], [9] and [10]. 47 

Let us describe what is known about the asymptotic behaviors of the 48 

estimators (1.2) and (1.3), studied in [9]: 49 

 for every H ∈ (0,1),  we have almost surely,  as T → ∞ , 50 

 𝜃𝑇
 , µ𝑇  →  𝜃, µ                                                  (1.4) 51 

 assume that H ∈ (0,1), and  𝑁1~Ɲ 0,1 ,   𝑁2~Ɲ 0,1 ,  and 𝐵𝐻  are 52 

independent, then as T → ∞ , 53 

 𝑒Ɵ𝑇 𝜃𝑇
 − 𝜃 , 𝑇1−𝐻 µ𝑇 − µ  

𝐿𝑎𝑤
    

2𝜃𝜎𝐵𝐻𝑁2

µ + 𝜁𝐵𝐻 ,∞

,
1

𝜃
𝑁1 ,                           1.5  



 

 

𝜎𝐵𝐻
2 =

𝐻𝛤 2𝐻 

Ɵ2𝐻 , and 𝜁𝐵𝐻 ,∞~Ɲ 0, 𝜎𝐵𝐻
2   is independent of 𝑁1  and 𝑁2. 54 

From a practical point of view, in parametric inference, it is more realistic and 55 

interesting to consider asymptotic estimation for (1.1) based on discrete 56 

observations. Then, in the present paper, we will assume that the process X 57 

given in (1.1) is observed equidistantly in time with the step size 𝛥𝑛 : 𝑡𝑖=i𝛥𝑛 , 58 

𝑖=1,...,𝑛 and 𝑇𝑛 = 𝑛𝛥𝑛  denotes the length of the "observation window".  59 

Here, based on discrete-time observations of X defined in (1.1), we will analyse 60 

the following discrete versions 𝜃𝑛
  and µ𝑛  for 𝜃𝑡

  and µ𝑡   respectively, defined as  61 

 62 

               𝜃𝑛
 =

1

2
𝑋𝑇𝑛

2 −
𝑋𝑇𝑛

𝑛
 𝑋𝑡𝑖−1

𝑛
𝑖=1

𝛥𝑛  𝑋𝑡𝑖−1

2 −
𝛥𝑛

𝑛
  𝑋𝑡𝑖−1

𝑛
𝑖=1  

2𝑛
𝑖=1

                                                (1.6) 

                  µ𝑛 =
∆𝑛  𝑋𝑡𝑖−1

2 −
1

2

𝑛
𝑖=1 𝑋𝑡𝑛∆𝑛  𝑋𝑡𝑖−1

𝑛
𝑖=1

1

2
𝑇𝑛𝑋𝑇𝑛 − ∆𝑛  𝑋𝑡𝑖−1

𝑛
𝑖=1

                                          (1.7) 

Our paper is organized as follows. In Section 2, we give the basic knowledge 63 

about Young integral and some preliminary results, which will be very useful to 64 

our main proof. In Section 3, based on discrete observations of X defined in 65 

(1.1), we study the rate consistency of the estimators 𝜃𝑛
  and µ𝑛 . 66 

2. Preliminaries 67 

In this section, we briefly recall some basic elements of Young integral (see 68 

[16] ), which are helpful for some of the arguments we use.  69 

For any  𝛼 ∈  0, 1 , , we denote by  ℋ𝛼( 0,1 ) the set of Holder continuous 70 

functions, that is, the set of functions 𝑓:  0, 𝑇 → ℝ such that  71 

 𝑓 𝛼 =
𝑆𝑢𝑝

0 ≤ 𝑠 < 𝑡 ≤ 𝑇

 𝑓 𝑡 − 𝑓(𝑠) 

(𝑡 − 𝑠)𝛼
< ∞ . 

We also set  𝑓 ∞ : = 𝑆𝑢𝑝𝑡∊ 0,𝑇  𝑓(𝑡)  and equip  ℋ𝛼(  0, 𝑇  ) with the norm 72 

 𝑓 𝛼 ∶=  𝑓 𝛼 +  𝑓 ∞  . 

Let 𝑓 ∈ ℋ𝛼  0, 𝑇  , and consider the operator 𝑇𝑓 ∶ 𝐶1( 0, 𝑇 ) → 𝐶0( 0, 𝑇 ) 73 

defined as 74 



 

 

  𝑇𝑓 𝑔  𝑡 =  𝑓(𝑢)𝑔′(𝑢)𝑑𝑢
𝑡

0
,                𝑡 ∈  0, 𝑇 . 75 

It can be shown (see, [13]) that, for any 𝛽 ∈  1 − 𝛼, 1  , there exists a constant 76 

𝐶𝛼,𝛽 ,𝑇 > 0 depending only on 𝛼, 𝛽 and T such that, for any  𝑔 ∊ ℋ𝛼  0, 𝑇  , 77 

                                𝑓(𝑢)𝑔′(𝑢)𝑑𝑢
.

0
 
𝛽

≤ 𝐶𝛼,𝛽 ,𝑇 𝑓 𝛼 𝑔 𝛽 . 78 

We deduce that, for any  α ∈  0,1  any   𝑓 ∈ ℋ𝛼  0, 𝑇   and any β ∈  1 − α, 1  79 

the linear operator 𝑇𝑓 ∶  𝐶1( 0, 𝑇 ) ⊂ ℋ𝛽( 0, 𝑇 ) → ℋ𝛽 ( 0, 𝑇 ), defined as 80 

𝑇𝑓 𝑔 =  𝑓(𝑢)𝑔′(𝑢)𝑑𝑢
.

0
  is continuous with respect to the norm  .  𝛽  . 81 

 By density, it extends (in an unique way) to an operator defined on ℋ𝛽 . As 82 

consequence, if  𝑓 ∈ ℋ𝛼(  0, 𝑇  ),   if  𝑔 ∈ ℋ𝛽(  0, 𝑇  ) and if 𝛼 + 𝛽 > 1 then 83 

the (so-called) Young integral  𝑓(𝑢)𝑑𝑔(𝑢)
.

0
 is (well) defined as being 𝑇𝑓 𝑔 . 84 

The Young integral obeys the following formula. Let 𝑓 ∈ ℋ𝛼( 0, 𝑇 ) with  85 

α ∈  0,1  and 𝑔 ∈ ℋ𝛽( 0, 𝑇 ) with β ∈  0,1  such that α + β > 1. Then 86 

 𝑓𝑢𝑑𝑔𝑢
.

0
 and   𝑓𝑢𝑑𝑔𝑢

.

0
  are well-defined as Young integrals. Moreover, for all 87 

t ∈  0, T , 88 

𝑓𝑡𝑔𝑡 = 𝑓0𝑔0 +  𝑔𝑢
𝑡

0
𝑑𝑓𝑢 +  𝑓𝑢𝑑𝑔𝑢

𝑡

0
 .                    (2.1)    89 

In order to study the strong consistency, we will need the following direct 90 

consequence of the BorelCantelli Lemma (see Kloeden and Neuenirch (2007)), 91 

which allows us to turn convergence rates in the p-th mean into pathwise 92 

convergence rates . 93 

Lemma 2.1. ([12]) Let 𝛽 > 0 and  let  𝑍𝑛 𝑛∊ℕ  be a sequence of random 94 

variables. If for every 𝑝 ≥ 1 there exists a constant 𝑐𝑝 > 0 such that for all   95 

𝑛 ∈ ℕ,  96 

 𝐸 𝑍𝑛  
𝑝 

1
𝑝 ≤ 𝐶𝑝 . 𝑛−𝛽      , 97 

then for all ε > 0 there exists a random variable ɳ𝜀  such that  98 

                                                   𝑍𝑛  ≤ ɳ𝜀 . 𝑛−𝛽+𝜀   almost surely 99 

for all    𝑛 ∊ ℕ. Moreover,    𝐸 ɳ𝜀  
𝑝 < ∞ for all 𝑝 ≥ 1. 100 

Next, let us note that the unique solution to (1.1) can be written as  101 

𝑋𝑡 = 𝜇 𝑒𝜃𝑡 − 1 + 𝑒𝜃𝑡  𝑒−𝜃𝑠𝑡

0
𝑑𝐵𝑠

𝐻   ,   𝑡 ≥ 0 .         (2.2)   102 



 

 

We will also need the following processes, for every   𝑡 ≥ 0 103 

     𝜁𝑡 ∶=  𝑒−𝜃𝑡𝑑𝐵𝑠
𝐻𝑡

0
 ;       ∶=  𝑋𝑠𝑑𝑠𝑍𝑡 ∶=  𝑒−𝜃𝑡𝐵𝑠

𝐻𝑑𝑠                    (2.3)
𝑡

0

𝑡

0𝑡  104 

Using (2.2), we can write  105 

                           𝑋𝑡 = 𝑢 𝑒−𝜃𝑡 − 1 + 𝑒−𝜃𝑡𝜁𝑡  .                                (2.4) 

Furthermore, by (1.1),  106 

                                   𝑋𝑡 = 𝜇𝜃𝑡 + 𝐵𝑡
𝐻  .                                               (2.5) 

Moreover, applying the formula (2.1), we have  107 

      𝜁𝑡 = 𝑒−𝜃𝑡𝐵𝑡
𝐻 + 𝜃 𝑒−𝜃𝑡𝐵𝑠

𝐻𝑑𝑠
𝑡

0

= 𝑒−𝜃𝑡𝐵𝑡
𝐻 + 𝜃𝑍𝑡  .                 (2.6) 

From (2.4) we can also write  108 

              𝑋𝑡 = 𝑒𝜃𝑡𝑍𝑡 ,     With 𝑍𝑡 = 𝜇 1 − 𝑒−𝜃𝑡 + 𝜁𝑡        𝑡 ≥ 0.               (2.7)      109 

Lemma 2.2. ([6]). Assume that the process 𝐵𝐻   has Hölder continuous path of 110 

order γ ∈  0,1 . Let ζ  be given by (2.3). Then for all ε ∈  0, γ  the process ζ 111 

admits a modification with (𝛾 − 𝜀)-Hölder  continuous paths. 112 

Moreover  113 

                 𝑍𝑡 → 𝑍∞ ∶=  𝑒−𝜃𝑡𝐵𝑠
𝐻𝑑𝑠

∞

0
,           𝜁 𝑡 → 𝜁 ∞ ∶= 𝜃𝑍∞                     (2.8) 114 

almost surely and in 𝐿2 Ω  as 𝑇 → ∞. 115 

Lemma3.2. ([9]). Assume that H ∈ (0, 1). Then, almost surely, as  116 

               𝑒−𝜃𝑇𝑋𝑇 → 𝜇 + 𝜁∞                                       (2.9) 

          𝑒−𝜃𝑇  𝑋𝑠

𝑇

0

𝑑𝑠 →
1

𝜃
(𝜇 + 𝜁∞)                         (2.10) 

    
𝑒−𝜃𝑇

𝑇
 𝑠𝑋𝑠

𝑇

0

𝑑𝑠 →
1

𝜃
(𝜇 + 𝜁∞)                             (2.11) 

                             
𝑒−𝜃𝑇

𝑇𝛿  |𝑋𝑠|
𝑇

0
𝑑𝑠𝑑𝑠 → 0   for any 𝛿˃0                  (2.12) 117 

    𝑒−2𝜃𝑇  𝑋𝑠
2

𝑇

0

𝑑𝑠 →
1

2𝜃
 𝜇 + 𝜁∞ 2                           (2.13) 

where  is defined in Lemma 2.2.  118 



 

 

From now on, the generic constant is always denoted by C(.) which depends on 119 

certain parameters in the parentheses.  120 

3.Main results  121 

Lemme 3.1. Let  (Sn , n ≥ 1) and (Rn , n ≥ 2) be a random sequences defined by 122 

  Sn : = ∆𝑛  𝑋𝑡𝑖−1

2𝑛
𝑖=1    ;     Sn : = ∆𝑛  𝑒−2𝜃(𝑇𝑛−𝑡𝑖)(𝑍𝑡𝑖

2 − 𝑍𝑡𝑖−1

2 )𝑛−1
𝑖=1 .    (3.1)  123 

Then for every n ≥ 2,  124 

                            𝑆𝑛𝑒
−2𝜃𝑇𝑛 =

∆𝑛

𝑒2∆𝑛−1
(𝑍𝑡𝑛−1

2 − 𝑅𝑛) .                              (3.2)                   125 

In addition if ∆𝑛→ 0 and n∆n
1+α→ ∞ for some α > 0,  126 

                          Rn → 0 almost surely as n → ∞.                               (3.3)  127 

In particular, 128 

                                𝑆𝑛𝑒
−2𝜃𝑇𝑛 →

(𝜇+𝜁∞ )2

2𝜃
  almost surely as n → ∞.     (3.4)      129 

Proof. Using (2.7), we can write for every n ≥ 2,  130 

  𝑆𝑛𝑒
−2𝜃𝑇𝑛 =   ∆𝑛  𝑒−2𝜃(𝑛−𝑖)∆𝑛

𝑛

𝑖=1

𝑒−2𝜃∆𝑛𝑍𝑡𝑖−1

2                       

                     =
∆𝑛

𝑒2𝜃∆𝑛 − 1
 𝑒−2𝜃(𝑛−𝑖)∆𝑛

𝑛

𝑖=1

 1 −
1

𝑒2𝜃∆𝑛
 𝑍𝑡𝑖−1

2 . 

This imply that 131 

𝑆𝑛𝑒
−2𝜃𝑇𝑛 =

∆𝑛

𝑒2𝜃∆𝑛 − 1
  𝑒−2𝜃(𝑛−𝑖)∆𝑛 − 𝑒−2𝜃(𝑛+1−𝑖)∆𝑛  𝑍𝑡𝑖−1

2
𝑛

𝑖=1
             

             =
∆𝑛

𝑒2𝜃∆𝑛 − 1
 𝑍𝑡𝑛−1

2 −   𝑍𝑡𝑖−1

2 − 𝑍𝑡𝑖−2

2  𝑒−2𝜃(𝑛+1−𝑖)∆𝑛

𝑛

𝑖=1
  

=
∆𝑛

𝑒2𝜃∆𝑛 − 1
 𝑍𝑡𝑛−1

2 − 𝑅𝑛     ,                                           

which implies (3.2). 132 

Let us now prove (3.3). First, observe that ∆𝑛→ 0 and  n∆n
1+α→ ∞ imply that 133 

n∆n→ ∞ . On the other hand, (2.8) implies  134 

𝑍𝑇 → 𝜇 + 𝜁∞                                                           (3.5)  135 



 

 

almost surely and in 𝐿2 Ω  as T → ∞.  136 

Thus, by using (2.7),  𝜁𝑡 , 𝑡 ≥ 0  is Gaussian and (3.5), we obtain for every p ≥137 

0, 138 

 𝐸  Zti

2 − Zti−1

2  
𝑝
  

1

𝑝 ≤  𝐸   𝑍𝑡𝑖 − 𝑍𝑡𝑖−1
  𝑍𝑡𝑖 + 𝑍𝑡𝑖−1

  
𝑝
  

1

𝑝                                       

≤ C(μ, θ, H) E  𝑍𝑡𝑖 − 𝑍𝑡𝑖−1
 
p
  

1

p              

                             ≤ C(μ, θ, H)   𝑒−𝜃𝑡𝑖 − 𝑒−𝜃𝑡𝑖−1  +  E  𝜁𝑡𝑖 − 𝜁𝑡𝑖−1
 
p
  

1

p  

                                  ≤ C(p, μ, θ, H)  𝑒−𝜃𝑡𝑖  𝑒𝜃∆𝑛 − 1 +  E   𝜁𝑡𝑖 − 𝜁𝑡𝑖−1
 
2
  

1

2
  

                               ≤ C(p, μ, θ, H) ∆n𝑒
−𝜃𝑡𝑖 + ∆𝑛

𝐻𝑒−𝜃𝑖∆𝑛                                   

                                       ≤ C(p, μ, θ, H)∆𝑛
𝐻𝑒−𝜃𝑡𝑖 ,                                                    (3.1)     

where  we used  
𝑒𝜃∆𝑛−1

∆𝑛
→ 0 and the following inequality given in [10] for every 139 

i = 1, . . . , n,     n ≥ 1,    140 

 E   𝜁𝑡𝑖 − 𝜁𝑡𝑖−1
 
2
  

1

2
≤ C(θ, H)∆𝑛

𝐻𝑒−𝜃𝑡𝑖    . 

 Thus for every p ≥ 1, 141 

 𝐸  𝑅𝑛  
𝑝  

1

𝑝 ≤  𝑒−2𝜃(𝑛−𝑖)∆𝑛

𝑛−1

𝑖=1

 𝐸  𝑍𝑡𝑖
2 − 𝑍𝑡𝑖−1

2  
𝑝
  

1

𝑝

                           

≤ C(p, μ, θ, H)𝑒−𝜃𝑛∆𝑛∆𝑛
𝐻  𝑒−𝜃(𝑛−𝑖)∆𝑛

𝑛−1

𝑖=1

 

      ≤ C(p, μ, θ, H)𝑒−𝜃𝑛∆𝑛∆𝑛
𝐻𝑒−𝜃∆𝑛

1 − 𝑒−𝜃(𝑛−1)∆𝑛

1 − 𝑒−𝜃∆𝑛
 

≤ C(p, μ, θ, H)∆𝑛
𝐻−1𝑒−𝜃𝑛∆𝑛                .                           (3.7)  142 

The last inequality comes from ∆𝑛→ 0 and 
∆𝑛

1−𝑒−𝜃∆𝑛
→

1

𝜃
  . 143 

Taking a constant β verifying  
1−𝛾

𝛽
< 𝛼 < 𝛽 , there is ε > 0 such that α =

ε+1−γ

β−ε
 . 144 

Hence, we can write  145 



 

 

 𝑛∆𝑛 
𝛽∆𝑛

1−𝛾
= 𝑛𝜀 𝑛∆𝑛

1+𝛼 𝛽−𝜀                    .                 (3.8)  146 

As a consequence, by (3.7) and (3.8), 147 

 𝐸  𝑅𝑛  
𝑝  

1

𝑝 ≤ 𝐶(𝑝, 𝜃, 𝜇, 𝐻)∆𝑛
𝛾−1

𝑒−𝜃𝑛∆𝑛                         

                  ≤ C(p, θ, μ, H)
1

𝑛𝜀 𝑛∆𝑛
1+𝛼 𝛽−𝜀

 n∆n 
β

eθn∆n
 

≤ C(p, θ, μ, H)n−ε .                                                (3.9)  148 

Therefore, by combining (3.9) and Lemma 2.1, the convergence (3.3) is proved. 149 

On the other hand, the convergence (3.4) is a direct consequence of (3.2), (3.3) 150 

and (3.5). □  151 

Lemme 3.2.  Define for every n ≥ 1 152 

                                  𝐷𝑛 : =
𝑒−2𝜃𝑇𝑛

𝑛
 𝑋𝑡𝑖−1

𝑛
𝑖=1 .                                    (3.10)  153 

Assume that  ∆𝑛→ 0 and n∆n
1+α→ ∞ for some α > 0, then, for every n ≥ 1, 154 

                              E Dn
2 ≤  C θ, μ, H, α n−

2α

1+α                                 (3.11)  155 

Moreover, for every 0 ≤ δ < 1, 156 

                        E    n∆n 
δDn 

2
 ≤ C θ, μ, H, α n−

2α (1−H )

1+α  .                (3.12)  157 

As a consequence, for every 0 ≤ δ < 1, 158 

                           n∆n 
δ → 0  almost surely as n → ∞.                    (3.13)  159 

Proof. We first prove (3.11). Using (2.7) and (3.5), we have 160 

E Dn
2 =

e−2θTn

n2
 E  Xti−1

Xtj−1
 

n

i,j=1

=
e−2θTn

n2
 eθti−1+θtj−1 E Zti−1

Ztj−1
 

n

i,j=1

 

                ≤ C(θ, μ, H)
e−2θTn

n2
 eθti−1+θtj−1

n

i,j=1

= C(θ, μ, H)  
e−θTn

n
 eθti−1

n

i=1

  

2

 

= C(θ, μ, H)  
e−θTn

n
 
eθn∆n − 1

eθ∆n − 1
 

2

                                               



 

 

≤ C(θ, μ, H)  
1

n∆n
 

∆n

eθ∆n − 1
 

2

                                                   

≤ C(θ, μ, H)
1

 n∆n  2         .                                                             (3.14)  161 

Setting γ =
α

1+α
 , we obtain 162 

E Dn
2 ≤ C(θ, μ, H)

n−2γ

 n1−γ∆n 2
= C(θ, μ, H)

n−
2α

1+α

 n∆n
1+α 

1

1+α

≤ C(θ, μ, H, α)n−
2α

1+α  ,  

which proves (3.11).  163 

For (3.12), by (3.14), we have,   164 

E   n∆n 
H Dn 

2 ≤ C(θ, μ, H) n∆n 
−2(1−γ) . 

Thus, using similar arguments as in (3.8), we can conclude  165 

E   n∆n 
H Dn 

2 ≤ C(θ, μ, H, α)n−
2α (1−H )

1+α   , 

which implies the desired result.  166 

Finally, the convergence (3.13) is a direct consequence of (3.12) and Lemma 167 

2.1. □  168 

Definition 3.1.  Let  𝑍𝑛  be a sequence of random variables defined on  Ω, ℱ, 𝑃 . 169 

We say  𝑍𝑛   is tight  (or bounded in probability), if for every ε > 0, there 170 

exists 𝑀𝜀 > 0 such that, 171 

                                        P |Zn| > Mε < ε ,    for all n. 172 

Theorem 3.3.  Let  H ∈ (0,1). Suppose that ∆𝑛→ 0 and n∆n
1+α→ ∞ for some 173 

α > 0. Then, for every q ≥ 1, 174 

                                      ∆𝑛
𝑞𝑒𝜃𝑇𝑛  𝜃𝑛

 − 𝜃  is not tight.                                 (3.15) 175 

In addition if we assume that n∆n
3→ 0 as n → ∞, then the estimator 𝜃𝑛

  is  176 

 𝑇𝑛 -consistent in the sens that the sequence 177 

                                     Tn 𝜃𝑛
 − 𝜃  is  tight                                         (3.16) 178 

and 179 

                                    Tn 𝜇𝑛 − 𝜇  is not tight.                                    (3.17) 180 

Proof.   Fix q ≥ 1. From (1.6) and (2.7) we can write 181 



 

 

∆𝑛
𝑞𝑒𝜃𝑇𝑛  𝜃𝑛

 − 𝜃   182 

=  ∆𝑛
𝑞𝑒𝜃𝑇𝑛  

1

2
𝑍𝑇𝑛

2 − 𝑍𝑇𝑛𝐷𝑛

𝑒2𝜃𝑇𝑛 𝑆𝑛−  𝑇𝑛𝐷𝑛  
2 − 𝜃    183 

 184 

=
 ∆𝑛

𝑞
𝑒𝜃𝑇𝑛

2𝑒2𝜃𝑇𝑛 𝑆𝑛−2  𝑇𝑛𝐷𝑛  
2   ZTn

2 − ZTn−1

2  +  1 −
2𝜃∆𝑛

𝑒2𝜃∆𝑛−1
 ZTn−1

2 − 2θ  𝑒−2𝜃𝑇𝑛𝑆𝑛 −185 

∆𝑛

𝑒2𝜃∆𝑛−1
ZTn−1

2    186 

Moeover, 187 

𝑒−2𝜃𝑇𝑛𝑆𝑛 −
∆𝑛

𝑒2𝜃∆𝑛−1
ZTn−1

2 =  𝑒−2𝜃𝑇𝑛∆𝑛  𝑒2𝜃𝑡𝑖−1 Zti−1

2𝑛
𝑖=1 −

∆𝑛

𝑒2𝜃∆𝑛−1
ZTn−1

2           188 

                                  =
∆𝑛

𝑒2𝜃∆𝑛−1
  𝑒−2𝜃(𝑇𝑛−𝑡𝑖)Zti−1

2𝑛
𝑖=1 −  𝑒−2𝜃(𝑇𝑛−𝑡𝑖−1)Zti−1

2𝑛
𝑖=1 − ZTn−1

2   189 

                                        =  
∆𝑛

𝑒2𝜃∆𝑛−1
𝑅𝑛  , 190 

where 𝑅𝑛  is given by (3.1).     191 

Thus we obtain 192 

   ∆𝑛
𝑞𝑒𝜃𝑇𝑛  𝜃𝑛

 − 𝜃      

=
 ∆𝑛

𝑞𝑒𝜃𝑇𝑛

2𝑒2𝜃𝑇𝑛𝑆𝑛
  ZTn

2 − ZTn−1

2  +  1 −
2𝜃∆𝑛

𝑒2𝜃∆𝑛 − 1
 ZTn −1

2

+  
2𝜃∆𝑛

𝑒2𝜃∆𝑛 − 1
 Rn . (3.18) 

 193 

According to (3.6), we get  194 

                  𝐸   ∆𝑛
𝑞𝑒𝜃𝑇𝑛  ZTn

2 − ZTn−1

2   
2
  

1

2

≤ C θ, μ, H ∆n
q+H

→  0 .                195 

(3.19) 196 

We also have 197 

  ∆𝑛
𝑞𝑒𝜃𝑇𝑛  1 −

2𝜃∆𝑛

𝑒2𝜃∆𝑛−1
 = ∆𝑛

𝑞+1𝑒𝜃𝑇𝑛  
𝑒2𝜃∆𝑛−1−2𝜃∆𝑛

∆𝑛
2  

∆𝑛

𝑒2𝜃∆𝑛−1
 →198 

∞                     (3.20)  199 

since  200 

∆𝑛
𝑞+1𝑒𝜃𝑇𝑛 =  𝑛∆𝑛

𝑞+𝛼 
𝑞+1

𝛼 𝑒𝜃𝑇𝑛

𝑇𝑛

𝑞+1
𝛼

→ ∞  and    
𝑒2𝜃∆𝑛−1−2𝜃∆𝑛

∆𝑛
2  

∆𝑛

𝑒2𝜃∆𝑛−1
 → 𝜃.       201 

Furthermore, by (3.7), 202 



 

 

               𝐸   ∆𝑛
𝑞𝑒𝜃𝑇𝑛𝑅𝑛 

2
  

1

2
≤ C θ, μ, H ∆n

q+H−1
→  0 .                              (3.21) 

Combining (3.18), (3.19), (3.20), (3.21) and (3.4), we conclude that for every 203 

q ≥ 1,    ∆𝑛
𝑞𝑒𝜃𝑇𝑛  𝜃𝑛

 − 𝜃  is not tight. 204 

For 0 ≤ q < 1 we have  205 

 ∆𝑛
𝑞𝑒𝜃𝑇𝑛  𝜃𝑛

 − 𝜃 =  ∆𝑛
𝑞−1   ∆n𝑒

𝜃𝑇𝑛  𝜃𝑛
 − 𝜃  , 206 

which completes the proof of (3.15), where we used the previous case and the 207 

fact that ∆𝑛
𝑞−1→ ∞. 208 

Let us now prove (3.16). It follows from (3.18) that 209 

 𝑇𝑛 𝜃𝑛
 − 𝜃 =

  𝑇𝑛

2𝑒−2𝜃𝑇𝑛 𝑆𝑛
  ZTn

2 − ZTn−1

2  +  1 −
2𝜃∆𝑛

𝑒2𝜃∆𝑛−1
 ZTn−1

2 +210 

 
2𝜃∆𝑛

𝑒2𝜃∆𝑛−1
 Rn  . 211 

Combining this with  212 

 𝐸    𝑇𝑛 ZTn

2 − ZTn−1

2   
2
  

1

2

≤ C θ, γ ∆n
γ
 Tne−θTn →  0 , 213 

 𝑇𝑛  1 −
2𝜃∆𝑛

𝑒2𝜃∆𝑛−1
 =  n∆n

3  
𝑒2𝜃∆𝑛−1−2𝜃∆𝑛

∆𝑛
2  

∆𝑛

𝑒2𝜃∆𝑛−1
 → 0 , 214 

 𝐸    𝑇𝑛𝑅𝑛 
2
  

1

2
≤ C θ, γ ∆n

γ−1
 Tne−θTn = C θ, γ 

𝑇𝑛

1

2
+

1−𝛾

𝛼 𝑒−𝜃𝑇𝑛

 𝑛∆𝑛
1+𝛼 

1−𝛾

𝛼

→  0 , 

and the convergence (3.4), we deduce that  215 

                     Tn 𝜃𝑛
 − 𝜃  → 0                                                             (3.22) 

in probability, which proves (3.16). 216 

Now it remains to prove (3.17). Using (1.6) and (1.7), we can show that 𝜃𝑛
  and 217 

𝜇𝑛  satisfy  218 

𝜃𝑛
 𝜇𝑛 𝑇𝑛 =

𝑋𝑇𝑛
  𝑋𝑡𝑖−1

2𝑛
𝑖=1 −

𝑋𝑇𝑛

𝑛
 𝑋𝑡𝑖−1

𝑛
𝑖=1  

 𝑋𝑡𝑖−1

2 −
1

𝑛
  𝑋𝑡𝑖−1

𝑛
𝑖=1  

2𝑛
𝑖=1

 

=  𝑋𝑇𝑛 − 𝜃𝑛
 ∆𝑛  𝑋𝑡𝑖−1

𝑛

𝑖=1
.  



 

 

Combining this with (1.1), we obtain  219 

Tn𝜃𝑛
  𝜇𝑛 − 𝜇    220 

= 𝜇𝑇𝑛 𝜃 − 𝜃𝑛
  + 𝜃 𝑋𝑡

𝑇𝑛

0

𝑑𝑡 + 𝐵𝑇𝑛
𝐻 − 𝜃𝑛

 ∆𝑛  𝑋𝑡𝑖−1

𝑛

𝑖=1
                                            

= 𝜇𝑇𝑛 𝜃 − 𝜃𝑛
  + 𝜃𝑛

   𝑋𝑡
𝑇𝑛

0
𝑑𝑡 − ∆𝑛  𝑋𝑡𝑖−1

𝑛
𝑖=1  +  𝜃 − 𝜃𝑛

   𝑋𝑡
𝑇𝑛

0
𝑑𝑡 + 𝐵𝑇𝑛

𝐻 . 221 

Thus, we obtain 222 

 Tn 𝜇𝑛 − 𝜇   223 

=
μ Tn

𝜃𝑛
  𝜃 − 𝜃𝑛

  +
1

 𝑇𝑛
  𝑋𝑡

𝑇𝑛
0

𝑑𝑡 − ∆𝑛  𝑋𝑡𝑖−1

𝑛
𝑖=1  +

 𝜃−𝜃𝑛
  

𝜃𝑛
  𝑇𝑛

 𝑋𝑡
𝑇𝑛

0
𝑑𝑡 +224 

𝐵𝑇𝑛
𝐻

𝜃𝑛
  𝑇𝑛

         225 

: = An + Bn + Cn + Dn  . 226 

Theorem 3.2 and the convergence (3.22) imply that An → 0 in probability. 227 

We can write 𝐶𝑛 =
 𝜃−𝜃𝑛

  

𝜃𝑛
  𝑇𝑛

 𝑋𝑡
𝑇𝑛

0
𝑑𝑡 =

 𝑇𝑛  𝜃−𝜃𝑛
  

𝜃𝑛
  

1

𝑇𝑛
 𝑋𝑡

𝑇𝑛
0

𝑑𝑡 .  228 

Then, Theorem 3.2 and the convergence (3.22) imply that 
 𝑇𝑛  𝜃−𝜃𝑛

  

𝜃𝑛
 → 0 in 229 

probability. Moreover, using l’Hôpital rule, 230 

lim
𝑇𝑛→∞

1

𝑇𝑛
 𝑋𝑡

𝑇𝑛

0

𝑑𝑡 = lim
𝑇𝑛→∞

𝑋𝑇𝑛 = lim
𝑇𝑛→∞

 𝜇 1 − 𝑒−𝜃𝑇𝑛  + 𝜁𝑇𝑛  = 𝜇 + 𝜁∞ . 

Hence Cn → 0 in probability. 231 

Recall that E  𝐵𝑡
𝐻 − 𝐵𝑠

𝐻 2 =  t − s 2H   ;   t, s ≥ 0. 232 

Then for H ∈  0,
1

2
  , we have almost surely, as 𝑇𝑛 → ∞ 233 

𝐵𝑇𝑛
𝐻

 𝑇𝑛
→ 0,     by Borel-Cantelli Lemma. 234 

Combining this with Theorem 3.2 we obtain that 𝐷𝑛 : =
𝐵𝑇𝑛

𝐻

𝜃𝑛
  𝑇𝑛

→ 0 in probability. 235 



 

 

                𝐵𝑛 : =
1

 𝑇𝑛
  𝑋𝑡

𝑇𝑛

0

𝑑𝑡 − ∆𝑛  𝑋𝑡𝑖−1

𝑛

𝑖=1
 

=
𝑒𝜃𝑇𝑛

 𝑇𝑛
 𝑒−𝜃𝑇𝑛  𝑋𝑡

𝑇𝑛

0

𝑑𝑡 − 𝑒−𝜃𝑇𝑛∆𝑛  𝑋𝑡𝑖−1

𝑛

𝑖=1
           (3.23) 

By lemma 2.3, we have    𝑒−𝜃𝑇𝑛  𝑋𝑡
𝑇𝑛

0
𝑑𝑡 →

1

𝜃
 𝜇 + 𝜁∞  almost surely. 236 

We also have  237 

E   𝑒−𝜃𝑇𝑛∆𝑛  𝑋𝑡𝑖−1

𝑛

𝑖=1

 

2

 = ∆n
2e−2θTn  E  Xti−1

Xtj−1
 

n

i,j=1

= ∆n
2e−2θTn  eθti−1+θtj−1E Zti−1

Ztj−1
 

n

i,j=1

. 

Then, by using the same arguments as in Lemma 3.2, we obtain 238 

E   𝑒−𝜃𝑇𝑛 ∆𝑛  𝑋𝑡𝑖−1

𝑛
𝑖=1  

2
 ≤ C(μ, θ, H)∆n

2e−2θTn   
eθn∆n −1

eθ∆n −1
 

2

≤ C(μ, θ, H)∆n
2→ 0.  (3.24) 239 

Combining (2.10), (3.23),  (3.24), and the fact that 
𝑒𝜃𝑇𝑛

 𝑇𝑛
→ ∞, we conclude that 240 

𝐵𝑛 → ∞. 241 

Consequently, the convergence (3.17) is proved. Thus the desired results are 242 

obtained. □  243 

 244 

Theorem 3.2. Assume that 0 < 𝐻 < 1. Suppose that ∆𝑛→ 0 and 𝑛∆𝑛
1+𝛼→ 0  for 245 

some α>0.   Then as n → ∞,   246 

                                 𝜃𝑛
 → 𝜃   almost surely.                                                  (3.25) 247 

 248 

Proof. We can write 249 

𝜃𝑛
 =

1

2
𝑋𝑇𝑛

2 −
𝑋𝑇𝑛

𝑛
 𝑋𝑡𝑖−1

𝑛
𝑖=1

∆𝑛  𝑋𝑡𝑖−1

2 −
∆𝑛

𝑛
  𝑋𝑡𝑖−1

𝑛
𝑖=1  

2𝑛
𝑖=1

 

                                         =
1

2
𝑒−2𝜃𝑇𝑛𝑋𝑇𝑛

2 − 𝑍𝑇𝑛𝐷𝑛

𝑒−2𝜃𝑇𝑛 𝑆𝑛−  𝑛∆𝑛𝐷𝑛  
2 . 250 

   251 

Thus, according to (2.9) , (3.4) , (3.5) and (3.13), we can deduce that 252 

𝜃𝑛
 → 𝜃   almost surely as n → ∞. □  253 



 

 

 254 
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