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Abstract- The present study involves the development of a correlation of Non-Destructive Testing (NDT) and 5 
Destructive Testing (DT) techniques for evaluation of concrete strength. The models selected are linear, quadratic, 6 
cubic for the present study. Concretes with grades M10 to M40 were used and compressive strength relationships 7 
developed between what was obtained from the destructive testing using a compression testing machine and surface 8 
hardness measurement gotten through non-destructive testing using a rebound hammer. The analysis showed good 9 
correlations, where the coefficients of determination (R²) ranged from 91.6% to 97.9% for the different models. This 10 
can be used to prove that the NDT, when calibrated on DT data, allows for accurate estimation of concrete strength 11 
with very low intrusion and time investment. The study highlights how advanced mathematical models can facilitate 12 
more accurate predictions for concrete strength—which may decisively determine the safety and durability of larger 13 
engineering works. 14 

Keywords- Non-Destructive Testing (NDT), Destructive Testing (DT), concrete strength, linear regression, 15 
quadratic regression, cubic regression, rebound hammer, compressive strength. 16 

I. INTRODUCTION 17 

One of the most popular building materials is concrete. Large engineering constructions like railroads, bridges, dams, 18 
and nuclear power plants must consider the consequences of dynamic loads like earthquakes, impacts, and explosions 19 
in addition to static loads. The foundation for the design and optimisation of these engineering structures is provided 20 
by the mechanical characteristics of concrete and the dynamic failure mechanism. However, concrete's mechanical 21 
behavior and damage characteristics differ significantly from those of static conditions. The strain rate effect is 22 
responsible for the apparent strength increase that is typically seen under dynamic load. The mesoscopic 23 
heterogeneity of concrete, the modification of the concrete damage pattern, and the structural impact resulting from 24 
the transverse inertia force can all be attributable to this phenomenon [1]. Controlling the durability and life 25 
expectancy of structures requires an understanding of the fracture propagation characteristics of concrete. Therefore, 26 
for mission-critical facilities, strict discretization approaches for crack growth are crucial [2]. The impact of 27 
heterogeneity on concrete fracture characteristics and the explicit knowledge of this relationship made possible by the 28 
enormous advances in computational power and numerical methods is one of the major areas of research. Voids, 29 
coarse aggregates, micro cracks, dehydrated particles, and fibres are the causes of this heterogeneity. 30 

The rapid advancement of construction technology has led to the construction of numerous large-span concrete 31 
structures worldwide. However, as this long-span concrete structures age, deflection at their mid-span tends to 32 
increase due to factors such as concrete shrinkage and creep, pre-stress loss in pre-stressed tendons, and sustained 33 
loading effects. This will lead to increased deflection and further compromise the structure's serviceability for a long 34 
period, and in serious cases, may even cause early failure. Thus, the probability of the failing concrete structure under 35 
excessive deflection should be estimated, and adequate forecast of long-term deflection should be made to put 36 
forward proper targeted maintenance and reinforcement plans for such concrete structures [3]. X-CT technology was 37 
of great help in concrete material research conducted over the last few decades. It provides a nondestructive 38 
possibility to three-dimensionally visualize interior properties of material. There are, however, only a few studies that 39 
are dedicated to the issue of segmenting multiphase concretes on micro and meso levels, and to methods of 40 
visualization. Few studies have quantified variations in concrete pores and cracks due to erosion. These have all not 41 
involved loading and have only focused on virgin or environmentally degraded concrete [4].  42 

Reliability of in-situ compression strength measurements is of great importance for assessment of the quality of 43 
concrete existing structures in the course of their service life. Strong data about in-situ compressive strength is 44 
necessary to make trustworthy structural evaluation and strengthening treatments when seismic capabilities of 45 



 

 

existing constructions are assessed. These constructions frequently follow antiquated seismic regulations with 46 
reduced safety factors or are solely intended to support gravity loads [5]. 47 

Core testing have more accurate destructive test methods than NDT. However, a number of drawbacks are listed as 48 
very expensive, invasive, sometimes infeasible, and time-consuming process. In combat, combining core testing with 49 
NDT will improve the concrete strength evaluation, yield more data, and reduce costs from fewer cores required. In 50 
spite of that, there is scant research on NDT methods in the evaluation of concrete strength in either dry or wet cycle 51 
environments both nationally and internationally. Besides, the assessment of deterioration in concrete strength under 52 
such conditions is also considerably different [6]. 53 

Testing the strength of concrete forms one of the cornerstones in the field of construction and thus serves for 54 
assurance of the safety, durability, and overall structural integrity of a building and infrastructure. The need for an 55 
accurate determination of concrete strength is critical in a number of ways, since it has to establish that the concrete is 56 
following the design specifications and has the capacity to bear or support applied loads and environmental stresses. 57 
Lack of reliable testing may result in failures at high risk, which may mean expensive repairs and safety risks, or even 58 
catastrophic collapses in some extreme cases [7]. 59 

Traditional techniques of concrete strength testing, such as the compressive strength test for concrete cylinders or 60 
cubes, have raised many problems. Much of the time, sample curing requires a very considerable amount of time; 61 
thus, these approaches delay the construction process. These tests can also become inaccurate due to a variety of 62 
factors, which include improper handling of samples, variability in testing conditions, and the intrinsic heterogeneity 63 
of concrete as a material. This can then further be a reason for incorrect estimation of the actual strength of concrete 64 
and may result in overdesign or, worse, underestimation of the concrete capacity [8]. 65 

Coupled with the challenges, disruptive and vital trends and developments are witnessed within concrete strength 66 
testing technologies in the construction industry. The more recent advancements include nondestructive testing 67 
techniques that allow for in situ concrete strength evaluation without causing structural damage, such as ultrasonic 68 
pulse velocity and rebound hammer tests. Digital imaging techniques, on the other hand, are now being coupled with 69 
machine learning algorithms in testing processes to help increase the accuracy of the strength prediction and offer 70 
real-time monitoring of concrete quality. 71 

Other developing trends associated with the assessment of concrete quality are related to sustainability and durability. 72 
More attention is given to the long-term assessment of concrete performance, particularly resistance to environment-73 
specific agents like freeze-thaw cycles, chemical exposure, and moisture infiltration [9]. Smart sensors embedded in 74 
concrete structure have become quite helpful in continuous data provision relevant to the condition and performance 75 
of this material over some time. These developments are making the construction industry one of more efficiency, 76 
reliability, and sustainability to ensure concrete studies for longevity while minimizing environmental impact. 77 

II. LITERATURE REVIEW 78 

Coric, V. (2023) [10] Pre-stressed concrete bridges are vulnerable to degradation over time, which can significantly 79 
impact their structural capacity and overall performance. In recent decades, infrastructure owners have recognized 80 
the value of continuous monitoring as a crucial tool for managing these assets, as it aids in making informed 81 
decisions about necessary interventions. However, with the rapid advancement of data acquisition and measurement 82 
technologies, the sheer volume of data collected daily has become increasingly challenging to manage and analyze.  83 
The present study assesses the suitability of several machine learning techniques in terms of delivering estimates and 84 
interpretations of structural responses; further, it studies the feasibility of mapping independent variables. 85 
Thereafter, the aspects regarding metric performance, learning curves, and residual plots were investigated. A few 86 
machine learning algorithms were compared against each other regarding regression analysis, and they all yielded a 87 
value of more than 98% with regards to the R-squared value. 88 

The data used in this study were collected from a continuously monitored prestressed concrete bridge located in 89 
Autio in northern Sweden over a period of more than three years. 90 



 

 

B. Gunes et al., (2023) [11] examined that non-destructive in-situ testing of concrete strength by means of a drilling 91 
test method has been performed. In this context, the correlation between the drilling resistance factor and the 92 
concrete compressive strength for a few studies is discussed. Tests from RH and UPV have also been conducted; the 93 
results have produced multivariate regression models, which combined the DR with data from RH and UPV. There 94 
has also been an approach to machine learning using Support Vector Machines. The experimental results show that 95 
by integrating DR and UPV and/or RH, compressive strength may be consistently predicted. With fewer data, the 96 
support vector regression model outperformed nicely. 97 

Anoni L. G. et al. (2024) [12] studied ultrasonic tomography is a technique of non-destructive testing without 98 
causing any destruction to the concrete, visualizing from the inside of concrete constructions. A common method for 99 
locating reinforcement within concrete and for the identification of various types of deterioration: voids, cracks, 100 
rebar corrosion, and debonding. Various methods of image reconstruction have been studied and developed in order 101 
to increase the precision and sharpness of the resulting concrete tomogram. On the other hand, with increasing data 102 
volume, landscape comprehension may become difficult and sometimes indicates areas that must be further 103 
improved. This review represents a deep systematic analysis of different image reconstruction techniques used in 104 
ultrasonic tomography and underlines the latest developments in this area. The provided analysis concerns all the 105 
standard methods of both transmission and reflection tomography and delineates their peculiarities. Additionally, 106 
enhancement techniques have been documented and discussed. This comprehensive review serves as a foundation 107 
for identifying future advancements in ultrasonic tomography for concrete structures. 108 

Javed, M. F., and Khan, M. (2023) [13] Supplementary cementitious materials (SCMs) are often used in concrete 109 
mixtures to replace some of the clinker or some percentage of the cement content. This common approach has 110 
significant benefits for the construction industry since it usually produces concrete with lower manufacturing costs, 111 
less of an impact on the environment, improved long-term durability, and increased strength over time. Scholars and 112 
professionals in the industry are actively investigating methods to predict the efficiency of blended cement concrete 113 
(BCC) mixes, in order to avoid the expenses and time involved in testing numerous choices through 114 
experimentation. Because machine learning techniques have a reputation for handling large datasets and accurately 115 
identifying relationships within the data, they were used in this investigation. Three models—one ensemble model, 116 
two distinct models, and one model—were used to predict the properties of mixed cement concrete. The database for 117 
the model's creation was constructed using 1,287 points of data for the compressive strength, 361 for the carbonation 118 
process, and 323 for chloride resistivity, all of which were derived from experimental experiments. The performance 119 
of these models was assessed using a number of error metrics. The decision tree (DT) model's coefficient of 120 
correlation (R) value for both training and validation sets was 0.99, demonstrating its high degree of predictive 121 
accuracy for compressive strength. With an R-value of 0.98, the AdaBoost regressor (AR) model demonstrated 122 
strong prediction performance for the durability aspects of BCC. The AR model's average absolute error (MAE) and 123 
root mean square error (RMSE) for carbonation and chloride penetration, respectively, were less than 0.5 and 400. 124 
The application of the SHapley Additive exPlanation (SHAP) approach yielded further data, demonstrating that 125 
among the SCMs, calcined clay and silica fume significantly increase compressive strength. Nonetheless, the 126 
carbonation resistance of BCC is adversely affected by most SCMs. It was found that adding materials such as 127 
crushed granulated slag from blast furnaces, calcined clay, limestone powder, and silica fume in place of Portland 128 
cement increased the cement's resistance to cations by reducing the material's ability to penetrate cations. 129 

It has been pointed out by Dabholkar, T. et al. 2023 [14] that a large portion of the architectural layout of the 130 
concrete made from RCC depends on the compressive strength of concrete. The methods used in evaluating this 131 
strength are also categorized mainly into three kinds: destructive, non-destructive, and partly destructive approaches. 132 
Although the approaches for non-destructive methods often require costly equipment as well as expertise, they do 133 
not tamper with the integrity of the structure. Materials and compositional characteristics are among many factors 134 
that have influenced the compressive strength of concrete. In recent years, soft computing methods such as AI and 135 
ML have shown considerable promise in attempting to figure out the intricate correlations between these many 136 
aspects for obtaining results with accuracy. The approaches characterized in the concrete strength are becoming 137 
quite sophisticated, assessing specific parts in materials or digital picture correlation inclusive of AI and ML in the 138 
area. This work comprehensively reviews the development attained in the use of AI and ML techniques for the 139 
forecast of the compressive strength of concrete. It provides a review of the literature by emphasizing the different 140 



 

 

approaches taken using machine learning, the datasets employed in such approaches, metrics selected to assess the 141 
various approaches, and how the different approaches succeeded. It's crucial to remember that this study does not 142 
address compressive strength predictions in situations when there is dynamic loading or high strain rate loading. The 143 
study also intends to point out possibilities for future research, especially in the use of soft computing approaches for 144 
compressive strength estimation, and to figure out gaps in the existing body of knowledge. 145 

C. Lan et al., (2024) [15] experimented in a controlled laboratory setting, 8 concrete specimens were constructed, 146 
and artificial fissures were created. The grouting method's basic principles were then followed to fix the cracks using 147 
two different types of agents: a paste of cement and cement mortar. Over the course of 28 days, impedance signals 148 
were recorded, and the quality of the repairs was assessed using three quantitative metrics: correlation coefficient 149 
deviation, mean absolute percentage deviation, and root mean square deviation. The outcomes showed that, in 150 
comparison to conventional SAs, SSAs offered improved sensitivity and stability. Normalized values of quantitative 151 
indicators have helped in distinguishing between different repair chemicals. A mathematical model using 152 
exponential function was presented that would help in evaluating and predicting the quantitative efficacy of repairs. 153 
The study also accounted for temperature, humidity, width, and depth of fracture while obtaining experimental 154 
results. Numerical models were used to validate the experimental results and ensure their reliability. 155 

Rezaei et al., (2023) [16] had studied the properties of cement containing Colloidal Nano-Silica and both types of 156 
aggregates, namely recycled and organic coarse aggregates. So, in this paper, some mechanical properties of the 157 
concrete made with different percentages of substituting natural gravel by recycled coarse aggregate are studied. 158 
Thirteen different experimental groups were prepared, consisting of a total of 195 specimens by using different 159 
contents of nano-silica (0%, 1.5%, 3%, 4.5%, and 6%), as well as recycled coarse aggregate (0%, 25%, 50%, 75%, 160 
and 100%). Compressive strength, split tensile and flexural strength, modulus of elasticity, water absorption, and 161 
porosity, and UPV were some of the key parameters tested. These test results showed that the mechanical properties 162 
and durability of concrete decreased with the rise in the percentage of the recycled coarse aggregate. However, the 163 
addition of natural or recycled aggregates to nano-silica increased the mechanical properties and durability of the 164 
concrete. The response surface method was implemented to find the optimum ratios of the RCAs and NS for the 165 
optimization of concrete characteristics. It was noted that the optimum ratios were 26% recycled coarse aggregate 166 
and 4% nano-silica. In addition, GEP has been applied in predicting the compressive strength of cement 167 
incorporating nano-silica and RCA. The model developed a good fit with test results obtained from the experiment, 168 
hence the model could be reliably used to forecast the performance of concrete. The model was developed based on 169 
data from 168 concrete specimens collected from the literature. 170 

III. METHODOLOGY 171 

The 14-day concrete study was focused on the preparation of concrete cubes of 150mm × 150mm × 150mm 172 
dimensions. Concrete grade studies in the present investigation were M10, M15, M20, M25, M30, M35, and M40. 173 
Mixing of concrete and casting of cubes were done in a prescribed manner. The prepared cubes were left to set for 174 
24 hours, after which the cubes were de-moulded. The cubes were then put in a curing tank to maintain consistent 175 
moisture levels until the 14-day testing period. 176 

The testing for compressive strength of concrete cubes was done under destructive testing in a compressive testing 177 
machine as per procedures outlined in IS: 516. The determination of compressive strength at 14 days for each grade 178 
of concrete had to be made from 7 specimens. Results were recorded and analyzed to determine the strength 179 
characteristics for each concrete mix. 180 

The rebound hammer was used to carry out NDT for measuring the surface hardness of concrete, which is directly 181 
related to its compressive strength. The test was used on the same concrete cubes used for DT to provide a measure 182 
of its strength by the surface response. 183 

The detailed mix designs and quantities of materials used for each concrete grade were as follows: 184 

Mix Proportions M10 M15 M20 M25 M30 M35 M40 

Water-Cement Ratio (w/c) 0.55 0.55 0.5 0.5 0.45 0.45 0.45 

Cement Content - - - 300 kg/m³ 320 kg/m³ 340 kg/m³ 340 kg/m³ 



 

 

Mix Grade 1:3:6 1:2:4 1:1.5:3 1:1:2 1:0.75:1.5 1:0.5:1 1:0.25:0.5 

 185 

Quantity of Materials: 186 

For M10, M15, M20, and M25: 187 

Material Cement Fly 

Ash 

Fine 

Aggregate 

Coarse 

Aggregate 

Water Super 

Plasticizer 

Quantity 

(kg) 

280 270 799 834 182 3.3 

 188 

For M30: 189 

Material Cement Fly 

Ash 

Fine 

Aggregate 

Coarse 

Aggregate 

Water Super 

Plasticizer 

Quantity 

(kg) 

290 270 836 858 166 4.48 

 190 

For M35: 191 

Material Coarse 

Aggregate 

Water Fly 

Ash 

Super 

Plasticizer 

Cement Fine 

Aggregate 

Quantity 

(kg) 

814 172 110 3.48 430 814 

 192 

For M40: 193 

Material Fine 

Aggregate 

Water Cement Coarse 

Aggregate 

Super 

Plasticizer 

Fly 

Ash 

Quantity 

(kg) 

814 172 430 814 3.48 110 

 194 

IV. EXPERIMENTAL INVESTIGATION 195 

In this study, concrete samples of different grades were tested for compressive strength at 14 days of curing by using 196 
Destructive Testing and Non-Destructive Testing methods. Concrete grades M10, M15, M20, M25, M30, M35, and 197 
M40 were assessed. The concrete cubes cast in the laboratory as per IS 456 for normal weight concrete used in this 198 
study were of standard dimensions 150mm × 150mm × 150mm. Each grade was mixed and poured into cube molds 199 
by hand, de-moulded after 24 hours, and allowed to immerse in a curing tank for 14 days. A total of 126 concrete 200 
cubes were prepared, with 7 specimens for every grade and curing period. 201 

Table 1: Total Specimens Casted in the Study 202 

Grade of Concrete M10 M15 M20 M25 M30 M35 M40 

Size of Cube (150mm³) 18 18 18 18 18 18 18 

Concrete Mix Design and Properties 203 

Concrete mix designs adhered to IS 10262 specifications. The mix designs for different grades were as follows: 204 



 

 

Mix Proportions (Cement: Fine Aggregate: 

Coarse Aggregate) 

1:1.5:3 1:0.5:1 1:3:6 1:0.75:1.5 1:2:4 1:1:2 1:0.25:0.5 

Water-Cement Ratio (w/c) 0.5 0.45 0.55 0.45 0.55 0.5 0.45 

Concrete Grade M20 M35 M10 M30 M15 M25 M40 

 205 

TESTING PROCEDURES 206 

Compressive strength was determined for DT using a Compression Testing Machine as per IS: 516; at the end of 207 
curing for 14 days, 7 specimens are tested for each grade of concrete. Compressive Strength values were obtained 208 
arithmetically by the equation:  209 

 Compressive Strength =
𝐹𝑎𝑖𝑙𝑢𝑟𝑒  𝐿𝑜𝑎𝑑  (𝑘𝑁)

𝐴𝑟𝑒𝑎  𝑜𝑓  𝑆𝑝𝑒𝑐𝑖𝑚𝑒𝑛  (𝑚𝑚 2)
 210 

For NDT, using the rebound hammer (Schmidt Hammer) test results, the surface hardness result of the concrete was 211 
obtained. Tests were performed using the same cubes that were done in the DT test, and for every grade of concrete, 212 
18 readings were taken. The rebound number, which gives a representation of the surface hardness, varied between 213 
11.5 to 60.3 corresponding to the compressive strength of 10.0 MPa and 45 MPa. 214 

Table 2: Mix Design Proportions and Water-Cement Ratios 215 

Mix Proportions 1:3:6 1:2:4 1:1.5:3 1:1:2 1:0.75:1.5 1:0.5:1 1:0.25:0.5 

Water-Cement Ratio (w/c) 0.55 0.55 0.5 0.5 0.45 0.45 0.45 

Cement Content - - - 300 kg 320 kg 340 kg 340 kg 

Mix Grade M10 M15 M20 M25 M30 M35 M40 

 216 

Table 3: Quantity of Materials for Different Concrete Grades 217 

Grade M10, M15, M20, M25 M30 M35 M40 

Cement (kg) 280 290 430 430 

Fly Ash (kg) 270 270 110 110 

Fine Aggregate (kg) 799 836 814 814 

Coarse Aggregate (kg) 834 858 814 814 

Water (kg) 182 166 172 172 

Super Plasticizer (kg) 3.3 4.48 3.48 3.48 

 218 

Testing and Analysis 219 

In order to determine the correlation between rebound number (NDT) and compressive strength (DT), tests on the 220 
specimens of concrete were conducted 14 days after they had cured. Regression analysis was used to model the found 221 
link between compressive strength and rebound number. 91.6–97.9% R2 values showed a perfect linear correlation in 222 
the results. This suggests that the anticipated compressive strengths derived from the rebound hammer readings have 223 
an extremely high degree of accuracy. The outcomes provide insightful information on the efficacy of DT and NDT 224 
techniques for assessing the quality of concrete. 225 

This methodology can be used to get full information about the characteristics of concrete strength and relate these to 226 
non-destructive rebound testing, very essential for practical applications in construction and structural assessment. 227 

V. RESULTS AND DISCUSSIONS 228 

This experimental investigation aims to assess the compressive strength of concrete in different concrete grades 229 

(M10, M15, M20, M25, M30, M35, and M40) utilizing both destructive and non-destructive testing methods. The 230 

goal of the study is to investigate the correlation between destructive and non-destructive test findings for concrete 231 



 

 

samples that were evaluated at two distinct ages, 14 and 28 days. In this investigation, a Schmidt hammer was used 232 

to perform non-destructive testing on typical concrete cubes. The same cubes were then subjected to destructive 233 

testing utilizing a compression testing apparatus. To produce concrete cubes with crushing strengths that vary from 234 

10 to 40 MPa, various mix proportions were used in their preparation. 235 

A comparison of the results of destructive and non-destructive testing procedures is one of the study's findings. 236 

Through data analysis, the study aims to evaluate the degree of correlation between non-destructive methods and 237 

destructive testing-determined compressive strength, as well as to develop a connection between these approaches 238 

for varying concrete ages and grades. 239 

Compressive Strength Analysis of M10, M15, M20, M25, M30, M35, and M40 Concrete Grades Using 240 

Destructive and Non-Destructive Testing Methods at 14 Days 241 

Table 4: Comparative Analysis of 14-Day M10 Grade Concrete Destructive and Non-Destructive Testing 242 

Type Test of 

Compression 

Machine (D. T.) 

 

The NDT Schmidt 

Hammer Test  

 

10 9.250 9.4000 

10 9.600 9.8000 

10 8.980 8.5000 

10 9.140 9.7000 

10 9.640 10.5000 

10 9.870 9.6000 

10 9.350 9.8000 

10 9.320 9.1000 

10 9.010 8.9000 

10 9.160 9.7000 

10 9.280 8.8000 

10 8.880 7.9000 

10 8.900 9.1000 

10 9.450 9.4000 

10 9.400 9.6000 

10 9.710 10.6000 

10 9.650 10.1000 

10 9.260 9.5000 

 243 



 

 

Evaluation of M15 Grade Concrete's Compressive Strength Over 14 Days Using Destructive and Non-244 

Destructive Testing Techniques 245 

Table 5:  A 14-day assessment using both destructive and non-destructive testing techniques of M15 grade 246 

concrete 247 

Type Test of 

Compression 

Machine (D. T.) 

The NDT Schmidt 

Hammer Test  

 

15 13.600 13.7000 

15 13.710 12.9000 

15 13.430 13.5000 

15 13.980 15.2000 

15 14.060 13.9000 

15 13.180 12.6000 

15 12.910 13.4000 

15 13.560 13.8000 

15 14.200 14.3000 

15 13.230 15.0000 

15 12.890 11.8000 

15 13.530 13.9000 

15 14.250 14.2000 

15 13.380 12.9000 

15 13.480 13.9058 

15 13.150 13.7000 

15 12.930 14.6000 

15 13.910 14.5000 

 248 

14-Day Evaluation of M20 Grade Concrete's Compressive Strength Using Destructive and Non-Destructive 249 

Experimental Techniques 250 

Table 6: Examining M20 Grade Concrete for 14 Days with Both Destructive and Non-Destructive 251 

Experimental Techniques 252 

Type Test of 

Compression 

Machine (D. T.) 

The NDT Schmidt 

Hammer Test  

 

20 18.600 18.9000 



 

 

20 19.140 19.6000 

20 17.690 18.1000 

20 18.200 18.5000 

20 18.620 18.3000 

20 18.420 16.1000 

20 17.540 20.0000 

20 19.210 19.4000 

20 18.150 18.6000 

20 18.290 21.0000 

20 18.390 18.6000 

20 17.110 17.9000 

20 17.780 16.5000 

20 19.120 19.3000 

20 18.840 18.4000 

20 18.970 19.5000 

20 18.640 19.0000 

20 18.230 18.6000 

 253 

Evaluation of M25 Grade Concrete's Compressive Strength Over 14 Days Using Destructive and Non-254 

Destructive Experimental Techniques 255 

Table 7: A 14-day assessment using both destructive and non-destructive methods for testing of M25 grade 256 

concrete 257 

Type Test of 

Compression 

Machine (D. T.) 

The NDT Schmidt 

Hammer Test  

 

25 22.780 23.4000 

25 22.560 22.7000 

25 21.900 22.2000 

25 23.020 24.9000 

25 22.180 24.8000 

25 22.480 22.6000 

25 23.140 21.9000 

25 21.800 22.0000 

25 22.720 22.8000 

25 22.140 22.3000 



 

 

25 22.840 23.0000 

25 22.640 22.9000 

25 22.580 20.0000 

25 22.600 24.6000 

25 22.740 21.8000 

25 23.150 23.4000 

25 21.900 22.0000 

25 22.600 22.8000 

 258 

14-Day Evaluation of M30 Grade Concrete's Compressive Strength Using Destructive and Non-Destructive 259 

Experimental Techniques 260 

Table 8: Examining M30 Grade Concrete for 14 Days with Both Destructive and Non-Destructive Examining 261 

Techniques 262 

Type Test of 

Compression 

Machine (D. T.) 

The NDT Schmidt 

Hammer Test  

 

30 28.480 29.7000 

30 27.150 30.5000 

30 26.840 27.1000 

30 27.320 27.4000 

30 26.970 27.0000 

30 27.250 27.8000 

30 27.470 24.6000 

30 27.390 24.8000 

30 26.680 27.6000 

30 27.960 28.6000 

30 27.380 25.2000 

30 26.620 30.1000 

30 25.870 26.0000 

30 25.930 26.2000 

30 26.820 26.6000 

30 27.540 30.4000 

30 27.790 29.1000 

30 27.140 27.5000 

 263 



 

 

14-Day Evaluation of M35 Grade Concrete's Compressive Strength Using Destructive and Non-Destructive 264 

Experimental Techniques 265 

Table 9: A 14-day assessment using both destructive and non-destructive methods for testing of M35 grade 266 

concrete 267 

Type Test of 

Compression 

Machine (D. T.) 

The NDT Schmidt 

Hammer Test  

 

35 31.920 32.4000 

35 32.540 32.8000 

35 31.600 30.6000 

35 30.800 31.0000 

35 32.100 32.1000 

35 33.700 32.9000 

35 30.140 28.4000 

35 31.910 34.6000 

35 31.650 33.9000 

35 32.180 29.4000 

35 31.600 31.8000 

35 31.750 31.6000 

35 30.260 28.4000 

35 31.046 34.6000 

35 31.280 32.4000 

35 31.850 33.0000 

35 31.590 32.7000 

35 31.800 32.5000 

 268 

14-Day Evaluation of M40 Grade Concrete's Compressive Strength Using Destructive and Non-Destructive 269 

Experimental Techniques 270 

Table 10: A 14-day assessment using both destructive and non-destructive methods for testing of M40 grade 271 

concrete 272 

TYPE Test of 

Compression 

Machine (D. T.) 

The NDT Schmidt 

Hammer Test  

 

40 37.210 40.2000 



 

 

40 36.200 36.6000 

40 36.140 36.4000 

40 36.580 33.1000 

40 36.500 38.6000 

40 36.140 32.5000 

40 35.470 35.8000 

40 35.010 33.5000 

40 36.870 38.4000 

40 34.560 35.0000 

40 36.470 36.5000 

40 36.080 36.2000 

40 36.970 40.6870 

40 35.470 29.4000 

40 35.320 35.6000 

40 36.450 35.8000 

40 37.850 38.0000 

40 38.450 41.6000 

Average Value of concrete grade M10, M15, M20, M25, M30, M35 and M40 for 14 Days 273 

Table 11:  Average Value for 14 Days 274 

Concrete Grade Average Value 

Destructive Non-Destructive 

M10 9.302 9.4278 

M15 13.524 13.8448 

M20 18.5344 19.0889 

M25 22.5778 22.7722 

M30 27.29 26.9556 

M35 31.4968 32.4278 

M40 36.2706 36.241 

 275 



 

 

 276 

Fig. 1. Concrete's compressive strength after 14 days 277 

The Correlation Regression Equation was used to determine the correlation between destructive and non-278 

destructive tests on various grades of concrete, such as M10, M15, M20, M25, M30, M35, and M40, at ages of 279 

14 days. 280 

Correlation and Regression Evaluation of M10 Grade Concrete at 14-Day Destructive and Non-Destructive 281 

Evaluations 282 

Table 12: 14-Day Correlation between M10 Grade Concrete Destructive and Non-Destructive Evaluation 283 

Type Test of 

Compression 

Machine (D. T.) 

 

The NDT 

Schmidt 

Hammer Test  

 

Associated Values 

NDT + 7.564 DT = 

0.1864 

 

Errors 

10 9.250 9.4000 9.3167 -0.06671 

10 9.600 9.8000 9.3913 0.20871 

10 8.980 8.5000 9.1489 -0.16892 

10 9.140 9.7000 9.3726 -0.23265 

10 9.640 10.5000 9.5218 0.11820 

10 9.870 9.6000 9.3540 0.51600 

10 9.350 9.8000 9.3913 -0.04129 

10 9.320 9.1000 9.2608 0.05922 

10 9.010 8.9000 9.2235 -0.21349 

10 9.160 9.7000 9.3726 -0.21265 

10 9.280 8.8000 9.2048 0.07515 

0
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40

M10 M15 M20 M25 M30 M35 M40

Compressive stength of Concrete 

Average Value Average Value



 

 

10 8.880 7.9000 9.0370 -0.15705 

10 8.900 9.1000 9.2608 -0.36078 

10 9.450 9.4000 9.3167 0.13329 

10 9.400 9.6000 9.3540 0.04600 

10 9.710 10.6000 9.5404 0.16956 

10 9.650 10.1000 9.4472 0.20278 

10 9.260 9.5000 9.3354 -0.07536 

 284 

Correlation and Regression Analysis of M15 Grade Concrete at 14-Day Destructive and Non-Destructive 285 

testing results. 286 

Table 13: 14-Day Correlation Between M15 Grade Concrete Destructive and Non-Destructive Assessment 287 

Type Compression 

Machine Test (D. 

T) 

NDT Schmidt 

Hammer Test 

(N.D.T)    

Correlated Values 

DT= 10.954 + 

0.1864 NDT 

Errors 

15 13.600 13.7000 13.5086 0.09138 

15 13.710 12.9000 13.3595 0.35053 

15 13.430 13.5000 13.4713 -0.04133 

15 13.980 15.2000 13.7883 0.19171 

15 14.060 13.9000 13.5459 0.51409 

15 13.180 12.6000 13.3035 -0.12353 

15 12.910 13.4000 13.4527 -0.54269 

15 13.560 13.8000 13.5273 0.03273 

15 14.200 14.3000 13.6205 0.57951 

15 13.230 15.0000 13.7510 -0.52100 

15 12.890 11.8000 13.1544 -0.26438 

15 13.530 13.9000 13.5459 -0.01591 

15 14.250 14.2000 13.6018 0.64816 

15 13.380 12.9000 13.3595 0.02053 

15 13.480 13.9058 13.5470 -0.06699 

15 13.150 13.7000 13.5086 -0.35862 

15 12.930 14.6000 13.6764 -0.74642 

15 13.910 14.5000 13.6578 0.25222 

 288 

14-Day Correlation Regression Analysis-Based Correlation Between Destructive and Non-Destructive Tests 289 

for M20 Grade Concrete 290 



 

 

Table 14:  Relationship between M20 Grade Concrete Destructive and Non-Destructive Tests After 14 Days 291 

Type Compression 

Machine Test (D. 

T) 

NDT Schmidt 

Hammer Test 

(N.D.T)    

Correlated Values 

DT= 14.902 + 

0.1864 NDT 

Errors 

20 18.600 18.9000 18.4260 0.17405 

20 19.140 19.6000 18.5565 0.58354 

20 17.690 18.1000 18.2768 -0.58680 

20 18.200 18.5000 18.3514 -0.15137 

20 18.620 18.3000 18.3141 0.30591 

20 18.420 16.1000 17.9039 0.51609 

20 17.540 20.0000 18.6310 -1.09104 

20 19.210 19.4000 18.5192 0.69083 

20 18.150 18.6000 18.3700 -0.22002 

20 18.290 21.0000 18.8175 -0.52748 

20 18.390 18.6000 18.3700 0.01998 

20 17.110 17.9000 18.2395 -1.12951 

20 17.780 16.5000 17.9785 -0.19849 

20 19.120 19.3000 18.5005 0.61947 

20 18.840 18.4000 18.3327 0.50727 

20 18.970 19.5000 18.5378 0.43218 

20 18.640 19.0000 18.4446 0.19540 

20 18.230 18.6000 18.3700 -0.14002 

 292 

Relationship between Destructive and Non-Destructive Testing for M25 Grade Concrete after 14 Days Using 293 

Correlation Regression 294 

Table 15:  Results of the Relationship between Destructive and Non-Destructive Tests for M20 Grade 295 

Concrete after 14 Days 296 

Type Compression 

Machine Test (D. 

T) 

NDT Schmidt 

Hammer Test 

(N.D.T)    

Correlated Values 

DT = 18.295 + 

0.1864 NDT 

Errors 

25 22.780 23.4000 22.6578 0.12225 

25 22.560 22.7000 22.5272 0.03276 

25 21.900 22.2000 22.4340 -0.53402 

25 23.020 24.9000 22.9374 0.08259 

25 22.180 24.8000 22.9188 -0.73877 



 

 

25 22.480 22.6000 22.5086 -0.02860 

25 23.140 21.9000 22.3781 0.76191 

25 21.800 22.0000 22.3967 -0.59673 

25 22.720 22.8000 22.5459 0.17411 

25 22.140 22.3000 22.4527 -0.31266 

25 22.840 23.0000 22.5832 0.25683 

25 22.640 22.9000 22.5645 0.07547 

25 22.580 20.0000 22.0238 0.55615 

25 22.600 24.6000 22.8815 -0.28148 

25 22.740 21.8000 22.3594 0.38056 

25 23.150 23.4000 22.6578 0.49225 

25 21.900 22.0000 22.3967 -0.49673 

25 22.600 22.8000 22.5459 0.05411 

 297 

Results of the Relationship between Destructive and Non-Destructive Tests for M30 Grade Concrete After 14 298 

Days Based on Correlation Regression Equation 299 

Table 16:  Results of the Relationship between Destructive and Non-Destructive Tests for M25 Grade 300 

Concrete after 14 Days 301 

Type Compression 

Machine Test (D. 

T) 

NDT Schmidt 

Hammer Test 

(N.D.T)    

Correlated Values 

DT= 22.005 + 

0.1864 NDT 

Errors 

30 28.480 29.7000 27.5422 0.93781 

30 27.150 30.5000 27.6913 -0.54134 

30 26.840 27.1000 27.0574 -0.21744 

30 27.320 27.4000 27.1134 0.20663 

30 26.970 27.0000 27.0388 -0.06879 

30 27.250 27.8000 27.1879 0.06205 

30 27.470 24.6000 26.5913 0.87867 

30 27.390 24.8000 26.6286 0.76138 

30 26.680 27.6000 27.1507 -0.47066 

30 27.960 28.6000 27.3371 0.62290 

30 27.380 25.2000 26.7032 0.67680 

30 26.620 30.1000 27.6168 -0.99677 

30 25.870 26.0000 26.8524 -0.98235 

30 25.930 26.2000 26.8896 -0.95964 



 

 

30 26.820 26.6000 26.9642 -0.14422 

30 27.540 30.4000 27.6727 -0.13270 

30 27.790 29.1000 27.4303 0.35968 

30 27.140 27.5000 27.1320 0.00799 

 302 

Results of the Relationship between Destructive and Non-Destructive Tests for M35 Grade Concrete after 14 303 

Days 304 

Table 17: Results of the Relationship between Destructive and Non-Destructive Tests for M30 Grade 305 

Concrete after 14 Days 306 

Type Compression 

Machine Test (D. 

T) 

NDT Schmidt 

Hammer Test 

(N.D.T)    

Correlated Values 

DT = 25.694 + 

0.1864 NDT 

Errors 

35 31.920 32.4000 31.7348 0.18521 

35 32.540 32.8000 31.8094 0.73063 

35 31.600 30.6000 31.3992 0.20081 

35 30.800 31.0000 31.4738 -0.67377 

35 32.100 32.1000 31.6789 0.42114 

35 33.700 32.9000 31.8280 1.87199 

35 30.140 28.4000 30.9890 -0.84902 

35 31.910 34.6000 32.1450 -0.23496 

35 31.650 33.9000 32.0145 -0.36445 

35 32.180 29.4000 31.1755 1.00454 

35 31.600 31.8000 31.6229 -0.02292 

35 31.750 31.6000 31.5856 0.16437 

35 30.260 28.4000 30.9890 -0.72902 

35 31.046 34.6000 32.1450 -1.09896 

35 31.280 32.4000 31.7348 -0.45479 

35 31.850 33.0000 31.8467 0.00335 

35 31.590 32.7000 31.7907 -0.20072 

35 31.800 32.5000 31.7534 0.04657 

 307 

Results of the Relationship between Destructive and Non-Destructive Tests for M40 Grade Concrete after 14 308 

Days 309 

Table 18:  Results of the Relationship between Destructive and Non-Destructive Tests for M25 Grade 310 

Concrete after 14 Days 311 



 

 

TYPE Compression 

Machine Test (D. 

T) 

NDT Schmidt 

Hammer Test 

(N.D.T)    

Correlated Values 

DT = 29.55 + 

0.1864 NDT 

 

Errors 

40 37.210 40.2000 37.0410 0.16903 

40 36.200 36.6000 36.3698 -0.16978 

40 36.140 36.4000 36.3325 -0.19249 

40 36.580 33.1000 35.7172 0.86277 

40 36.500 38.6000 36.7427 -0.24266 

40 36.140 32.5000 35.6054 0.53464 

40 35.470 35.8000 36.2206 -0.75062 

40 35.010 33.5000 35.7918 -0.78180 

40 36.870 38.4000 36.7054 0.16463 

40 34.560 35.0000 36.0715 -1.51147 

40 36.470 36.5000 36.3511 0.11887 

40 36.080 36.2000 36.2952 -0.21520 

40 36.970 40.6870 37.1318 -0.16177 

40 35.470 29.4000 35.0274 0.44261 

40 35.320 35.6000 36.1833 -0.86333 

40 36.450 35.8000 36.2206 0.22938 

40 37.850 38.0000 36.6308 1.21920 

40 38.450 41.6000 37.3020 1.14801 

 312 

Regression Equation and Coefficient evaluation using Minitab for Grade of Concrete as M10 M15 M20 M25 313 

M30 M35 and M40 for Age 14 Days. 314 

Table 19:  Regression Equation for 14 Days 315 

Type Equation 

M10 DT = 7.693 + 0.1688 NDT 

M15 DT = 11.155 + 0.1688 NDT 

M20 DT = 15.194 + 0.1688 NDT 

M25 DT = 18.743 + 0.1688 NDT 

M30 DT = 22.471 + 0.1688 NDT 

M35 DT = 26.34 + 0.1688 NDT 

M40 DT = 30.36 + 0.1688 NDT 

 316 



 

 

Table 20: Coefficient Value for Constant and NDT 317 

  Term       Coeff    SE Coeff   T-Value    P-Value   VIF    

Constant   7.693 0.360 21.40 0.000   

NDT   0.1688 0.0337 5.01 0.000 28.05 

 318 

Table 21: Coefficient Value for Different Concrete Grade 319 

  Term       Coeff    SE Coeff T-Value    P-Value   VIF    

15 3.461 0.267 12.96 0.000 2.54 

20 7.500 0.396 18.95 0.000 5.22 

25 11.050 0.504 21.91 0.000 8.47 

30 14.777 0.640 23.08 0.000 12.69 

35 18.650 0.784 23.79 0.000 21.89 

40 22.663 0.937 24.17 0.000 35.17 

 320 

Table 22: Analysis of Variance for Regression 321 

Source DF Adj SS Adj MS F-Value P-Value 

Regression 7 7599.67 1085.67 3491.60 0.000 

NDT 1 7.79 7.79 25.05 0.000 

Type 6 190.36 31.73 102.04 0.000 

Error 80 24.87 0.31   

Lack of Fit 71 23.87         0.33 2.51 0.068 

Pure Error 9 1.20 0.13   

Total 87 7624.55    

 322 

 323 

Fig. 2. Normal Probability Plot for Residuals of linear, quadratic and cubic correlation models 324 



 

 

 325 

Fig. 3.  Residuals vs fitted values for linear, quadratic and cubic models 326 

 327 

Fig. 4. Histogram of Residuals for linear, quadratic and cubic models 328 

 329 

Fig. 5. Residuals vs Observation Order for linear, quadratic and cubic models 330 

VI. CONCLUSION 331 

It confirms great correlation between the NDT and DT methods for the assessment of concrete strength, with very 332 

high coefficients of correlation obtained using linear, quadratic, and cubic regression models. This high correlation 333 



 

 

coefficient showed that the NDT methods—for instance, the rebound hammer test—can be reliably used in 334 

predicting compressive strength, especially if calibrated with DT data. This has huge implications for the 335 

construction industry, where NDT can offer less-intrusive, faster, and more cost-effective solutions compared with 336 

conventional DT methods. These relationships further provide a basis for more efficient and accurate concrete 337 

strength evaluation. This is not only useful in new constructions but also in continued controls on already existing 338 

structures to ascertain their safety progressive over time. The paper calls for increased use of NDT methods in 339 

routine structural assessments, especially in cases where damage to the structure needs to be kept at a minimum. 340 

REFERENCES 341 

[1] Zhou, X., Xie, Y., Long, G., Zeng, X., Li, J., Li, N., ... & Umar, H. A. (2023). Influence of end friction 342 
confinement on dynamic mechanical properties and damage evolution of concrete by coupled DEM-FDM 343 
method. Engineering Fracture Mechanics, 281, 109150. https://doi.org/10.1016/j.engfracmech.2023.109150 344 

[2] Mukhtar, F., & El-Tohfa, A. (2023). A review on fracture propagation in concrete: Models, methods, and 345 
benchmark tests. Engineering Fracture Mechanics, 281, 109100. 346 

https://doi.org/10.1016/j.engfracmech.2023.109100 347 
[3] Yang, Y., Liu, Z., Tang, H., & Peng, J. (2023). Deflection-based failure probability analysis of low shrinkage-348 

creep concrete structures in presence of non-stationary evolution of shrinkage and creep 349 
uncertainties. Construction and Building Materials, 376, 131077. 350 

https://doi.org/10.1016/j.conbuildmat.2023.131077 351 
[4] Li, P. D., & Wu, Y. F. (2023). Damage evolution and full-field 3D strain distribution in passively confined 352 

concrete. Cement and Concrete Composites, 138, 104979. 353 

https://doi.org/10.1016/j.cemconcomp.2023.104979 354 
[5] Ali-Benyahia, K., Kenai, S., Ghrici, M., Sbartaï, Z. M., & Elachachi, S. M. (2023). Analysis of the accuracy of 355 

in-situ concrete characteristic compressive strength assessment in real structures using destructive and non-356 
destructive testing methods. Construction and Building Materials, 366, 130161. 357 

https://doi.org/10.1016/j.conbuildmat.2022.130161 358 
[6] Wang, J., Xia, Y., Zhang, C., Wang, C., Xue, B., Sun, R., ... & Wang, B. (2023). Evaluation of compressive 359 

strength of concrete durability degradation in dry and wet environments using destructive and non-destructive 360 

testing. Measurement, 223, 113702. https://doi.org/10.1016/j.measurement.2023.113702 361 
[7] Meraz, M. M., Mim, N. J., Mehedi, M. T., Bhattacharya, B., Aftab, M. R., Billah, M. M., & Meraz, M. M. 362 

(2023). Self-healing concrete: Fabrication, advancement, and effectiveness for long-term integrity of concrete 363 

infrastructures. Alexandria Engineering Journal, 73, 665-694. https://doi.org/10.1016/j.aej.2023.05.008 364 
[8] Lin, T. H., Chang, C. T., Yang, B. H., Hung, C. C., & Wen, K. W. (2023). AI-powered shotcrete robot for 365 

enhancing structural integrity using ultra-high performance concrete and visual recognition. Automation in 366 

Construction, 155, 105038. https://doi.org/10.1016/j.autcon.2023.105038 367 
[9] Ma, Z., Liu, Y., & Li, J. (2023). Review on automated quality inspection of precast concrete 368 

components. Automation in Construction, 150, 104828. https://doi.org/10.1016/j.autcon.2023.104828 369 
[10] Coric, V. (2023). Mapping of Dependent Structural Responses on a Pre-stressed Concrete Bridge using Machine 370 

Learning Regression Analysis and Historical Data: A Comparison of Different Non-linear Regression 371 
Approaches. 372 

[11] Gunes, B., Karatosun, S., & Gunes, O. (2023). Drilling resistance testing combined with SonReb methods for 373 
nondestructive estimation of concrete strength. Construction and Building Materials, 362, 129700. 374 

https://doi.org/10.1016/j.conbuildmat.2022.129700 375 
[12] Anoni, L. G., Haach, V. G., & Khazanovich, L. (2024). Image reconstruction in concrete ultrasound tomography: 376 

A systematic review. Construction and Building Materials, 441, 137472. 377 

https://doi.org/10.1016/j.conbuildmat.2024.137472 378 

https://doi.org/10.1016/j.engfracmech.2023.109150
https://doi.org/10.1016/j.engfracmech.2023.109100
https://doi.org/10.1016/j.conbuildmat.2023.131077
https://doi.org/10.1016/j.cemconcomp.2023.104979
https://doi.org/10.1016/j.conbuildmat.2022.130161
https://doi.org/10.1016/j.measurement.2023.113702
https://doi.org/10.1016/j.aej.2023.05.008
https://doi.org/10.1016/j.autcon.2023.105038
https://doi.org/10.1016/j.autcon.2023.104828
https://doi.org/10.1016/j.conbuildmat.2022.129700
https://doi.org/10.1016/j.conbuildmat.2024.137472


 

 

[13] Khan, M., & Javed, M. F. (2023). Towards sustainable construction: Machine learning based predictive models 379 
for strength and durability characteristics of blended cement concrete. Materials Today Communications, 37, 380 

107428. https://doi.org/10.1016/j.mtcomm.2023.107428 381 
[14] Dabholkar, T., Narayana, H. & Janardhan, P. A review of soft computing techniques in predicting the 382 

compressive strength of concrete and the future scope. Innov. Infrastruct. Solut. 8, 176 (2023). 383 

https://doi.org/10.1007/s41062-023-01150-5 384 
[15] Lan, C., Liu, H., Zhuang, S., Wang, J., Li, W., & Lin, G. (2024). Monitoring of crack repair in concrete using 385 

spherical smart aggregates based on electromechanical impedance (EMI) technique. Smart Materials and 386 
Structures, 33(2), 025031. DOI 10.1088/1361-665X/ad1c4f 387 

[16] Rezaei, F., Memarzadeh, A., Davoodi, M. R., Dashab, M. A., & Nematzadeh, M. (2023). Mechanical features 388 
and durability of concrete incorporating recycled coarse aggregate and nano-silica: Experimental study, 389 
prediction, and optimization. Journal of Building Engineering, 73, 106715. 390 
https://doi.org/10.1016/j.jobe.2023.106715 391 
 392 

https://doi.org/10.1016/j.mtcomm.2023.107428
https://doi.org/10.1007/s41062-023-01150-5
https://doi.org/10.1016/j.jobe.2023.106715

