ISSN: 2320-5407



# International Journal of Advanced Research

### Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

#### REVIEWER'S REPORT

Manuscript No.: **51865** Date: 26-05-2025

Title: AI-Augmented Security Models for Software Development: Leveraging 1 Machine Learning for Threat Detection and Mitigation

| Recommendation:                                          | Rating         | Excel. | Good | Fair | Poor |
|----------------------------------------------------------|----------------|--------|------|------|------|
| Accept as it is YES                                      | Originality    |        |      | YES  |      |
| Accept after minor revision  Accept after major revision | Techn. Quality |        |      |      | YES  |
| Do not accept (Reasons below)                            | Clarity        |        | YES  |      |      |
| Do not accept (neusons below)                            | Significance   |        | YES  |      |      |

Reviewer Name: Gulnawaz Gani

#### Reviewer's Comment for Publication.

The paper introduces a novel hybrid framework combining rule-based methods with supervised and unsupervised machine learning for enhanced threat detection, zero-day vulnerability identification, and automated threat response in software development.

## Detailed Reviewer's Report

- This paper proposes a hybrid AI-augmented security framework, demonstrating significant improvements in threat detection and response.
- O While the reported 30% increase in known threat detection and 40% reduction in incident response time are impressive, the paper could benefit from a more detailed discussion on the computational overhead and resource requirements of deploying such a complex hybrid model in real-world, large-scale software development environments.
- o Additionally, further exploration into the explainability of the unsupervised models, especially for identifying zero-day vulnerabilities, would enhance trust and adoption.
- The methodology section, while referencing CRISP-DM, could provide more specific details on dataset sizes, feature engineering processes, and the specific metrics used for evaluating the unsupervised models beyond just "identification."
- o The paper is a good contribution to the field.