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Least Squares Estimators of Drift Parameter for Discretely Observed
Fractional Vasicek-type Model

Abstract: We study the drift parameter estimation problem for a fractional
Vasicek-tygggmodel X: = {X;, t > 0}, that is defined as dX; = 8(p + X,)dfg+
dBl, t = 0 with unknown parameters 8 > 0 and pt ER, where {BY, t > 0} is a
fractionﬁrownian motion of Hurst index H €]0, 1[. Let 8, and [i; be the least
squares-type estimaigrs of 6 and p, respectively, based on continuous
observation of X. In this paper we assume that the process {X;,t > 0} is
observed at discrete time instants ¢;=id,,, i=1,...,n. We analyze discrete
versions 8, and {i, for 8, and [i; respectively. We show that the sequence

Jnd, (8, — 0) is tight and \/n4,, (i, — ) is not tight. Moreover, we prove the
stronge consistency of O, .

Key words: Fractional Brownian motion; Vasicek-type model; Young integral;

;arameter estimation; Discrete observations; Tightness.
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1. Introduction 0
Let B": = {Bf,t > 0} be a fractional Brownian motion (fBm) of Hurst index

H € ]0,1[, that is, a centered Gaussian process starting from zero with
covariance

1
E(BPBH) = E(tZH + s2H — |t — 5|2H)

1 1) . .
Note that when H = > Bz is a standard Brownian motion.

Consider the fractional Vasicek-type of the first kind X: = {X;,t > 0}, defined
as the unique (pathwise) solution to

{a!Xt =0(u+ X)dt + dBE, t >0, (D)

X0=0,

where g € Rand 8 > 0 are considered as unknown parameters.




Let 87 and [iy be the least squares-type estimators of and u, respectively,
based orgrontinuous observation of X. As we known, least squares estimators
method are motivated by the argument of minimize a quadratic function p a
and 0, respectively,

T
w.0) - [ 1% =0+ X e
. ’
where X; denotes the differentiation of X, with respect to t. Taking the partial
derivative for L a and 6, separately. Then solving the equations, we can obtain
the east squares estimators of p a and 6, denoted by Q-; and fiy respectively,

_ Arxz-x [T x.d
[ i Rl ”“T > (12)
T Jy X2ds—(f, X.ds)
T x2as—2xp [T Xsd
LTf:ID sds—3XT Jy Xsds (1.3)

1 T
STXr—[; Xsds

?\ recent years, the study of various problems related to the model (1.1) has
attracted interest. In finance modeling L can be interpreted as the long-run
equilibrium value of X whereas 0 represents the speed of reversion. For a
motivation in mathematical finance anl further references, we refer the reader
to [2,3, 4, 5]. When B¥ is replaced by a standard Brownian motion, the model
(1.1) with 4 = 0 was originally proposed.by Ornstein and Uhlenbeck and then it
was generalized by Vasicek, see [14]. In the ergodic case, the statistical infe-
rence for several fractional Ornstein-Uhlenheck (fOU) models has been recently
developed in the papers [8], [11] and [15]. The case of non-ergodic fOU process
can be found in [1], [6], [7], [9] and [10].

gt us describe what is known about the asymptotic behaviors of the
estimators (1.2) and (1.3), studied in [9]:

® foreveryH € (0,1), we have almost surely, as T — oo,
0r.17) - (8, 14
( i) = (6,0 (14)
® assume that H € (0,1), and N,~N(0,1), N,~N(0,1), and B are

independent, thenas T — oo ,

Law [ 280,uN, 1
or _ 1-H (e~ _ B 2 -
(o7 (87 - 0), 74 (i u))—>(—u o gNl), (1.5)




2 HI(2H)
pH = Tgzn >
From a practical point of view, in parametric inference, it is more realistic and

interesting to consider asymptotic estimagign for (1.1) based on discrete
observations. Then, in the present paper, we will assume that the process X
given in (1.1) is observed equidistantly in time with the step size 4,,: t;=i4,,,
i=1,..,nand T;, = n4,, denotes the length of the "observation window".

1

and {p# ., ~N(0, CF;H) is independent of N; and NV,.

Here, based on discrete-time observations of X defined in (1.1), we will analyse
the following discrete versions 8, and i, for 8, and [i; respectively, defined as

12 XTn. n
S X1, — i Xy,

G,

- 1.6)
n Ay 2 (
Ay Ein=1 Xé_.l T h (E?=1 Xti_1)

1
_ Ay Z?:l thi_1 - EinAn E?:l Xz;—_i

= — (1.7)
ETnXTn - An Z?=1Xt,_1

Our aper is organized as follows. In Section 2, we giyve the basic knowledge
about Young integral and some preliminary results, which will be ey useful to
our main proof. In Section 3, based on discrete observations of X defined in
(1.1), we study the rate consistency of the estimators 8, and [i;.

2. Preliminaries

In this section, we briefly recall some basic elements of Young integral (see
[16] ), which are helpful for some of the arguments we use.
Forany a € [0,1], , we denote by H*([0,1]) the set of Holder continuous
functions, that is, the set of functions f: [0,T] — R such that

_ Sup IF (&) = f(s)
|f|u - —_— <
0<s<t=T (t—-s)*

We also set |f|o: = Supiejor1|f(t)] and equip H*(|[0,T]|) with the norm

Iflle = 1fla+ 1fleo -
Let f € H%([0,T]), and consider the operator Ty : ct([o,TDH — c°([0, T
defined as




t !
Ty (g)(t) = é fg'(wadu, t€[0,T].
It can be shown (see, [13]) that, forany f € |1 — a, 1], there exists a constant
Capr > 0 depending only on a, § and T such that, forany g € H*([0,T]),
9 Ifs Fa0g' @eull , < Coprlifllallgls.
1

We deduce that, forany a € ]0,1[any f € H*([0,T]) and anyB € ]1 — a, 1]
the linear operator Ty : C@[0,T]) © HE([0,T]) = HE([0,T]), defined as
Te(g) = faf(u)g’(u)du is continuous with respect to the norm ||. ||z .

By density, it extends (in an unique way) to an operator defined on H£. As
consequence, if f € HE(|[0,T]]), if g € FP([0,T]]) andif a + B > 1 then
the (so-called) Young integral fo f(u)dg(u) is (well) defined as being Ty (g).

The Young integral obeys the following formula. Let f € 2 *([0, T]) with

a €]0,1[ and g € HF([0,T]) with B €]0,1[ such that a + > 1. Then
fo' fud g, and fa fudg, are well-defined as Young integrals. Moreover, for all
t e [0, T],

fede = fogo + Jy Gudfu + f; fudgy - (2.1)

ﬁ\ order to study the strong consistency, we will need the following direct
consequence of the BorelCantelli Lemma (see Kloeden and Neuenirch (2007)),
which allows us to turn convergence rates in the p-th mean into pathwise
convergence rates.

Lemma 2.1. ([12]) Let # > 0 and let (Z,),,cy be a sequence of random
variables. If for every p = 1 there exists a constant ¢, > 0 such that for all n €
NJ

ElZ) <G b,
then for all € > 0 there exists a random varr'atae 1. such that

17
|Z,] < n..n"F*¢ almost surely

forall n € N. Moreover, E|n.|P < coforallp = 1.

Next, let us note that the unigue solution to (1.1) can be written as

X =u(e® —1)+e® [[e"®dBl , t20. (22)




We will also need the following processes, forevery ¢ =0

g = _]'Ute‘etstH LS _]'Ot}('sdszr = fote‘GtBsts (2.3)
Using (2.2), we can write
X, =u(e % —1)+e%,. (2.4)
Furthermore, by (1.1),
X, = udt + B (2.5)

Moreover, applying the formula (2.1), we have

t
g =e 9B ¢ ef e "Blids =e 9Bl + 027, . (2.6)
0

From (2.4) we can also write
X, = ez, Withazr =pu(1-efb)+¢ t=0. (2.7)

Lemn‘a 2.2. ([6]). Assume that the process B has Hélder continuous path of
ordery € |0,1[. Let ¢ be given by (2.3). Then for all € € ]0,y[ the process {
admits a modification with (y — &)-Hélder continuous paths.

Moreover

a Ly = Loy i= fgme_erB;ldsr (2 {ni=0Zy (2.8)
1

almost surely and in L*(Q) as T — oo.

Lemma3.2. ([9]). Assume that H €(0, 1). Then, almost surely, as

e X = p+ o (2.9)
T 1
e-m”f X, ds — E(y + o) (2.10)
0
e—BT T 1
J sX; ds —>E(,u+§w) (2.11)
0
e~ 0T 1
Tfo |X;| dsds — 0 forany §>0 (2.12)
T 1
e-z"“”f XZds —» —(u+ {s)? (2.13)
o 20

where is defined in Lemma 2.2.




From now on, the generic constant is always denoted by C(.) which depends on
certain parameters in the parentheses.

3.Main results
Lemme 3.1. Let (S, n = 1) and (R, n = 2) be a random sequences defined by

Sni=A, T XE 1 Sm=A, X e® Mt (zE —Z2 ). (3.0)
Then for every n = 2,

- Ap
. S,e” 20T = m(an_1 —Ry) . (3.2)
2
In addition if A,— 0 and nAL*%— oo for some a > 0,

R, = 0 almost surely as n — oo. (3.3)
In particular,

2
Sne'ZBT“ - % almost surely as n - 0. (3.4)

Proof. Using (2.7), we can write for every n > 2,
"
S, 620 = A”Z o—26(n—0)y e—ZGA”Z?i_1

i=1

A S 1
_ n —20(n—i)A 2
- e20h, 1Z e CaE (1 - ezaan) Zt;-m'
=1

This imply that

13

A L ; -
S, =0T = ezm:_ 1Zi=1(6—28m_mn — em26(nH1-Dn) 72
Ay 2 moa 2 29(1 DA
P — — - n =1)4yn
T 208, _q [an-1 Zi=1(zfé-1 Zfi—z )e ]
A, 2
= e208, _ 1 [an-i - Rn] '

which implies (3.2).
plies (3.2)

Let us now prove (3.3). First, observe that A,— 0 and nALt%— co imply that
nA,— oo, On the other hand, (2.8) implies

Zr = U+ 3.5




almost surely and in L2(2) as T — co.

Thus, by using (2.7), {{;, t = 0} is Gaussian and (3.5), we obtain for every p =
0,

B[22 - 22 )P < (B{|(Z - o) (@ + 20 D

= C(W 0, H)(E“Zts - Zti-ilp]);

< cu0.1 (e~ e+ elle, ~ o 1))

1
< C(p, 1, 8, H)(Ape™ b + Alle=0iln)

< C(p, 1, 6, H)AT e, G.1)

ef8n_1

where we ysed — 0 and the following inequality given in [10] for every

mn

i=1,...,n, n=1,

(E [kci - qli—1|2])% < C(1, H)Age‘afi .

Thus for everyp = 1,

:
(E[IR,IPDr = Z e200-0n (E[|22 — 22_ "))
i=1
n-1 .
< C(p,u 0, H)e‘gﬂ-’ln,_\g Z e—f(m—)y
i=1
il e"g("‘n
—Ondg aH,—0A, — —© T
= C(p, we, H)e " nhAne 1 — e 08n
< C(p, . B, H)A;Te™nn . 3.7

Ay 1

—_
1-e~fn A

The last inequality comes from A,— 0 and

Taking a constant {3 verifying 1% < a < [ ,there is € > 0 such that « = =iy

Hence, we can write




(nA)PALY = nf(naLta)p-¢ . (3.8)

As a consequence, by (3.7) and (3.8),

1
(E[|R,IPD)? < C(p, 6, H)AL Le=02n

1 (nA,)P
= C(p, 0.1 H) ne (nA;l‘FtI) B-g @Bnip
< C(p,6,p, H)n = 39

Therefore, by combining (3.9) and Lemma 2.1, the convergence (3.3) is proved.

On the other hand, the convergence (3.4) is a direct consequence of (3.2), (3.3)
and (3.5). o

Lemme 3.2. Define foreveryn =1

e~20Tn
Dpi="—"%0 X, .. (3.10)
Assume that A,— 0 and nAL*%= oo for some a > 0, then, foreveryn = 1,
2o
E(D,*) < C(8, b H, o)n +a (3.11)
Moreover, for every 0 < 8 < 1,
2 _20(1-H)
E [((nAn)‘SDn) ] <C(0,wH )n tre . (3.12)
6]
As a consequence, forevery 0 < 8§ < 1,
(nA,)® — 0 almost surely asn — oo, (3.13)

Proof. We first prove (3.11). Using (2.7) and (3.5), we have

e=26Tn n e—20Tn n

2y — — Otj_,+0t_
B(D}) = — ; B (X Xy ,) = — Z g (2, 7, )
ij=1

Lj=1

a—26Tn e 8Tn &
< C(6, p, H) Z eti-1t85-1 — (9, , H) Z efti-1

nz [/ n
1j=1

e—eTn eﬁnAn _ 1)

n e%n—1

2

=C(®, u,H)(




1 A 2
sc@nm (5 Bty
n
1

Settingy = % , we obtain
n2y n_iz-:; 2a
=CO, W H)———— < C(6,, H,)n 1+a,
1—yA 2 1
(n n) (nA%‘+°‘)1+u

E(D3) < C(6,w,H)
which proves (3.11).
For (3.12), Ev (3.14), we have,

E[((nd,)"D,)?] < (6, i, H) (na,,)2-V),

Thus, using similar arguments as in (3.8), we can conclude

2a(1-H)

E[((nADHD,)?] < C(B, 1, H,a)n™ 1a

which implies the desired result.

Finally,g\e convergence (3.13) is a direct consequence of (3.12) and Lemma
2.1.0

a
Definition 3.1. Let {Z,} be a sequence of random variables defined on (Q, F, P).
We say {Z,,} is tight (or bounded in probability), if for every € > 0, there
exists M. > 0 such that,

Panl >M,) <e, foralln.

Theorem 3.3. Let H € (0,1). Suppose that A,— 0 and nAL*®— oo for some a >
0. Then, foreveryq = 1,

AlebT (8, — 6) is not tight. (3.13)
In addition if we assume that nA3— 0 as n — oo, then the estimator 8,, is

4/ Ty-consistent in the sens that the sequence

JTa(6, — 6) is tight (3.16)
and
JTulf, — ) is not tight. 3.17)

Proof. Fix q = 1. From (1.6) and (2.7) we can write




Ale®Te (8, — 0)

1,2
N DT i s
- n 2
e20Tn s, (| [Tabn)

q 8T -

Ape” ' m : p 204 - 7
=z, - 73, ) + (1 - ) 28, — 20 (¢S, —

2e29Tns, —2( Ty Dn) n n es¥in-1/ " Tn=

Aﬂ 2
=2, )|

Moeover,
e_ZBT"Sn - %ﬁlz&'n— = e_zeT"An XL, ezetiflziq - eziﬁ_l Z%n—l
ezaa,, - (EL_ e_‘w(r”_t‘)sz - E:i:l e—;zﬂ(”rn—n_l)zf1 ZTn 1)
= s R

where R, is given by (3.1).
Thus we obtain
ALe®Tn(8, — 8)

Aq Ty 26An ,
= Jetng, [(ZTn Zaot) +( m) 21,1

+ (jfi_) ] (3.18)

According to (3.6), we get

1
.
(¢ [(Aﬁe”"(zi ~74,.,)) D < €0, 1, H)AT> 0.
(3.19)

We also have

204
Ad0Tn (1 204, ) — AIF1,0T, (e n-1-204, Ap )
n 200y 1 n AZ 208, _q

o (3.20)

since

atl ot 204
g+l _gT, _ qtay , e " es"in—1-20A, Ay
AYT e = (nAT) © —z - 0 and " )~ 0.
T a
n

Furthermore, by (3.7),




1
(E [(AgeGTan)ZDZ < C(6, 1, AT, 1 (321)

Combining (3.18), (3.19), (3.20), (3.21) and (3.4), we conclude that for every
q=1, Ale®™ (8, — 0)is not tight.

For 0 < q < 1 we have
AZeT (B, — 0) = AL (8,77 (T, - ).

which completes the proof of (3.15), where we used the previous case and the
fact that AT oo,

Let us now prove (3.16). It follows from (3.18) that
(@~ 0) = s [@4, ~ 23, ) + (1 - 22 ) 26,y +
(ezzsi‘:tl) R“] ’
Combining this with
1

.

( [(\/_(ZT -74,.,)) ])2 < C(0,VALToe ¥ - 0,
A1 —

VI (1 - ) = Vold (= ) - 0.

9 e,
(E[(VTukn)])" = CCO AL Toe 0T = C(0,1) *——= - 0,
(A )«

and the convergence (3.4), we deduce that
JTa(6,—6) =0 (3.22)
in probability, which proves (3.16).
Now it remains to prove (3.17). Using (1.6) and (1.7), we can show that 8, and

Iy, satisfy

Li-1

XCZ:— - % ( ?=1 Xfi-i )2

n
= X, — E)HARZ‘ Xep -
=1




Combining this with (1.1), we obtain
Tnm(ﬁ; - H)
_ Tn _ n
= uT, (8- 8,) + ef X dt +Bil — enanz X, .
0 i=1
— — Tn n — Tn H
= uT,(6 = 8) + By (Jg" Xedt — 8, TIy Xe, )+ (0= 8,) [} X de + BE.

Thus, we obtain

VT — 1)

Th a 1 Tn 9_@; T,
- p"é’_n_(g B 9") + J_r:(jo Xpdt — A, Ein=1X:;i_1) + (Q;JT:)J-O X, dt +
By
T

i=A,+B,+C, +Dy .
Theorem 3.2 and the convergence (3.22) imply that A, — 0 in probability.

We can write C,, = (;—9:) J'UT”X: dt = @(Tijj‘& dt).

Then, Theorem 3.2 and the convergence (3.22) imply that @ = 0in
probability. Moreover, using I'Hépital rule,

. 1 T . . —0T.

lim - | Xede= lim Xp, = lim (u(1—€™") +¢p) = u+ G

Tp—=o0 Iy 0
Hence C,, — 0 in probability.

Recall that E[(Bff — BF)?] = |t —s|?H ; t,s = 0.

Then for H € ]0,%[ , we have almost surely, as T, = oo

B .
JLT_:: -0, by Borel-Cantelli Lemma.
H

Bl

Combining this with Theorem 3.2 we obtain that D,;: = e — 0 in probability.




1 T n
Bpi=— f Xedt—A Z X, )
n \/T_n(o t n i=1 Liq

ar,

e n Tn n
- (E'GTH f X, dt — e-GTnanZ th_i) (3.23)
VT 0 &

By lemma 2.3, we have e %™ fOT" X, dt - %(y + {,,) almost surely.

We also have

n n

B 2
i=1

Lj=1 ij=1

Then, by using the same arguments as in Lemma 3.2, we obtain

2 . p efndn_q 2 p
E [(e’”ﬂﬂn LX) ] < €, 6, H)ARe 2 (S50 < C( 6, H)AZ - 0. (3.24)

efdn 1

2fTn

N

Combining (2.10), (3.23), (3.24), and the fact that — oo, we conclude that

B, — oo,

Consequently, the convergence (3.17) is proved. Thus the desired results are
obtained. 0

Theorem 3.2. Assume that 0 < H < 1. Suppose that A,— 0 and nAL**— 0 for

some a>0. Then as n — co,

5; — 8 almost surely. (3.25)

Proof. We can write
1 XZ Xy on X[E
— 2 Tn - _Ei=1 i-1
o = 2 n
n - = 2 An i 2
Aﬂ Zi:l th_l T (Ef=1 Xti-i)

1,-20Tyy2
e nXf, = Zr,Dn

e~2 BTnSn—(,/nAnDn)z ’

Thus, according to (2.9), (3.4), (3.5) and (3.13), we can deduce that

8, = 6 almostsurelyasn — w. 0
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