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The widespread use of metal oxide nanoparticles across various 

industries has raised significant concerns regarding their potential 

toxicity. Conventional toxicological assessment methods remain time-

intensive, costly, and limited in scalability. In this study, a machine 

learning–based framework was developed to classify nanoparticle 

toxicity using physicochemical descriptors. A dataset containing nine 

key features—such as dosage, surface area, and core size of the 

nanoparticles—was employed to train and evaluate six supervised 

learning algorithms: Decision Tree, Random Forest, Gradient Boosting, 

Logistic Regression, Support Vector Machine, and K-Nearest 

Neighbors. The analysis focused on five widely used metal oxide 

nanoparticles: Fe₂O₃, TiO₂, ZnO, CuO, and Al₂O₃.The Decision Tree 

model achieved the highest classification accuracy (96.05%) and was 

noted for its interpretability and transparent decision rules. Model 

performance was assessed using ROC curves, precision-recall analysis, 

confusion matrices, and residual distributions, all of which confirmed 

the model’s robustness and generalization capability. Feature 

importance analysis indicated that dosage, number of oxygen atoms, 

and electron affinity were the most significant predictors of toxicity. 

This approach enables accurate and interpretable nanotoxicity 

prediction and may serve as a valuable tool for risk-based assessment 

and the design of safer nanomaterials. The findings support the 

integration of data-driven methodologies into toxicological evaluation 

workflows. 
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1. Introduction:- 2 

With the rapid expansion of nanotechnology, engineered nanoparticles have been increasingly employed in diverse 3 

sectors such as medicine [1], electronics [2], cosmetics [3], food packaging [4], and environmental remediation [5]. 4 

Among these, metal oxide nanoparticles—including ferric oxide (Fe₂O₃), titanium dioxide (TiO₂), zinc oxide (ZnO), 5 

copper oxide (CuO), and aluminum oxide (Al₂O₃) [6, 7]—have been widely adopted due to their favorable 6 

physicochemical properties such as high surface area [8], catalytic reactivity [9], chemical stability [10], and optical 7 

and electronic tunability [11, 12]. Despite their broad utility, growing concerns have been raised about the potential 8 

cytotoxic, genotoxic, and ecotoxic effects of these materials once released into biological and environmental 9 

systems [13–15]. 10 

Accurate and efficient toxicity assessment of nanoparticles is thus essential to ensure the safety of both human 11 

health and ecosystems [16]. However, conventional toxicity evaluation techniques, which typically involve in vitro 12 

or in vivo experiments, are time-consuming, expensive, and ethically challenging [17–20]. Moreover, the diverse 13 
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and complex interactions between nanoparticles and biological systems, driven by variations in size, shape, surface 14 

charge, solubility, and chemical composition, complicate the generalization of toxicological outcomes [21–24]. 15 

In response to these limitations, computational modeling approaches—particularly those based on machine 16 

learning—have emerged as powerful alternatives for predictive toxicology [25], and have been increasingly applied 17 

to predict a wide range of nanomaterial properties, including toxicity [26], band gap energy [27], solubility [28], 18 

bioavailability [29], catalytic activity [30], and zeta potential [31]. By learning from existing data, machine learning 19 

algorithms can uncover hidden patterns and associations between nanoparticle properties and toxicological 20 

outcomes, thereby enabling the development of predictive models that are both scalable and cost-effective [32, 33]. 21 

Such models have the potential to significantly reduce experimental burden while offering mechanistic insights into 22 

toxicity pathways [34]. 23 

In this study, the use of multiple supervised machine learning algorithms—including Decision Tree, Random Forest, 24 

Gradient Boosting, Logistic Regression, Support Vector Machine (SVM), and K-Nearest Neighbors—was 25 

investigated to classify the toxicity of five widely used metal oxide nanoparticles. Physicochemical descriptors of 26 

the nanoparticles were used as input features, and classification performance was evaluated through accuracy, error 27 

rate, and interpretability. Feature importance analyses were conducted to identify key predictors of toxicity. By 28 

integrating predictive modeling with interpretability, this work aimed to establish a reliable and transparent 29 

framework for nanotoxicity classification, ultimately contributing to the design of safer nanomaterials and the 30 

advancement of computational nanotoxicology. 31 

2. Materials and methods: 32 

The dataset used in this study was obtained from the Nanotoxicity Research Center, which provides experimentally 33 

validated nanotoxicity data for various engineered nanoparticles [35]. Specifically, it includes 875 samples 34 

corresponding to five widely used metal oxide nanoparticles: Fe₂O₃, TiO₂, ZnO, CuO, and Al₂O₃. Each sample is 35 

described by nine physicochemical features: core size, hydrodynamic size, surface charge, surface area, electrical 36 

conductivity, exposure time, dosage, energy-related feature, and number of oxygen atoms. The classification target 37 

is binary, indicating whether a nanoparticle is toxic or non-toxic. The dataset contains approximately 470 toxic and 38 

405 non-toxic entries, indicating a mild class imbalance.  39 

2.1. Data Preprocessing 40 

Prior to model training, non-informative columns such as nanoparticle identifiers were removed. The target labels 41 

were encoded numerically using label encoding (0 for non-toxic and 1 for toxic). All numeric features were 42 

standardized using z-score normalization via the StandardScaler from scikit-learn to ensure equal scaling and to 43 

improve model convergence. No missing values were present in the dataset. 44 

2.2. Train–Test Splitting 45 

The standardized dataset was divided into training and test sets using an 80/20 split. Stratified sampling was applied 46 

to maintain the relative distribution of toxic and non-toxic samples in both subsets. A fixed random seed 47 

(random_state=42) was used to ensure consistency and reproducibility across runs. 48 

2.3. Machine Learning Models 49 

A Random Forest classifier was employed as the primary predictive model for nanotoxicity classification due to its 50 

high performance and interpretability. The model was trained using the training set with default hyperparameters, 51 

including 100 estimators. Additionally, a Decision Tree estimator was extracted from the trained Random Forest 52 
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ensemble to provide an interpretable visualization of decision rules. All model development was performed using 53 

the scikit-learn library (v1.x) in Python 3.11. 54 

2.4. Model Evaluation and Visualization 55 

Model performance was assessed using several metrics: classification accuracy, error rate, precision, recall, and the 56 

area under the receiver operating characteristic curve (ROC-AUC). Additional evaluations included the confusion 57 

matrix, precision–recall curve, residual distribution, and a scatter plot of predicted versus actual probabilities to 58 

evaluate prediction confidence and calibration. 59 

Feature importance was computed using the Gini impurity-based method native to the Random Forest algorithm. A 60 

decision tree from within the ensemble was visualized to explore how combinations of physicochemical features 61 

influenced toxicity predictions. 62 

2.5. Implementation and Software Tools 63 

All modeling, analysis, and visualizations were implemented in Python 3.11 using the following libraries: pandas, 64 

numpy, matplotlib, seaborn, and scikit-learn. Data visualizations—including class distribution, feature correlation 65 

heatmap, ROC and PR curves, residual histograms, and decision tree diagrams—were formatted using a journal-66 

style configuration for readability and publication quality. Graphical elements were enhanced using serif fonts, 67 

higher DPI, and clear labeling conventions to align with common standards for scientific figures. 68 

3. Results and discussion 69 

3.1. Data Exploration 70 

Prior to model training, the distribution of toxicity classes in the dataset was examined to identify any class 71 

imbalance that could impact model performance. As shown in Fig. 1, the dataset includes two target classes: "Toxic" 72 

and "nonToxic". Among the total samples, approximately 470 instances are labeled as Toxic, while around 405 73 

instances are labeled as nonToxic. This indicates a mild imbalance, with toxic nanoparticles slightly outnumbering 74 

non-toxic ones. 75 

Such imbalance, though not severe, may lead classification models to favor the majority class during training. 76 

Therefore, in addition to overall accuracy, we employed metrics such as precision, recall, ROC-AUC, and the 77 

precision-recall curve to ensure the selected model performs well on both classes. Addressing this class 78 

representation early allows for a more reliable evaluation of model behavior, especially in real-world scenarios 79 

where the cost of misclassifying a toxic nanoparticle may be significant [36, 37]. 80 

 81 



 

4 

 

Fig. 1. Distribution of toxic and non-toxic class labels in the dataset, revealing a mild imbalance with toxic samples 82 

slightly outnumbering non-toxic ones 83 

To investigate the relationships among the physicochemical descriptors of the nanoparticles, a Pearson correlation 84 

heatmap was generated. As illustrated in Fig. 2, most feature pairs show low to moderate correlation, indicating a 85 

minimal degree of multicollinearity. This is advantageous for machine learning applications, as it suggests that each 86 

feature contributes unique information to the classification task [38]. 87 

Among the strongest positive correlations observed, surface area and nmber of oxygen atoms exhibit a correlation 88 

coefficient of 0.52, implying that nanoparticles with larger surface areas tend to have more oxygen atoms — a trend 89 

that aligns with chemical intuition for metal oxides. Similarly, electron affinity shows moderate positive correlation 90 

with surface charge (0.51), and a notable negative correlation with number of oxygen atoms (–0.37), indicating 91 

underlying electronic or structural dependencies. 92 

Fig. 2. Pearson correlation heatmap of physicochemical features, demonstrating low to moderate inter-feature 93 

correlation and minimal multicollinearity. 94 
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A moderate negative correlation of –0.50 was observed between core size and surface area, supporting the expected 95 

inverse relationship between particle size and surface-to-volume ratio. Other features such as electrical conductivity 96 

and exposure time displayed weak correlations with most variables, suggesting that they contribute independent 97 

variance and may serve as important predictors despite lacking strong pairwise correlations. 98 

Overall, the heatmap confirms that the selected descriptors — including core size, hydrodynamic size, surface 99 

charge, surface area, electrical conductivity, exposure time, dosage, electron affinity, and number of oxygen atoms 100 

— are reasonably independent. This supports their inclusion in the model without significant concern for 101 

multicollinearity. 102 

3.2. Model Evaluation 103 

To evaluate the effectiveness of various machine learning algorithms in classifying nanotoxicity based on 104 

physicochemical features, six models were compared in terms of accuracy and error rate. The Decision Tree model 105 

achieved the highest classification accuracy at 96.05%, followed closely by Gradient Boosting (95.48%) and 106 

Random Forest (94.92%). The K-Nearest Neighbors algorithm also demonstrated strong performance with an 107 

accuracy of 94.92%, while SVM with RBF Kernel reached 89.27% accuracy. Logistic Regression, although less 108 

complex, achieved a respectable accuracy of 85.31%. 109 

As shown in Fig. 3-a, Decision Tree and Gradient Boosting, outperformed the other classifiers in terms of accuracy. 110 

Ensemble models, known for reducing variance, consistently delivered higher predictive performance, suggesting 111 

their superior capability in modeling the complex relationships between physicochemical features and nanotoxicity 112 

[39]. Error rate analysis, shown in Fig. 3-b, mirrored the accuracy trend. The Decision Tree exhibited the lowest 113 

error rate (3.95%), indicating its robust generalization capability on this dataset. In contrast, Logistic Regression 114 

recorded the highest error (14.69%), likely due to its inability to capture non-linear feature interactions, which are 115 

essential in modeling complex biological phenomena such as nanotoxicity. For a clearer overview, Table. 1 116 

summarizes the performance of all six models in terms of accuracy and error rate. Overall, ensemble methods such 117 

as Random Forest and Gradient Boosting demonstrated the most reliable performance, balancing high accuracy with 118 

low error. However, due to its highest predictive accuracy, low error rate, and interpretability, we decided to resume 119 

the remainder of the study using the Decision Tree model. Its ability to provide a transparent view of decision 120 

boundaries and feature contributions made it an ideal choice for further analysis, including feature importance 121 

assessment, decision rule extraction, and toxicological interpretation. 122 

Fig. 3. Comparison of classification accuracy (a) and error rate (b) across six machine learning models applied to 123 

nanoparticle toxicity prediction, showing the Decision Tree with the highest accuracy (96.05%) and the lowest error, 124 

followed closely by Gradient Boosting. 125 

(a) (b) 
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Table 1. Accuracy and error rates of six machine learning models used for nanoparticle toxicity classification. 126 

Model Accuracy Error rate 

Logistic Regression 0.8531 0.1469 

Random Forest 0.9492 0.0508 

SVM (RBF Kernel) 0.8927 0.1073 

Decision Tree 0.9605 0.0395 

Gradient Boosting 0.9548 0.0452 

K-Nearest Neighbors 0.9492 0.0508 

 127 

To further assess the performance of the classification model, a confusion matrix was generated, as shown in Fig. 4. 128 

The matrix provides detailed insight into the model's prediction results by comparing actual class labels with 129 

predicted labels. Out of all test samples, 91 non-toxic nanoparticles were correctly identified, while only 2 were 130 

misclassified as toxic. Similarly, 77 toxic nanoparticles were correctly predicted, with 7 false negatives where toxic 131 

samples were incorrectly classified as non-toxic. 132 

These results demonstrate that the model achieves a high true positive rate and a low false positive rate, consistent 133 

with the previously observed AUC of 0.98. Importantly, the relatively small number of false negatives is crucial in 134 

toxicological screening, where mislabeling a toxic substance as non-toxic could lead to hazardous consequences 135 

[40]. 136 

The confusion matrix thus highlights that the selected model (Decision Tree) maintains a strong balance between 137 

sensitivity (correctly identifying toxic samples) and specificity (correctly identifying non-toxic ones), making it 138 

well-suited for predictive nanotoxicology applications. 139 

Fig. 4. Confusion matrix of the Decision Tree model, showing accurate classification of most samples and a low 140 

number of false predictions. 141 

To evaluate the classification model’s ability to distinguish between toxic and non-toxic nanoparticles, a Receiver 142 

Operating Characteristic (ROC) curve was plotted using the model's predicted probabilities on the test set. As shown 143 

in Fig. 5-a, the curve demonstrates a strong separation capability, with the true positive rate (TPR) rising sharply at 144 

very low false positive rates (FPR). The area under the curve (AUC) is 0.98, indicating excellent discriminatory 145 

power of the model. 146 

An AUC close to 1.0 signifies that the model performs nearly perfectly in distinguishing between the two classes 147 

[41]. This high score confirms that the model correctly identifies toxic nanoparticles with minimal misclassification 148 

of non-toxic ones — a crucial consideration in nanotoxicology, where false negatives could lead to safety hazards in 149 
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biomedical or environmental applications. The ROC curve further supports the robustness of the selected features 150 

and the predictive strength of the Decision Tree model, justifying its use in the remainder of the analysis pipeline. 151 

In addition to the ROC curve, a Precision-Recall (PR) curve was generated to further evaluate model performance, 152 

particularly under conditions of class imbalance. As shown in Fig. 5-b, the Decision Tree classifier maintained a 153 

consistently high precision across nearly the entire range of recall values. This indicates that the model was able to 154 

identify toxic nanoparticles with minimal false positives, even as it retrieved more true positives. 155 

The near-horizontal plateau at precision ≈ 1.0 demonstrates that the model reliably classified most predicted toxic 156 

samples correctly, which is critical in applications where the cost of misidentifying a toxic nanoparticle as safe could 157 

be substantial. Only at very high recall levels does the precision drop slightly, reflecting the expected trade-off 158 

between sensitivity and precision in classification tasks [42]. This performance aligns with the confusion matrix and 159 

ROC analysis, confirming that the Decision Tree model not only performs well overall, but also remains highly 160 

dependable when prioritizing the accurate detection of true toxic cases. 161 

Fig. 5. (a) ROC and (b) Precision–Recall curves of the Decision Tree model, showing strong discriminatory power 162 

(AUC = 0.98) and high precision across recall levels. 163 

To evaluate the calibration and confidence of the model’s probabilistic predictions, a residual analysis was 164 

performed. Residuals were calculated as the difference between the actual class label and the predicted probability 165 

output by the Decision Tree model. The resulting distribution is shown in Fig. 6-a. The plot reveals a strong peak 166 

centered around zero, indicating that the majority of predictions closely matched the actual outcomes. This narrow 167 

and sharply peaked distribution reflects minimal deviation between predicted probabilities and true labels, 168 

confirming that the model is well-calibrated [43]. Only a small number of residuals fall outside the –0.2 to +0.2 169 

range, further highlighting the model’s tendency to make confident and accurate predictions. 170 

Outliers on the far ends of the residual axis (near –1 or +1) represent rare cases where the model predicted a high 171 

probability for the incorrect class (e.g., predicting high toxicity for a non-toxic nanoparticle). The low frequency of 172 

such instances supports the overall robustness and reliability of the model’s predictive behavior. 173 

To further evaluate the Decision Tree model’s behavior, a scatter plot of actual versus predicted probabilities was 174 

generated for the test set, as shown in Fig. 6-b. The blue points represent the model’s predicted probability that a 175 

given nanoparticle is toxic, while the red horizontal lines correspond to the actual class labels: ―non-toxic‖ (class 0) 176 

and ―toxic‖ (class 1). The plot reveals that the model tends to produce high-confidence predictions, with most 177 

probability values clustered around either 0.0 (strongly non-toxic) or 1.0 (strongly toxic). This reflects a clear 178 

separation in prediction space and indicates that the model is highly confident in its classifications. Predictions that 179 

align with the actual labels fall directly on the corresponding red lines, while misclassifications appear as blue dots 180 

deviating from the correct class level, particularly in the intermediate probability range between 0.3 and 0.7. 181 

(a) (b) 
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This distinct probability separation suggests that the model not only classifies accurately but also provides well-182 

calibrated probabilistic estimates of toxicity. Such reliable probability outputs are essential for risk-based decision-183 

making in nanotoxicology, where uncertainty can be just as critical as the classification itself [44]. 184 

Fig. 6. (a) Residual distribution and (b) scatter plot of predicted vs. actual toxicity probabilities, highlighting the 185 

Decision Tree model’s strong calibration and confident classification performance. 186 

3.3. Model Interpretation 187 

To interpret the contribution of each physicochemical feature to the Decision Tree model’s predictions, feature 188 

importance scores were calculated based on the Gini impurity reduction criterion. As illustrated in Fig. 7, dosage 189 

was by far the most influential variable, contributing 39.3% of the total model importance. This finding underscores 190 

dosage as a critical determinant in nanoparticle toxicity, consistent with established toxicological principles where 191 

increased concentration correlates with greater biological impact [45]. 192 

Following dosage, the Number of Oxygen Atoms accounted for 15.6% of the predictive power, while electron 193 

affinity (e) contributed 13.8%. These features likely capture underlying chemical reactivity and molecular 194 

interactions relevant to cellular damage or oxidative stress. Exposure time and surface area followed with 195 

importance scores of 9.3% and 9.2%, respectively, emphasizing their moderate but meaningful roles in influencing 196 

toxic outcomes. 197 

Fig. 7. Feature importance scores from the Decision Tree model, highlighting dosage, number of oxygen atoms, and 198 

electron affinity as the most influential predictors. 199 

The remaining features had relatively minor influence: Core size (5.0%), electrical conductivity (4.3%), surface 200 

charge (3.0%), and hydrodynamic size (2.5%). These findings suggest that while all variables carry some predictive 201 

(a) (b) 
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weight, the model relies most heavily on dosage, oxygen content, and electronic properties to distinguish between 202 

toxic and non-toxic nanoparticles. 203 

This ranking provides mechanistic insight into the physicochemical basis of nanotoxicity and confirms the utility of 204 

machine learning for interpretable and data-driven toxicological modeling. 205 

To improve interpretability and examine how the model makes toxicity predictions, a representative decision tree 206 

was extracted from the trained Random Forest ensemble. As shown in Fig. 8, this tree reveals the sequential 207 

decision-making process the model uses to classify nanoparticles as toxic or non-toxic based on physicochemical 208 

features. 209 

The root node begins with a split on surface area, where particles with values below –0.097 are more likely to be 210 

toxic. Subsequent branches incorporate key features such as exposure time, dosage, core size, and surface charge, 211 

which are used to progressively refine the classification. For example, particles with short exposure time and low 212 

dosage are typically classified as toxic, while combinations of low surface charge and small core size tend to result 213 

in a non-toxic classification. 214 

Each node displays the Gini impurity, sample count, class distribution, and predicted class, providing insights into 215 

the decision purity at that point. Notably, many terminal nodes (leaves) reach high purity levels (Gini = 0), meaning 216 

all samples within those branches belong to the same class — a sign of strong separability in the data. 217 

This visualization enhances the transparency of the machine learning approach, allowing researchers to trace 218 

specific decision paths and understand which combinations of features contribute most strongly to toxicity 219 

outcomes. In practice, such interpretable models can aid in forming hypotheses about nanoparticle behavior and 220 

guiding safer material design [46]. 221 

Fig. 8. Example Decision Tree extracted from the Random Forest model, illustrating decision rules based on 222 

physicochemical features for classifying nanoparticle toxicity. 223 

4. Conclusion 224 
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This study demonstrated the utility of supervised machine learning models for the classification of metal oxide 225 

nanoparticle toxicity based on physicochemical properties. Among the six evaluated algorithms, the Decision Tree 226 

classifier achieved the highest accuracy (96.05%) and the lowest error rate (3.95%), while also offering strong 227 

interpretability. Through comprehensive model evaluation—including ROC and Precision-Recall analyses, 228 

confusion matrix interpretation, residual assessment, and decision rule visualization—the Decision Tree model 229 

proved to be both robust and transparent. 230 

Feature importance analysis revealed that dosage, number of oxygen atoms, and electron affinity were the most 231 

influential descriptors in predicting nanotoxicity, highlighting the relevance of chemical and exposure-related 232 

parameters. Additionally, correlation analysis showed low multicollinearity among features, confirming their 233 

suitability for predictive modeling. By combining predictive accuracy with interpretability, this approach not only 234 

enables rapid toxicity screening but also provides mechanistic insight into the factors driving nanoparticle toxicity. 235 

These findings support the integration of machine learning into nanotoxicology workflows and contribute to the 236 

development of safer and more sustainable nanomaterials. 237 
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