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 4 

Introduction 5 

Small interfering RNA (siRNA) is a short, double-stranded RNA molecule that has emerged 6 

as a pivotal tool for gene silencing through the RNA interference (RNAi) pathway. It is a 7 

powerful post-transcriptional gene-silencing molecule central to RNA interference (RNAi) 8 

mechanisms
1
. Typically 21–25 nucleotides in length, it guides the RNA-induced silencing 9 

complex (RISC) to a target messenger RNA (mRNA), enabling sequence-specific 10 

degradation and effectively silencing gene expression
2
. This process is highly specific and 11 

forms the foundation for siRNA’s role in research and therapeutic interventions
3
. By guiding 12 

the RNA-induced silencing complex (RISC) to target mRNA, siRNA enables post-13 

transcriptional gene regulation with unparalleled precision. This targeted action holds 14 

immense promise in treating genetic, infectious, and degenerative diseases
4
. Therapeutically, 15 

siRNA offers unique advantages over traditional treatments, including the ability to target 16 

undruggable proteins, rapid development timelines, and reduced systemic toxicity. These 17 

advantages have catalyzed interest in siRNA for precision medicine and rare genetic 18 

disorders
5
. 19 

 20 

History and Discovery 21 

The siRNA journey began in 1990 when gene silencing was first reported in plants 22 

(petunias). This phenomenon, termed "co-suppression," hinted at a broader biological 23 

principle
6
. The landmark discovery came in 1998 when Andrew Fire and Craig Mello 24 

demonstrated that injecting double-stranded RNA into C. elegans could silence specific genes 25 

— a mechanism later known as RNA interference
7
. This breakthrough revolutionized 26 

molecular genetics, and earned them the Nobel Prize in 2006. By 2001, Tuschl and 27 

colleagues synthesized siRNA and used it to silence genes in mammalian cells, marking a 28 



 

 

significant milestone in therapeutic development. This paved the way for siRNA’s translation 29 

from experimental research to clinical innovation
8
. 30 

The discovery of small interfering RNA (siRNA) marked a paradigm shift in the 31 

understanding of gene regulation. The roots of this breakthrough lie in observations from the 32 

early 1990s, where researchers noted unexpected suppression of transgenes in plants—termed 33 

post-transcriptional gene silencing (PTGS)
9
. Similar mechanisms were later identified in 34 

fungi and animals, suggesting a conserved biological process
10

. The key turning point came 35 

in 1998, when Andrew Fire and Craig Mello demonstrated that introducing double-stranded 36 

RNA (dsRNA) into Caenorhabditis elegans could silence specific genes far more effectively 37 

than single-stranded RNA. Their work, which earned the 2006 Nobel Prize in Physiology or 38 

Medicine, confirmed that dsRNA triggered a potent and specific gene-silencing mechanism 39 

now known as RNA interference (RNAi)
11

. 40 

Subsequent research revealed that long dsRNA is processed by the enzyme Dicer into 21–23 41 

nucleotide fragments, termed siRNAs. These siRNAs are incorporated into the RNA-induced 42 

silencing complex (RISC), which uses one strand as a guide to recognize and cleave 43 

complementary messenger RNA (mRNA), thereby suppressing gene expression. This 44 

mechanism, initially thought to be exclusive to lower organisms, was soon confirmed to 45 

operate in mammalian cells under certain conditions
12

. 46 

siRNAs belong to a broader family of small RNAs that includes microRNAs (miRNAs) and 47 

piwi-interacting RNAs (piRNAs). While siRNAs typically originate from exogenous or 48 

synthetic sources and show perfect complementarity to their mRNA targets, miRNAs are 49 

endogenously encoded and often act through partial pairing to suppress translation
13

. In 50 

contrast, piRNAs function in germline cells to silence transposable elements and operate via 51 

Dicer-independent mechanisms
14

. 52 

The discovery of siRNA had profound implications for biomedical science. It provided a 53 

precise and reversible method to silence genes, which transformed functional genomics 54 

research
15

. Almost immediately, siRNAs were explored as potential therapeutics for a variety 55 

of genetic and infectious diseases. However, the translation from bench to bedside was not 56 

without hurdles—issues such as delivery efficiency, stability in vivo, off-target effects, and 57 

immune responses initially hampered clinical development
16

. 58 



 

 

Nonetheless, the foundational discovery of siRNA remains a landmark achievement in 59 

molecular biology, laying the groundwork for the current and future era of RNA-based 60 

therapeutics
17

. 61 

 62 

 63 

Research Applications of siRNA 64 

In biomedical research, siRNA serves as a critical tool for functional genomics by enabling 65 

targeted gene knockdown. Scientists have employed siRNA to: 66 

 Study cancer biology by silencing oncogenes or tumor suppressors. 67 

 Model neurodegenerative diseases such as Alzheimer’s and Parkinson’s. 68 

 Validate drug targets and understand disease mechanisms
18

. 69 

In infectious disease research, siRNA has been used to dissect host–pathogen interactions by 70 

selectively silencing host genes involved in viral entry, replication, or immune evasion—71 

contributing significantly to antiviral drug development. For instance, siRNAs targeting host 72 

factors essential for HIV or influenza virus replication have identified novel therapeutic 73 

targets
19

. 74 

 75 

Additionally, in cardiovascular research, siRNA has been employed to study genes involved 76 

in lipid metabolism, atherosclerosis, and hypertension. Its ability to downregulate disease-77 

associated genes in animal models has enabled the preclinical evaluation of gene-targeted 78 

therapies
20

. 79 

 80 

Collectively, siRNA continues to be a cornerstone of translational research, bridging basic 81 

molecular biology and therapeutic innovation. Its versatility and effectiveness in modeling 82 

diseases and validating targets underscore its enduring value in the biomedical research 83 

landscape
21

. 84 

It enables the systematic silencing of genes, aiding in the elucidation of gene function and the 85 

identification of disease-related pathways. siRNA has facilitated target validation, pathway 86 



 

 

dissection, and the modeling of genetic disorders in vitro and in vivo. It has been instrumental 87 

in studying cancer biology, virology, neurodegenerative diseases, and cardiovascular 88 

conditions. The simplicity of designing siRNAs against virtually any gene, coupled with their 89 

robust knockdown capabilities, underscores their utility in preclinical research
22

. 90 

 91 

 92 

From Research to Therapeutic Applications 93 

siRNA's transition from research to therapy materialized with the advent of FDA-approved 94 

drugs such as Patisiran (ONPATTRO®) (2018) for hereditary transthyretin-mediated 95 

amyloidosis and Givosiran (GIVLAARI™) (2019) for acute hepatic porphyria. These drugs 96 

demonstrated the clinical potential of siRNA in silencing harmful genes systemically with 97 

minimal off-target effects
23

.  98 

The advent of Inclisiran, an siRNA targeting PCSK9 to lower cholesterol, further exemplifies 99 

siRNA’s therapeutic utility
24

. Therapeutic siRNA must navigate biological barriers, remain 100 

stable in circulation, and target specific tissues. Advances in nanocarrier systems, including 101 

lipid nanoparticles (LNPs), have greatly enhanced siRNA delivery, enabling their therapeutic 102 

success in clinical trials and real-world use. Lipid nanoparticles (LNPs) and conjugate 103 

chemistries have enabled safe and effective delivery, making siRNA a cornerstone of modern 104 

therapeutics
25

. 105 

Table.1: siRNA delivery system and its therapeutic outcome
26

 106 

Sl.no Disease Target Genes Delivery Systems/ 

Strategies 

Therapeutic Outcomes 

1 Cancer KRAS, c-Myc, 

PD-L1 

- Lipid nanoparticles 

- 2'-O-methylation 

- Advanced targeting 

modifications 

- Tumor suppression 

- Immune activation 

- Reversal of drug 

resistance 

2 Rheumatoid 

Arthritis 

NF-κB p65, 

STAT1 

- PEI-based 

nanocomplexes (Chen 

- Reduced joint 

inflammation 



 

 

et al.) 

- RGD-modified 

PLGA NPs 

(Scheinman et al.) 

- Targeted 

macrophage/dendritic cell 

suppression 

3 Ulcerative 

Colitis 

NF-κB p65 and 

related 

cytokines 

- MPEG-PCL-

CH2R4H2C NPs 

(Ibaraki) 

- Silica-coated CaP 

NPs (Muller et al.) 

- Suppressed 

inflammatory mediators 

- Improved clinical & 

histopathological scores 

in colitis models 

 

4 Brain 

Inflammation 

Inflammatory 

genes (e.g., 

post-ICH) 

- Poly(β-amino ester) 

NPs 

- Receptor-mediated 

transcytosis 

- 

Intranasal/intracerebral 

delivery 

- LNPs, viral vectors 

- Inflammation control 

- Effective BBB 

penetration 

- Neuroprotection and 

tumor inhibition 

 107 

Limitations of siRNA 108 

Despite the significant therapeutic potential of siRNA, several limitations must be addressed 109 

for its successful clinical application: 110 

 Instability in Biological Fluids: Naked siRNA is highly susceptible to degradation 111 

by nucleases present in blood and tissues, limiting its half-life and therapeutic 112 

efficacy
27

. 113 

 Rapid Renal Clearance: Due to its small molecular size and hydrophilic nature, 114 

unmodified siRNA is quickly eliminated via the kidneys, reducing its systemic 115 

bioavailability
28

. 116 

 Off-Target Effects: siRNAs can inadvertently silence genes with partial sequence 117 

similarity, leading to unintended gene knockdown and potential toxicity
29

. 118 



 

 

 Immune Stimulation: Certain siRNA sequences may activate innate immune 119 

responses through Toll-like receptors (e.g., TLR3, TLR7/8), triggering inflammation 120 

or cytokine release
30

. 121 

 Poor Cellular Uptake: siRNA cannot easily cross cell membranes due to its negative 122 

charge and hydrophilicity, requiring specialized delivery systems to ensure 123 

intracellular access
31

. 124 

 Limited Tissue Specificity: Achieving targeted delivery to specific tissues or cell 125 

types remains challenging, particularly in non-hepatic tissues
32

. 126 

 Risk of Saturating the RNAi Machinery: High doses of exogenous siRNA may 127 

overload components of the endogenous RNAi pathway, potentially disrupting normal 128 

microRNA function
33

. 129 

Addressing these limitations necessitates the development of advanced delivery platforms 130 

(e.g., lipid nanoparticles, polymeric carriers) and chemical modifications (e.g., 2'-O-methyl, 131 

phosphorothioate linkages) to improve stability, specificity, and safety
34

. 132 

 133 

Approaches to overcome limitations of siRNA as a therapeutic 134 

agents 135 

The clinical translation of siRNA has been significantly advanced through the development 136 

of innovative strategies aimed at overcoming its biological and pharmacokinetic limitations. 137 

These approaches span chemical engineering, delivery system design, and molecular 138 

optimization
35

: 139 

Table.2: Strategies to Enhance siRNA Therapeutics
36

 140 

Sl.no Strategy Description 

1 Chemical Modifications 

to Enhance Stability and 

Reduce Immunogenicity 

-2'-O-Methyl (2'-OMe) & 2'-Fluoro (2'-F): Improve 

nuclease resistance and reduce immunostimulation. 

-LNA: Locked conformation enhances stability and 

binding. 

-Phosphorothioate Linkages: Improve plasma 



 

 

stability and degradation resistance. 

Note:-These modifications improve 

pharmacokinetics, reduce dosing frequency, and 

enhance safety profiles. 

2 Advanced Delivery 

Systems 

- Lipid Nanoparticles (LNPs): Prevent degradation 

and support cellular uptake. 

- Polymeric Carriers (e.g., PLGA, PEI): Controlled 

release and targeted delivery. 

- Peptide-Based Systems: Tissue-specific targeting 

via CPPs and ligands. 

3 Hybrid & 

Multifunctional 

Platforms 

- Combinatorial Systems: Integrate lipids, polymers, 

and targeting ligands for synergistic benefits. 

- Can include imaging agents for theranostics and 

monitoring therapeutic efficacy. 

4 Sequence Optimization 

and Design 

- Bioinformatics Tools: Aid in designing siRNAs 

with minimal off-target effects. 

- Guide Strand Modifications: Prevent unintended 

mRNA interactions and improve specificity. 

5 siRNA Pooling 

Strategies 

- Smart Pooling: Combines multiple siRNAs 

targeting different regions of the same gene. 

- Reduces off-target effects while maintaining 

silencing potency—useful in screening and early 

therapy stages. 

 141 

Challenges in Development and Deployment of siRNA 142 

Therapeutics 143 

Several challenges continue to hinder siRNA’s widespread therapeutic use. Efficient and 144 

targeted delivery remains a bottleneck, especially for extrahepatic tissues. Formulating stable, 145 

biocompatible delivery vehicles that can navigate the immune system and reach target cells is 146 

critical
37

. Additionally, large-scale manufacturing, cost, and regulatory hurdles affect clinical 147 



 

 

translation. Dosing regimens, long-term effects, and patient variability must be addressed 148 

through rigorous clinical studies. Despite these challenges, the expanding siRNA therapeutic 149 

pipeline reflects strong industry and academic interest in overcoming these barriers
38

. 150 

 151 

 152 

 153 

Table.3: Key Challenges at a Glance – siRNA Therapeutics
39

 154 

Sl.no Challenges Description 

1 Targeting Beyond the Liver siRNA therapies work well in the liver, but 

efficient delivery to organs like the brain, lungs, 

or joints remains a major hurdle. 

2 Building the Perfect Carrier Requires stable, biocompatible vehicles that 

evade the immune system, resist degradation, 

and accurately reach target cells. 

3 Scale-Up Struggles Large-scale production faces challenges in 

maintaining consistency, stability, and cost-

efficiency for clinical deployment. 

4 Cost and Complexity High production and formulation costs limit 

affordability and accessibility, especially in low-

resource healthcare settings. 

5 Regulatory Roadblocks Complex and evolving regulatory requirements 

demand robust safety and efficacy data, slowing 

clinical progress. 

6 Dosing and Duration 

Dilemmas 

Determining effective dosing and assessing 

long-term impacts is essential, with concerns 

around toxicity and therapeutic duration. 

 
7 Patient-Specific Variability Genetic and physiological differences require 

tailored strategies to ensure consistent 



 

 

therapeutic outcomes across diverse patient 

populations. 

 155 

Future Prospects of siRNA Therapeutics 156 

The future of siRNA lies in expanding beyond liver targets through innovative delivery 157 

methods and personalized approaches, positioning it as a key player in next-generation 158 

precision medicine
40

. 159 

Conclusion 160 

siRNA has revolutionized gene silencing, transitioning from a powerful research tool to a 161 

clinical therapeutic platform. Despite inherent limitations, continuous innovations in 162 

molecular design and delivery systems have substantially enhanced its viability. The success 163 

of drugs like Inclisiran and Patisiran underscores the therapeutic promise of siRNA. Future 164 

breakthroughs in targeting, safety, and scalability will determine its role in mainstream 165 

medicine. As the field evolves, siRNA is poised to reshape the landscape of disease 166 

management and personalized therapy. 167 
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