Clinical utility of Shock Index in the Early Detection of Adverse Outcomes In Postpartum
 Hemorrhage.

3

4 <u>ABSTRACT</u>

- 5 Background: Postpartum hemorrhage is a major cause of maternal morbidity and
- 6 mortality. Shock Index (SI), defined as heart rate (HR) divided by systolic blood pressure
- 7 (SBP), is emerging as a valuable early predictor of hemodynamic instability.
- 8 Objective: This study evaluates the role of SI in predicting adverse maternal outcomes,
- 9 including ICU admission, need for transfusion, and surgical intervention.
- 10 Materials and Methods: A prospective cohort study was conducted from March 2023 to
- 11 March 2024at Dr.B.R.A.M Hospital, Raipur, involving 65 patients diagnosed with PPH.
- 12 SI was measured at 15-minute intervals for 1 hour post-delivery. The primary outcomes
- 13 included ICU admission, blood transfusion, and surgical intervention.
- 14 Results: SI>1.1 was significantly associated with increased ICU admissions (40%), need
- 15 for massive transfusion (68%), and surgical interventions (55%). ROC curve analysis
- 16 demonstrated an area under the curve (AUC) of 0.80, indicating strong predictive value of
- 17

SI.

- 18 Conclusion: SI is an effective tool for early detection of hemodynamic instability in PPH
 19 and should be integrated into obstetric early warning systems for better maternal
 20 outcomes.
- Keywords: Shock Index, Postpartum Hemorrhage, Maternal Mortality, Hemodynamic
 Instability, Obstetric Emergencies.
- 23 **INTRODUCTION**
- 24
- The maternal mortality ratio (MMR) in India has declined to 97 per 100,000 live births
 for the period 2018–2020, down from 130 in 2014–2016, according to the SRS report.[1]

27	However, this remains above the Sustainable Development Goal (SDG) 3.1 target of
28	reducing global MMR to below 70 per 100,000 live births by 2030.[2]
29	
30	Postpartum hemorrhage (PPH), defined as blood loss >500 mL after vaginal delivery or
31	>1000 mL after cesarean section, remains a leading cause of maternal mortality and
32	morbidity globally.[3,4] The World Health Organization reports that PPH affects
33	approximately 14 million women annually, leading to around 70,000 deaths
34	worldwide.[5]
35	The causes of PPH are classified into the "Four Ts": tone (uterine atony), trauma, tissue
36	(retained placenta), and thrombin (coagulopathies), with uterine atony being the most
37	common etiology.[6]
38	
39	Prompt recognition and management of PPH are crucial. However, conventional methods
40	of estimating blood loss, such as visual assessment, are often inaccurate, leading to
41	diagnostic delays and suboptimal intervention.[7,8] In response, there has been increasing
42	interest in objective tools like the Shock Index (SI), calculated as the ratio of heart rate to
43	systolic blood pressure, to assess hemodynamic instability.[9]
44	
45	In healthy adults, normal SI ranges from 0.5 to 0.7, while in pregnant women, due to
46	physiological changes, it ranges from 0.7 to 0.9.[10,11] Elevated SI values have been
47	shown to correlate with greater blood loss, hemodynamic compromise, and increased risk
48	of adverse maternal outcomes in PPH.[12,13] Unlike individual vital signs that may
49	remain deceptively normal, SI offers a more sensitive marker of early
50	decompensation.[9,14]
51	
52	This study aims to evaluate the role of shock index in assessing adverse maternal
53	outcomes in postpartum hemorrhage and to determine its clinical utility in comparison to
54	traditional assessment methods. By identifying SI thresholds predictive of poor outcomes,
55	this research seeks to support more timely and effective interventions in PPH, thereby
56	contributing to improved maternal health outcomes.
57	

58	OBJECTIVE
59	Primary objective - To study the role of shock index in assessing the adverse maternal
60	outcomes in postpartum hemorrhage.
61	
62	Secondary objective – To correlate shock index with visual estimation of blood loss in
63	women with postpartum hemorrhage.
64	
65	MATERIALS AND METHODOLOGY
66	Study Design & Setting
67	A prospective cohort study was conducted in the Department of Obstetrics and
68	Gynaecology at Dr. B.R.A.M Hospital, Raipur, from March 2023- March 2024. The study
69	included pregnant women diagnosed with postpartum hemorrhage (PPH), and their
70	hemodynamic parameters were continuously monitored to evaluate the predictive utility
71	of
72	Shock Index in determining adverse maternal outcomes.
73	Inclusion criteria
74	Women who delivered after 28 weeks of gestation.
75	Patients diagnosed with PPH based on visual blood loss >=500mL in vaginal delivery and
76	>=1000 mL in LSCS.
77	Patients with normal baseline hemodynamic parameters before labor.
78	Exclusion criteria
79	Antepartum hemorrhage
80	Pre-existing maternal heart disease or severe anaemia (<7gm/dL).
81	Pregnancy induced hypertension, preeclampsia, eclampsia
82	Patients with pre-existing coagulopathies.
83	
84	Methodology
85	Immediately after delivery blood loss estimation was done using blood collected
86	in drapes, fixed size mops of 45*45cm, swabs of 10*10cm, perianal pads which
87	when fully soaked amounted to a blood loss of approximately 350ml, 60ml and
88	100ml respectively. Blood loss estimation in case of caesarean section was done

using fixed size mops, kidney tray and suction machine. A full kidney tray
amounted to a blood loss of approximately 500ml whereas a partially filled tray
amounted to a blood loss of approximately 250ml.

92

Baseline vitals were recorded at the time of admission. Thereafter as soon as
postpartum haemorrhage was anticipated by visual estimation of blood loss
study participants were subjected to BP and HR measurement every 15
minutes for 1 hour postpartum. Shock index was evaluated by dividing heart
rate by systolic blood pressure. The highest SI that was recorded was selected
for further analysis. Active management of third stage of labor was routinely
performed.

100

Pre specified potential confounding factors included age, gestational age at
delivery, height, weight, BMI, parity, mode of delivery, type of anaesthesia and
use of oxytocin for AMTSL.

104 The following outcome measures were recorded: need for ICU care, need for 105 blood and blood products transfusion, need for operative intervention, acute 106 renal failure, surgical site infection and maternal mortality.

107

108 **<u>RESULT</u>**

109 The present study aimed to assess the role of Shock Index (SI) in predicting adverse 110 maternal outcomes in postpartum hemorrhage (PPH). The average age of participants was 111 24.97 years, with most being unbooked cases. The mean gestational age was 38.52 weeks, 112 and the average BMI was 24.65. Most deliveries were vaginal (58.46%), followed by 113 LSCS (38.46%) and VBAC (3.08%). The primary cause of PPH was uterine atony (60%). 114 115 The mean shock index was 1.26 (range 1.0-1.81). 116 A strong positive correlation was found between SI and blood loss (r = 0.88), with an 117 average loss of 902.92 ± 340 mL. 118

Table 1:Association of Shock Index and Blood Loss

		Median	Range	p-value
Shock Index	Mean Blood	(25th–		
Range	Loss (mL)	75th		
		percentile)		
0 0 to <1 2	643.07 ±	600 (550–	500 1050	0 0001
0.9 (0 <1.2	148.62	800)	500-1050	<0.0001
	940.34 ±	900 (850–	600 4550	
1.2 to <1.5	197.08	1000)	600-1550	
1.5 to <1.7	1 100 00 1	1300	1100–2000	
	1408.33 ±	(1262.5–		
	310.89	1450)		
≥1.7	1587.5 ±	1600	1350–1800	
	184.28	(1537.5–		
		1650)		

Outcome Need for ICU Admission -	Shock Index (Mean ± SD) 1.11 ± 0.09	Median (25th– 75th percentile) 1.08 (1.045– 1.165)	Range 1–1.4	P-value <0.0001
No Need for ICU Admission - Yes	1.4 ± 0.18	1.33 (1.282– 1.5)	1.19–1.81	TIP
Ventilatory Support - No	1.21 ± 0.15	1.2 (1.08– 1.31)	1–1.61	<0.0001
Ventilatory Support - Yes	1.63 ± 0.16	1.69 (1.48– 1.73)	1.42–1.81	
Inotropic Support - No	1.19 ± 0.14	1.19 (1.08– 1.292)	1–1.6	<0.0001
Inotropic Support - Yes	1.55 ± 0.17	1.5 (1.42– 1.72)	1.28–1.81	
Transfusion Required - No	1.07 ± 0.06	1.06 (1.03– 1.1)	1–1.26	<0.0001
Transfusion Required - Yes	1.37 ± 0.18	1.31 (1.22– 1.468)	1.1–1.81	
Operative Intervention - No	1.09 ± 0.09	1.08 (1.04– 1.105)	1–1.4	<0.0001
Operative Intervention - Yes	1.34 ± 0.2	1.31 (1.21– 1.46)	1–1.81	

ARF - No	1.2 ± 0.17	1.18 (1.08– 1.288)	1–1.81	<0.0001
ARF - Yes	1.46 ± 0.19	1.42 (1.32– 1.64)	1.2–1.76	
Dialysis - No	1.25 ± 0.19	1.22 (1.09– 1.325)	1–1.81	0.0006
Dialysis - Yes	1.74 ± 0.03	1.74 (1.73– 1.75)	1.72–1.76	A
Surgical Site Infection - No	1.25 ± 0.21	1.21 (1.08– 1.33)	1–1.81	0.167
Surgical Site Infection - Yes	1.4 ± 0.17	1.39 (1.295– 1.498)	1.22–1.61	7
Severe Anemia - No	1.11 ± 0.09	1.09 (1.048– 1.185)	1–1.28	<0.0001
Severe Anemia - Yes	1.41 ± 0.18	1.34 (1.3–1.5)	1.1–1.81	
Maternal Mortality - Alive	1.23 ± 0.17	1.21 (1.08– 1.32)	1–1.76	<0.0001
Maternal Mortality - Died	1.73 ± 0.06	1.72 (1.708– 1.742)	1.67–1.81	

138

139 ROC analysis showed excellent predictive power: AUC values were 0.958 for ICU

admission, 0.978 for transfusion, 0.896 for operative intervention, 0.864 for acute renal

141 failure, and 0.988 for maternal mortality (all p < 0.05).

149 Table3:ROC Curve Summary Table

Outcome	AUC	Cut-off Value	Interpretation
ICU Admission	0.958	>1.18	Excellent discrimination. High accuracy for identifying patients needing ICU care.
Ventilatory Support	0.966	>1.4	Outstanding discrimination. Very high sensitivity and specificity.
Inotropic Support	0.944	>1.4	Excellent discrimination. Strong predictive value.
Transfusion Requirement	0.978	>1.18	Outstanding discrimination. Most accurate among all outcomes evaluated.
Operative Intervention	0.896	>1.12	Very good discrimination. Slightly lower but still reliable.

Acute Renal Failure (ARF)	0.864	>1.3	Good discrimination. Moderate predictive capacity.
Need for Dialysis	0.98	>1.67	Outstanding discrimination. Very high accuracy despite small sample size.
Surgical Site Infection	0.752	>1.21	Fair discrimination. Predictive power is weaker here.

- 158
 159 SI was categorized into four ranges (0.9–<1.2, 1.2–<1.5, 1.5–<1.7, ≥1.7), with a stepwise
 160 increase in the frequency and severity of adverse outcomes across higher SI ranges. ICU
 161 admissions, transfusion needs, operative interventions, renal complications, mortality, and
 162 hospital stay duration increased with rising SI value

Table 4:Association of Maternal Outcomes with Shock Index Ranges

Maternal Outcome	0.9 to <1.2 (n=26)	1.2 to <1.5 (n=29)	1.5 to <1.7 (n=6)	≥1.7 (n=4)	P-value
Need for ICU Admission	1 (3.85%)	23 (79.31%)	6 (100%)	4 (100%)	<0.0001
Ventilatory Support	0 (0%)	2 (6.90%)	2 (33.33%)	4 (100%)	<0.0001
Inotropic Support	0 (0%)	5 (17.24%)	4 (66.67%)	4 (100%)	<0.0001
Operative Intervention	8 (30.77%)	27 (93.10%)	6 (100%)	4 (100%)	<0.0001
ARF	0 (0%)	9 (31.03%)	3 (50%)	3 (75%)	<0.0001
Dialysis	0 (0%)	0 (0%)	0 (0%)	2 (50%)	0.003

Surgical Site	0 (0%)	3	1 (16.67%)	0 (0%)	0.223
Infection		(10.34%)			
Maternal Mortality	0 (0%)	0 (0%)	1 (16.67%)	3 (75%)	<0.0001

171

172

173

Table5:Correlation	of Shock	Index with	SBP,DBP,PR and MAP
--------------------	----------	------------	--------------------

Variable	Correlation Coefficient	P-value
Systolic Blood Pressure (SBP)	-0.404	.001
Diastolic Blood Pressure (DBP)	-0.270	0.030
Pulse Rate (PR)	0.380	.002
Mean Arterial Pressure	-0.372	.002

174

178

179 **DISCUSSION**

- 180 The study titled "Clinical Utility of Shock Index in the Early Detection of Adverse
- 181 Outcomes in Postpartum Hemorrhage" was conducted at Pt. J.N.M Medical College
- 182 Raipur (C.G) from March 2023 to March 2024.
- Postpartum hemorrhage (PPH) remains a major cause of maternal mortality, especially in
 low-resource settings where early recognition is challenging. Shock Index (SI)—the ratio

¹⁷⁵ A weak positive correlation was observed between SI and pulse rate (r = 0.38), and 176 negative correlations were noted with systolic BP (r = -0.404), diastolic BP (r = -0.27), 177 and MAP (r = -0.372).

- of heart rate to systolic blood pressure—is emerging as a simple, cost-effective tool for
 early identification of hemodynamic instability in PPH.
- 187

188 This study aimed to assess the role of SI in predicting adverse maternal outcomes in PPH 189 patients, evaluating its correlation with clinical parameters such as ICU admission, need 190 for transfusion, operative interventions, and maternal mortality.

191

192 Descriptive statistics of Shock Index

193

The shock index (SI) in our study demonstrated a mean value of 1.26, ranging from 1 to 195 1.81, indicating variability in patients' physiological responses to shock. El Ayadi et al. 196 (2016) reported a comparable median SI of 1.3. The primary utility of SI lies in its ability 197 to detect hemodynamic instability earlier than conventional vital signs, identifying 198 significant blood loss and hypovolemia before overt hypotension develops.

199 Association between Shock Index and Blood Loss

200 In non-pregnant individuals, an SI of 1.0 typically corresponds to a blood loss of 750– 1500 mL.[51] In obstetric settings, massive hemorrhage is defined as blood loss >2000 201 mL or >30% of blood volume.⁽¹⁶⁾SI values differ between pregnant and non-pregnant 202 203 women due to physiological changes. Literature indicates that a 10–30% blood loss in 204 pregnant women correlates with an SI of ~1.0, while in non-pregnant women, a similar SI reflects a 15–20% loss. $^{(17,18)}$ In our study, SI strongly correlated with blood loss (r = 0.88, 205 206 p < 0.0001), with the highest blood loss observed in the SI ≥ 1.7 group (1587.5 \pm 184.28 207 mL). These findings are consistent with studies by Dziadosz et al. (2020), Sanchez et al. 208 (2023), and Talbot et al. (2023), all of which reported a positive association between SI 209 and hemorrhage severity. However, contrasting studies by Huang et al. (2022) and Ushida 210 et al. (2021) found weaker correlations, suggesting that SI alone may not always reliably 211 quantify blood loss.

Association of Shock Index with Adverse Maternal Outcomes

214 *Operative Intervention*

215

216	In our study, the mean SI among patients requiring operative intervention was
217	significantly elevated at 1.34 ± 0.2 , compared to 1.09 ± 0.09 in those managed
218	medically. Among surgical procedures, the mean SI progressively increased
219	with the severity of intervention: vaginal tear repair (1.13), uterine artery
220	ligation (1.32), uterine compression sutures (1.44), uterine artery
221	embolisation (1.51), and hysterectomy (1.63).

222

An SI cut-off of >1.12 predicted the need for operative intervention with 223 224 91.11% sensitivity, 85% specificity. Similar findings were reported by Nathan et al. (2019), where SI measured after PPH diagnosis predicted emergency 225 hysterectomy risk. SI <0.9 indicated low risk (2% underwent hysterectomy), 226 0.9–1.69 moderate risk (14.7%), and \geq 1.7 high risk (28.6%). El Ayadi et al. 227 (2016) reported an SI of 1.35 (95% CI; 60% specificity) for hysterectomy, 228 which was lower than our study's mean SI of 1.63 ±0.12. Chaudhary et al. 229 (2020) reported a slightly higher mean SI (1.58 ± 0.51) for surgical 230 231 intervention.

232

233Our findings on SI cut-off values were consistent with Agarwal et al. (2021),234who reported thresholds >1 for interventions: hysterectomy >1.32 (90.91%)235sensitivity, 89.74% specificity), vaginal/cervical tear repair >1.32 (75%,23678.41%), internal artery ligation >1.3 (90%, 77.78%), and compression237sutures >1.24 (100%, 58.76%). Studies by Sakshi Agarwal et al. (2023) and238Kohn et al. (2017) also reported comparable SI values (\geq 1.1 and \geq 1.14) with239moderate sensitivity and specificity.

240

241 ICU Admission

- The mean SI among patients requiring ICU admission was 1.32 ± 0.15,
 significantly higher than 1.11 ± 0.09 in non-ICU patients. A cut-off value of
 >1.18 demonstrated 100% sensitivity, 80.65% specificity. These values are
 consistent with previous reports. El Ayadi et al. identified a threshold of 1.35,
 Chaudhary et al. noted 1.23, and Sakshi Agarwal et al. reported 1.32 as
 predictive of ICU admission. Our findings reaffirm that SI is a strong predictor
 of ICU-level care in PPH.
- 250

251 Nathan et al. (2019) demonstrated increasing ICU admission rates with rising SI: 25.5% (SI <0.9), 48.3% (SI 0.9–1.69), and 78.6% (SI ≥1.7). El Ayadi et al. 252 (2016) reported a higher mean SI of 1.35 for ICU admission, while Chaudhary 253 254 et al. (2020) found a mean SI of 1.23 ± 0.35 —both comparable to our findings. 255 Sakshi Agarwal et al. (2023) reported a cut-off SI \geq 1.1 (sensitivity 97.62%, specificity 93.41%), similar to Koch et al. (2019) who found SI >1 predictive of 256 ICU admission. Agarwal et al. (2021) and El Avadi et al. (2016) reported higher 257 thresholds of >1.3 and \geq 1.4, with the latter showing 70.5% sensitivity and 258 259 74.8% specificity. Nathan et al. (2015) suggested an even lower threshold of SI 260 ≥0.9.

261

262 Inotropic and Ventilatory Support

263

Patients who required ventilatory support had a mean SI of 1.63 ± 0.16. An SI
cut-off of >1.4 predicted ventilatory requirement with 100% sensitivity,
89.47% specificity

267

Sakshi Agarwal et al. similarly found high SI (mean 1.34) in ventilated patients,
with high sensitivity and specificity. Our results further confirm that elevated
SI is a reliable marker for identifying patients who may require respiratory
support. Inotropic Support

273	The mean SI in patients needing inotropic support was 1.55 ± 0.17 . A cut-off of
274	>1.4 yielded 84.62% sensitivity, 94.23% specificity. Similar to the findings of
275	the current study Agarwal et al. 2021 established cut-off thresholds of shock
276	index (SI) to predict the need for ICU admission with ventilatory support and
277	ICU admission with inotropic support. The values were >1.34 (sensitivity:
278	95.45%; specificity: 92.31%) and >1.446 (sensitivity: 91.67%; specificity:
279	93.18%) respectively.
280	The close alignment across studies enhances the external validity of our
281	results.
282	
283	Blood and Blood Products Transfusion
284	
285	The mean SI among those receiving transfusions was 1.37 ± 0.18 , compared to
286	1.07 ± 0.06 in non-transfused patients. Among women with Hb <7 g/dL, the
287	mean SI rose to 1.41 ± 0.18. An SI cut-off of >1.18 predicted transfusion need
288	with 92.86% sensitivity, 95.65% specificity.
289	
290	Nathan et al. (2019) reported rising transfusion requirements with increasing
291	SI: 25.5% (SI <0.9), 37.1% (SI 0.9–1.69), and 71.4% (SI ≥1.7). In contrast, our
292	study showed fewer transfusions in the SI range 0.9–<1.2, with a mean of 2.61
293	± 2.31 units. El Ayadi et al. (2016) and Kwon H et al. (2024) found mean SIs of
294	1.35 and 1.22, respectively, for predicting massive transfusion—findings
295	comparable to ours.
296	Chaudhary et al. (2020) reported a lower mean SI (1.15 \pm 0.41), possibly due to
297	inclusion of hypertensive and anaemic patients. Studies by Le Bas et al. (2013),
298	Agarwal et al. (2023), and Kwon H et al. (2024) consistently identified SI >1–
299	1.1 as predictive of massive transfusion, with high sensitivity and specificity.
300	Koch et al. (2019) also supported SI >1 as a marker of morbidity.
301	Higher thresholds were reported by Guerrero-De León et al. (2018), Kohn et al.
302	(2017), and Agarwal et al. (2021), with SI >1.32–1.4 predicting \ge 4 to \ge 10 units

303	of transfusion with strong diagnostic accuracy. Despite variations, most studies
304	affirm SI >1 as a reliable predictor of transfusion need.
305	
306	Maternal Morbidity
307	
308	Patients who experienced significant maternal morbidity had a mean SI of

309 1.34 ± 0.21 , significantly higher than 1.10 ± 0.09 in those without morbidity. An310SI cut-off of >1.14 predicted maternal morbidity with 88% sensitivity, 88.57%311specificity.

312

El Ayadi et al. (2016) reported an SI of 1.57 (95% CI; 80% specificity) for predicting severe end-organ damage, aligning with our findings. Chaudhary et al. (2020) also found a comparable mean SI of 1.47 ± 0.84 in patients with MODS. Similarly, Agarwal et al. (2021) identified an SI >1.3 as predictive of MODS (sensitivity 95%, specificity 88.75%), and El Ayadi et al. (2016) noted a cut-off of \geq 1.4 for end-organ damage with 80.6% sensitivity and 71.4% specificity.

320

321 Maternal Mortality

322

Among the four maternal deaths in our cohort, the mean SI was markedly 323 324 elevated at 1.71 ± 0.11. While our sample size for mortality is small, the high SI 325 reinforces previous evidence linking very high SI to fatal outcomes. 326 Nathan et al. (2019) reported increasing mortality with rising SI: 0% for SI <0.9, 4.3% for SI 0.9–1.69, and 7.1% for SI ≥1.7. El Ayadi et al. (2016) found a 327 mean SI of 1.58 (95% CI; 80% specificity) for maternal mortality, aligning with 328 329 our study. Chaudhary et al. (2020) and Liu et al. (2012) reported lower SI 330 values of 1.39 ± 0.85 and 1.3 respectively. Agarwal et al. (2021) and El Ayadi et al. (2016) reported mortality cut-off SI values of >1.65 and \geq 1.7, both 331 comparable with our findings. 332

334

335 Area under the curve value of Shock Index to predict adverse maternal outcome

336	In our study, the Shock Index (SI) demonstrated excellent predictive performance for
337	multiple adverse outcomes, with AUC values of 0.958 for ICU admission, 0.978 for blood
338	product transfusion, and 0.896 for operative intervention. Additionally, AUC values for
339	surgical site infection (0.752), acute renal failure (0.864), and maternal mortality (0.988)
340	were statistically significant, reinforcing SI as a robust predictor in postpartum
341	hemorrhage.
342	
343	Our results are consistent with Agarwal et al. (2021), who reported AUROC values of
344	0.95 and 0.98 for ICU admissions requiring inotropic and ventilatory support,
345	respectively, 0.91 for blood product transfusion and operative intervention, and 0.99 for
346	maternal mortality. Similarly, Lee et al. (2019) and Kwon H et al. (2024) reported AUCs
347	of 0.815 and 0.829, respectively, for predicting massive transfusion, which align closely
348	with our findings.
349	
350	M. Chaudhary et al. (2020) found lower AUC values: ICU admission (0.8), operative
351	intervention (0.8), maternal death (0.9), and blood transfusion (0.68). The variation may
352	stem from their inclusion of patients with pregnancy-induced hypertension and severe
353	anaemia— conditions that can distort SI interpretation due to altered hemodynamics.
354	
355	Nathan et al. (2019) also reported lower AUCs: ICU admission (0.68), hysterectomy
356	(0.79), transfusion \geq 4 units (0.65), and maternal mortality (0.86). Despite the variability, a
357	consistent trend is evident across all studies-an elevated SI is strongly associated with
358	adverse maternal outcomes.

359

360 <u>Clinical significance of Shock Index thresholds</u>

The normal Shock Index (SI) range in healthy pregnant women is 0.7–0.9. An SI >0.9 has been associated with adverse outcomes including ICU admission, significant blood loss, surgical intervention, and increased morbidity and mortality (21, 33). Nathan et al. (2019)

- found that SI <0.9 offered reassurance, while SI \geq 1.7 indicated urgent need for intervention. Similarly, El-Ayadi et al. (2016) suggested SI >0.9 for referral, \geq 1.4 for urgent tertiary care, and \geq 1.7 for high risk of maternal complications. Our study identified a slightly lower SI threshold of \geq 1.1 to predict adverse outcomes, which may be attributed to population differences, anaemia prevalence, and study design.
- Comparable findings were reported by Kohn et al. (2017), where SI \geq 1.14 predicted PPH with 93% specificity. Guerrero-De León et al. (2018) also found SI \geq 1.0 to be predictive
- of severe outcomes, recommending care at tertiary centers for such patients.
- We stratified SI into four categories: 0.9-<1.2, 1.2-<1.5, 1.5-<1.7, and ≥ 1.7 . A stepwise increase in adverse outcomes was noted across these groups. For instance, transfusion was needed in 15.38% of patients with SI 0.9-<1.2, versus 96.55%, 100%, and 100% in the higher ranges, respectively. Operative intervention rose from 30.77% to 100% across these SI brackets. No acute renal failure was noted below SI 1.2, but increased substantially in higher groups—up to 75% in SI ≥ 1.7 . Maternal mortality occurred exclusively in the ≥ 1.7 SI group.
- 379Length of hospital stay also correlated with SI: the longest durations were observed in the380 ≥ 1.5 groups (mean 7.5 days), versus 2.77 days in SI <1.2. These findings mirror those of</td>381Nathan et al. (2019), who reported rising rates of transfusion, ICU admission, and382hysterectomy with increasing SI. In their study, no mortality occurred in SI <0.9, while</td>3837.1% mortality was reported for SI ≥ 1.7 . Nathan et al. (2015) also established SI ≥ 0.9 as a384reliable threshold for ICU admission and ≥ 1.7 as a critical alert trigger.
- Collectively, these results reaffirm SI as a sensitive early marker of hypovolemia. Unlike
 conventional vital signs, which may initially remain stable due to compensatory
 mechanisms, SI captures the critical rise in heart rate alongside stable or declining SBP,
 providing a more reliable early indicator of clinical deterioration.
- Overall, rising SI is a clear marker of worsening clinical status in PPH. Sustained
 elevation reflects ongoing hypovolemia, tissue hypoperfusion, and risk of MODS. Vital
 organs such as the kidneys and brain are particularly susceptible to ischemic injury in this
 state. Hemorrhage-induced coagulopathy further complicates management and increases
 the likelihood of adverse maternal outcomes.

Correlation of Shock Index with vital signs

396	Our study categorized patients based on SI ranges and found the following mean values:
397	SI 0.9–<1.2: SBP 98.48 mmHg, DBP 59 mmHg, PR 106 bpm, MAP 72.64 mmHg
398	SI 1.2–<1.5: SBP 92 mmHg, DBP 58 mmHg, PR 120 bpm, MAP 65.6 mmHg
399	SI 1.5–<1.7: SBP 84 mmHg, DBP 56.3 mmHg, PR 135 bpm, MAP 65 mmHg
400	SI ≥1.7: SBP 78 mmHg, DBP 52 mmHg, PR 138 bpm, MAP 61 mmHg
401	
402	We observed that while pulse rate and diastolic blood pressure changed in accordance
403	with SI, other parameters such as SBP and MAP remained relatively stable until SI
404	reached ≥ 1.5 .
405	
406	These findings align with El Ayadi et al. (2019), who noted that at SI \geq 1.4, PR increased
407	to 112 bpm and SBP dropped to 80 mmHg, and at SI 1.7, PR reached 130 bpm with SBP
408	70 mmHg.
409	
410	
411	CLINICAL IMPLICATIONS
412	Our findings support integrating SI into obstetric early warning systems (EWS) for PPH
413	management. Key applications include:
414	Early Recognition & Triage:
415	Women with SI>1.1 should receive immediate hemodynamic monitoring and blood cross
416	matching.
417	SI >1.3 should prompt early ICU transfer consideration.
418	Blood Transfusion Protocols:
419	SI>1.1 correlates strongly with the need for transfusion, suggesting SI can be used to
420	guide blood product administration before overt hypovolemia develops.
421	Surgical Preparedness:
422	SI>1.3 may predict surgical intervention, allowing teams to mobilize resources for
423	emergency hysterectomy or B-Lynch suture placement.

424	Strengths
425	Prospective design reduced recall bias and improved data accuracy.
426	Objective blood loss estimation was also incorporated along with visual estimation of
427	blood loss.
428	Standardized SI measurements at multiple time points, ensuring dynamic monitoring of
429	hemodynamic changes.
430	Limitations
431	Single center study: Findings may not be generalizable to different populations.
432	Small sample size (n=65): A larger multicenter study would improve statistical power.
433	CONCLUSION
434	The Shock Index is a valuable, cost-effective, and early predictor of adverse maternal
435	outcomes in postpartum hemorrhage. By incorporating SI into standard clinical protocols,
436	healthcare providers can improve early detection, reduce delays in intervention, and
437	ultimately enhance maternal survival. Further multicenter studies are warranted to
438	establish universal SI thresholds tailored to diverse populations.
120	

439 ACKNOWLEDGMENT

440

I would like to express my heartfelt gratitude to the Department of Obstetrics and Gynaecology, Dr. B.R.A.M Hospital, Raipur, for their support throughout the study period. I am deeply thankful to my guide and faculty members for their continuous encouragement, guidance, and valuable suggestions during the research. I also extend my sincere appreciation to all the patients who participated in this study, without whom this work would not have been possible.

447 **<u>REFERENCES</u>**

- 448 1.Trends in maternal mortality 2000 to 2020: estimates by WHO, UNICEF, UNFPA,
- 449 World Bank Group and UNDESA/Population Division. Geneva: World Health
- 450 Organization; 2023 (https://iris.who.int/handle/10665/366225
- 451

- 452 2. New maternal mortality estimates: United Nations Maternal Mortality
- 453 Estimation Inter-Agency Group(UN MMEIG)
- 454
- 455 3.Say L, Chou D, Gemmill A, Tuncalp Ö, Moller A-B, Daniels J et al. Global causes of
- 456 maternal death: a WHO systematic analysis. Lancet Glob Health. 2014;2(6):e323-
- 457 33. doi: 10.1016/ S2214-109X(14)70227-X.
- 458
- 459 4.Pacagnella RC, Souza JP, Durocher J et al. A systematic review of the relationship
- 460 between blood loss and clinical signs. PLoS One 2013;8(3).e57594.DOI:
- 461 10.1371/journal.pone.00575
- 462
- 463 5.A roadmap to combat postpartum haemorrhage between 2023 and 2030.
- 464 Geneva: World Health Organization;
- 465 2023(<u>https://iris.who.int/handle/10665/373221</u>)
- 466
- 467 6.Bienstock JL, Eke AC, Hueppchen NA. Postpartum Hemorrhage. N Engl J Med.
- 468 2021 Apr 29;384(17):1635-1645. doi: 10.1056/NEJMra1513247. PMID:
- 469 **33913640; PMCID: PMC10181876.**
- 470
- 471 7.Lee SY, Kim HY, Cho GJ, Hong SC, Oh MJ, Kim HJ. Use of the shock index to predict
- 472 maternal outcomes in women referred for postpartum hemorrhage. Int J Gynaecol
- 473 Obstet. 2019 Feb;144(2):221-224. doi: 10.1002/ijgo.12714. Epub 2018 Dec 10.
- 474 PMID: 30447073.
- 475
- 476
- 477 8..Schorn MN. Measurement of blood loss: review of the literature. J Midwifery
 478 Womens Health 2010;55:20-7
- 479
- 480 9.Allgower M, Burri C. Shock index. Dtsch Med Wochenschr. 1967;92 (43):1947-
- 481 1950. doi:10.1055/s-0028-1106070

482	
483	10.Rady MY, Smithline HA, Blake H, Nowak R, Rivers E. A comparison of the shock
484	index and conventional vital signs to identify acute, critical illness in the
485	emergency department. Ann Emerg Med 1994; 24 : 685–90.
486	
487	11.Rady MY, Rivers EP, Martin GB, Smithline H, Appelton T, Nowak
488	RM. Continuous central venous oximetry and shock index in the emergency
489	department: use in the evaluation of clinical shock. Am J Emerg
490	<i>Med</i> 1992; 10 : 538–41.
491	
492	12.Vandromme MJ, Griffin RL, Kerby JD, McGwin G Jr, Rue LW 3rd, Weinberg
493	JA. Identifying risk for massive transfusion in the relatively normotensive patient:
494	utility of the prehospital shock index. <i>J Trauma</i> 2011; 70 : 384–8; discussion 8–90.
495	
496	13.Cannon CM, Braxton CC, Kling-Smith M, Mahnken JD, Carlton E, Moncure
497	M. Utility of the shock index in predicting mortality in traumatically injured
498	patients.
499	J Trauma 2009; 67 : 1426–30.
500	
501	14Krishna H, Chava M, Jasmine N, et al. Patients with postpartum hemorrhage
502	admitted in intensive care unit: patient condition, interventions, and outcome. J
503	Anaesthesiol Clin Pharmacol 2011;27(2):192–194. DOI: 10.4103/0970-
504	9185.81826.
505	
506	15.El Ayadi AM, Nathan HL, Seed PT, Butrick EA, Hezelgrave NL, Shennan AH,
507	Miller S. Vital Sign Prediction of Adverse Maternal Outcomes in Women with
508	Hypovolemic Shock: The Role of Shock Index. PLoS One. 2016 Feb
509	22;11(2):e0148729. doi: 10.1371/journal.pone.0148729. PMID: 26901161;
510	PMCID: PMC4762936.

512	16.Mavrides E, et al. Prevention and management of postpartum hemorrhage.
513	BJOG2016;124:e106–e149. DOI: <u>10.1111/1471-0528.14178</u>
514	
515	17.Obstetrics Subgroup CSoO, Gynecology CiMA, Association OSCSoO, Medical GC.
516	[Guideline of prevention and treatment about postpartum haemorrhage (2014)].
517	Zhonghua Fu Chan Ke Za Zhi. 2014;49(9):6
518	
519	18.Liu LM, Bai XJ, Li T, Zhou XY, Yang GM, Gao W, et al. Early treatment
520	specifications for traumatic haemorrhagic shock. Journal of Traumatic Surgery.
521	2012; 19 (12): (881-883, 891).)41-6.
522	
523	19. Nathan HL, Seed PT, Hezelgrave NL, De Greeff A, Lawley E, Anthony J, Steyn W,
524	Hall DR, Chappell LC, Shennan AH. Shock index thresholds to predict adverse
525	outcomes in maternal hemorrhage and sepsis: A prospective cohort study. Acta
526	Obstet Gynecol Scand. 2019 Sep;98(9):1178-1186. doi: 10.1111/aogs.13626.
527	Epub 2019 May 14. PMID: 31001814; PMCID: PMC6767575.
528	
529	20.Chaudhary M, Maitra N, Sheth T, Vaishnav P. Shock Index in the Prediction of
530	Adverse Maternal Outcome. J Obstet Gynaecol India. 2020 Oct;70(5):355-359. doi:
531	10.1007/s13224-020-01355-z. Epub 2020 Jul 25. PMID: 33041552; PMCID:
532	PMC7515997.
533	
534	21.Agarwal V, Suri J, Agarwal P, et al. Shock Index as a Predictor of Maternal
535	Outcome in Postpartum Hemorrhage. J South Asian Feder Obst Gynae
536	2021;13(3):131–136.
537	
538	22.Agarwal, S. and Pandey, U. (2023) 'Shock index as a predictor of maternal
539	outcome in postpartum hemorrhage: An experience from a tertiary care centre in
540	Northern India', International Journal of Medical Reviews and Case Reports, (0), p.
541	1. doi:10.5455/ijmrcr.172-1669772235.

543	23.Jaden R. Kohn, Gary A. Dildy & Catherine S. Eppes (2017): Shock index and
544	delta-shock index are superior to existing maternal early warning criteria to
545	identify postpartum hemorrhage and need for intervention, The Journal of
546	Maternal-Fetal & Neonatal Medicine, DOI: 10.1080/14767058.2017.1402882
547	
548	24.Koch E, Lovett S, Nghiem T, Riggs RA, Rech MA. Shock index in the emergency
549	department: utility and limitations. Open Access Emerg Med. 2019 Aug 14;11:179-
550	199. doi: 10.2147/OAEM.S178358. PMID: 31616192; PMCID: PMC6698590.
551	
552	25.Nathan HL, El Ayadi A, Hezelgrave N, Seed P, Butrick E, Miller S, et al. Shock
553	index: an effective predictor of outcome in postpartum haemorrhage? BJOG.
554	2015;122:268-75. Medline:25546050 doi:10.1111/1471-0528.13206
555	
556	26.Le Bas A, Chandraharan E, Addei A, Arulkumaran S. Use of the "obstetric shock
557	index" as an adjunct in identifying significant blood loss in patients with massive
558	postpartum hemorrhage. Int J Gynaecol Obstet. 2014 Mar;124(3):253-5. doi:
559	10.1016/j.ijgo.2013.08.020. Epub 2013 Dec 4. PMID: 24373705
560	
561	27.Guerrero-De Leon MC, Escarcega-Ramos LR, Gonzalez-Dias OA. Utility of the
562	shock index in obstetric hemorrhage as a predictive value for the transfusion
563	requirement. Ginecol Obstet Mex. 2018;86(10):665–75.
564	
565	28.Lee SY, Kim HY, Cho GJ, Hong SC, Oh MJ, Kim HJ. Use of the shock index to
566	predict maternal outcomes in women referred for postpartum hemorrhage. Int J
567	Gynaecol Obstet. 2019 Feb;144(2):221-224. doi: 10.1002/ijgo.12714. Epub 2018
568	Dec 10. PMID: 30447073.
569	
570	
571	

UNDER REFERENCE