

International Journal of Advanced Research

Publisher's Name: Jana Publication and Research LLP

www.journalijar.com

REVIEWER'S REPORT

Manuscript No.: 51885 Date: 28-05-2025

Title: "ENHANCEMENT OF FOG CACHING USING NATURE INSPIRATION 1 OPTIMIZATION TECHNIQUE BASED ON CLOUD COMPUTING"

Recommendation:	Rating	Excel.	Good	Fair	Poor
Accept as it is Yes	Originality		Yes		
Accept after minor revision Accept after major revision	Techn. Quality		Yes		
Do not accept (Reasons below)	Clarity		Yes		
	Significance		Yes		_

Reviewer Name: Gulnawaz Gani

Reviewer's Comment for Publication.

This paper proposes a hybrid Nature-Inspired Optimization Technique (NIOT) that effectively enhances fog caching performance by optimizing cache placement and retrieval using genetic algorithms and particle swarm optimization.

Detailed Reviewer's Report

- The paper proposes a hybrid Nature-Inspired Optimization Technique (NIOT) combining Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) for fog caching, which is a strong approach for dynamic environments.
- While the methodology outlines the components and algorithm steps, a more in-depth discussion of the specific fitness function's weighting factors (w1,w2,w3) and their empirical derivation would be beneficial.
- The performance evaluation mentions comparisons with LRU and RR, but a more detailed breakdown of the simulation setup (e.g., network size, data access patterns, traffic loads) would enhance reproducibility and credibility.
- The paper claims significant improvements in latency and cache hit ratio, but presenting quantitative results (e.g., specific percentage improvements or comparative graphs) would make the claims more impactful.
- The future scope mentions extending the framework with advanced machine learning for realtime data prediction, which suggests that the current NIOT alone might not fully address dynamic data popularity.

Suggestions: The paper is a good read for the audience but before publication make sure the figure inside the paper is displayed correctly.