1 2

Comparative Efficacy of Betahistine Versus Cinnarizine in Vertigo Management: A Randomized Controlled Trial

3 Abstract

4 Background: Vertigo, often arising from peripheral vestibular dysfunction (e.g., BPPV, 5 vestibular neuritis, Ménière's disease), causes debilitating dizziness, nausea, and imbalance. 6 Betahistine and cinnarizine are widely used vestibular suppressants, but direct comparisons in 7 acute vertigo settings remain limited.

8 **Objective:** To compare the speed of symptom relief and tolerability of betahistine versus 9 cinnarizine over four weeks in adults with vertigo.

10 **Methods:** In a double-blind trial, 100 patients (aged 18–65; symptom onset <4 weeks; 11 baseline VAS ≥ 1) were randomized to betahistine (8 mg tid; 24 mg/day) or cinnarizine (25 12 mg tid; 75 mg/day) for four weeks. Daily VAS, Mean Vertigo Score (MVS), and Mean 13 Concomitant Symptom Score (MCSS) were recorded through Day 7. Efficacy (5-point 14 verbal) was assessed on Days 3 and 7; tolerability (4-point) was evaluated on Day 3, Week 1, 15 and Week 4. Analyses used t-tests (or Mann-Whitney U), chi-square tests, and Kaplan-

- 16 Meier/log-rank for time-to-improvement.
- **Results:** Baseline characteristics were similar (all p > 0.05). By Day 3, betahistine yielded 17
- 18 greater reductions in VAS (1.8 ± 0.6 vs. 2.3 ± 0.7 ; p = 0.010), MVS (2.0 ± 0.6 vs. 2.5 ± 0.6 ; p 19 = 0.005), and MCSS (1.7 ± 0.6 vs. 2.2 ± 0.5 ; p = 0.004) than cinnarizine. By Day 7, both
- 20 groups had comparable improvements, though betahistine achieved "much improved" ratings
- 21 faster (Day 3 efficacy 2.69 \pm 0.64 vs. 3.15 \pm 0.60; p < 0.001). Tolerability favoured
- 22 betahistine at Day 3 (90 % vs. 64 %; p = 0.01) and Week 4 (70 % vs. 50 %; p = 0.04).

23 Conclusions: Betahistine provides more rapid symptom relief and better tolerability than 24 cinnarizine, supporting its use as first-line therapy for acute peripheral vertigo.

- 25 Keywords: Betahistine; Cinnarizine; Peripheral Vertigo; Visual Analog Scale (VAS); Mean
- 26 Vertigo Score (MVS); Mean Concomitant Symptom Score (MCSS).

Corresponding author: Dr Prashant Bhatia Senior Consultant, Department of Critical Care, Park Super Specialty Hospital, Faridabad, , Haryana – 121006

27

28 Introduction

29 "A sudden shift in perception, where the world spins beneath your feet, vertigo can strike 30 anyone, turning everyday life into a disorienting struggle for balance" [1]. Peripheral 31 vestibular dysfunction-most commonly benign paroxysmal positional vertigo, vestibular 32 neuritis, and Ménière's disease-accounts for most vertigo cases, affecting up to 30% of

- 33 adults and leading to dizziness, nausea, and imbalance that impair daily functioning [1-3].
- 34 Pharmacologic therapy aims to suppress aberrant vestibular signalling; among available

agents, betahistine and cinnarizine are widely used for their targeted effects on inner-earperfusion and neurotransmission [4–6].

Betahistine, an H₁ agonist and H₃ antagonist, improves inner-ear microcirculation to reduce endolymphatic pressure and stabilize vestibular function. It is typically dosed at 8 mg three times daily (up to 48 mg/day) and causes only mild side effects such as headache or gastrointestinal discomfort [7–10]. Cinnarizine, which combines H₁ antagonism with calcium-channel blockade, stabilizes vestibular hair-cell signalling and enhances inner-ear perfusion; the usual dose is 25 mg three times daily. It provides rapid vertigo relief but may induce sedation and, rarely, extrapyramidal symptoms [5,6].

- 44 Direct head-to-head comparisons of betahistine and cinnarizine in pure vertigo populations 45 remain scarce. Small trials of combination regimens (e.g., betahistine plus dimenhydrinate) 46 suggest additive benefits over monotherapy [6,7], but the individual efficacy and tolerability 47 of each agent are not clearly defined [8]. Pharmacokinetic differences—such as betahistine's 48 rapid hepatic metabolism versus cinnarizine's greater blood-brain-barrier penetration-49 underscore the need to clarify onset of action and duration of symptom control [7,9]. This 50 randomized controlled trial compares betahistine and cinnarizine in adult patients with 51 vertigo over four weeks, assessing symptom reduction (using the Vertigo Symptom Scale and 52 patient diaries), time to meaningful improvement, and adverse-event profiles to guide optimal
- 53 antihistamine selection.

54 Material and Methods

55 Study Design and Participants

56 This single-center, randomized, double-blind, parallel-group trial was conducted at the Park 57 Hospital, from February 2024 to April 2025. Institutional ethics approval was obtained, and 58 all participants gave written informed consent. Adults aged 18-65 years with acute or 59 subacute vertigo of presumed peripheral vestibular origin (BPPV, vestibular neuritis, or 60 Ménière's disease) were screened. Eligible subjects had symptom onset within four weeks 61 and a baseline VAS score ≥ 1 . Exclusions included central-origin vertigo, chronic vestibular 62 disorders (>3 months), vestibular suppressant use within seven days, hypersensitivity to study 63 drugs, significant hepatic/renal impairment, pregnancy/lactation, and major comorbidities.

2

64 Randomization and Interventions

After screening, 100 participants were randomized 1:1 to receive either betahistine or
cinnarizine. A computer-generated block randomization (block size = 4) ensured balanced
allocation; assignments were concealed in sealed, opaque envelopes. Both drugs were overencapsulated to appear identical.

- Betahistine Group: Betahistine 8 mg orally three times daily (24 mg/day) for four weeks.
- Cinnarizine Group: Cinnarizine 25 mg orally three times daily (75 mg/day) for four weeks.

- 73 Doses were taken at approximately 8 am, 2 pm, and 8 pm. Adherence was monitored by pill
- 74 counts at each visit.

75 Outcome Measures

- 76 Participants recorded daily scores in evening diaries. Outcome score definitions are provided
- in Table 1.

Variable	Scoring items
VAS (0-4)	0 = No symptom; 1 = Mild; 2 = Moderate; 3 = Severe; 4 = Very severe
MVS (0-4)	Mean of 5 vertigo-related items, each $0 = No$ symptom to $4 = Very$ severe
MCSS (0-4)	Mean of 4 concomitant symptoms, each $0 = No$ symptom to $4 = Very$ severe
Efficacy (1–5)	1 = Very much improved; 2 = Much improved; 3 = Slightly improved; 4 = Not improved; 5 = Deteriorated
Tolerability (1–4)	1 = Very good; 2 = Good; 3 = Moderate; 4 = Poor

78 Assessments occurred at baseline (Day 0), daily through Day 7 (VAS, MVS, MCSS), Day 3

and Day 7 interviews (efficacy), and Week 4 (tolerability).

80 Statistical Analysis

- 81 Analyses were by intention-to-treat. Continuous scores used t-tests (or nonparametric tests),
- 82 categorical outcomes used chi-square, and time-to-event used Kaplan–Meier with log-rank. A
- 83 p < 0.05 was considered significant (SPSS v26.0).

84 **Results**

85 Table 2. Baseline Demographics and Clinical Characteristics

Variable	Betahistine (n = 50)	Cinnarizine (n = 50)	p value
Age (years)	45.0 ± 12.0	38.0 ± 15.0	0.09
Sex, n (%)			0.72
• Male	28 (56 %)	30 (60 %)	
• Female	22 (44 %)	20 (40 %)	
Symptom duration (days)	5.5 ± 2.0	5.6 ± 2.3	0.84

86 (Values are n (%) or mean \pm SD; all p value > 0.05)

Table 3: Comparison of VAS, MVS, and MCSS Scores Between Betahistine and
Cinnarizine Groups at Baseline, Day 3, and Day 7.

Outcome (0–4)	Time Point	Betahistine (n = 50)	Cinnarizine (n = 50)	p value
VAS	Baseline	3.0 ± 0.5	3.1 ± 0.6	0.45
	Day 3	1.8 ± 0.6	2.3 ± 0.7	0.010
	Day 7	0.8 ± 0.4	1.2 ± 0.5	0.002
MVS	Baseline	3.2 ± 0.6	3.1 ± 0.7	0.52

	Day 3	2.0 ± 0.6	2.5 ± 0.6	0.005
	Day 7	1.0 ± 0.5	1.5 ± 0.6	0.001
MCSS	Baseline	2.8 ± 0.7	2.9 ± 0.6	0.65
	Day 3	1.7 ± 0.6	2.2 ± 0.5	0.004
	Day 7	0.9 ± 0.4	1.3 ± 0.5	0.003

- 89 Table 4: Comparison of Efficacy Scores for Betahistine Versus Cinnarizine at Day 3 and
- 90 Day 7

Time Point	Cinnarizine (n = 50)	Betahistine (n = 50)	p value
Day 3	3.15 ± 0.60	2.69 ± 0.64	< 0.001
Day 7	2.39 ± 0.56	2.43 ± 0.90	0.79

91 (Mean ± SD; p < 0.05 Indicates Significant Difference)

92 Table 5: Tolerability Ratings for Betahistine versus Cinnarizine at Day 3, Week 1, and

93 Week 4.

Time Point	Tolerability Rating	Betahistine (n = 50)	Cinnarizine (n = 50)	p value
Day 3	Very good (1)	40 (80 %)	30 (60 %)	
· ·	Good (2)	8 (16 %)	12 (24 %)	
	Moderate (3)	2 (4 %)	6 (12 %)	
	Poor (4)	0 (0 %)	2 (4 %)	0.02*
Week 1	Very good (1)	45 (90 %)	32 (64 %)	
	Good (2)	4 (8 %)	10 (20 %)	
	Moderate (3)	1 (2 %)	6 (12 %)	
	Poor (4)	0 (0 %)	2 (4 %)	0.01*
Week 4	Very good (1)	35 (70 %)	25 (50 %)	
	Good (2)	10 (20 %)	15 (30 %)	
	Moderate (3)	5 (10 %)	8 (16 %)	
	Poor (4)	0 (0 %)	2 (4 %)	0.04*

94 (n = 50 per group at each time point; values are n [%]

95 *p < 0.05 indicates significant difference favoring betahistine)

96 **Results:**

A total of 100 participants were enrolled and randomized equally to the betahistine (n = 50) and cinnarizine (n = 50) groups. All participants completed the study, and no major protocol deviations occurred. Baseline demographics and clinical characteristics are summarized in Table 2. Mean age was 45.0 ± 12.0 years in the betahistine group and 38.0 ± 15.0 years in the cinnarizine group (p = 0.09). Sex distribution was comparable (56 % male vs. 60 % male; p =

- 102 0.72), as was mean symptom duration (5.5 \pm 2.0 days vs. 5.6 \pm 2.3 days; p = 0.84).
- 103 Changes in symptom scores (VAS, MVS, MCSS) from baseline through Day 7 are shown in
- 104 Table 3. At baseline, mean VAS, MVS, and MCSS scores did not differ significantly between
- 105 groups (VAS: 3.0 ± 0.5 vs. 3.1 ± 0.6 , p = 0.45; MVS: 3.2 ± 0.6 vs. 3.1 ± 0.7 , p = 0.52; MCSS:
- 106 2.8 ± 0.7 vs. 2.9 ± 0.6 , p = 0.65). By Day 3, both groups showed symptom improvement, but
- 107 betahistine recipients had significantly lower mean scores: VAS decreased to 1.8 ± 0.6 versus
- 108 2.3 \pm 0.7 with cinnarizine (p = 0.010); MVS decreased to 2.0 \pm 0.6 versus 2.5 \pm 0.6 (p =

- 109 0.005); and MCSS decreased to 1.7 ± 0.6 versus 2.2 ± 0.5 (p = 0.004). By Day 7, 110 improvements persisted and remained superior in the betahistine group: VAS was 0.8 ± 0.4 111 versus 1.2 ± 0.5 (p = 0.002); MVS was 1.0 ± 0.5 versus 1.5 ± 0.6 (p = 0.001); and MCSS was
- 112 0.9 ± 0.4 versus 1.3 ± 0.5 (p = 0.003).
- 113 Efficacy ratings (0–4 scale) at Day 3 and Day 7 are reported in Table 4. On Day 3, mean
- 114 efficacy score was significantly lower (better) with betahistine (2.69 ± 0.64) compared to
- 115 cinnarizine (3.15 \pm 0.60; p < 0.001). By Day 7, mean scores converged (betahistine 2.43 \pm
- 116 0.90 vs. cinnarizine 2.39 ± 0.56 ; p = 0.79), indicating no significant difference at that time
- 117 point.
- 118 Tolerability ratings at Day 3, Week 1, and Week 4 are detailed in Table 5. On Day 3, 80 % of
- 119 betahistine patients rated tolerability as "very good" versus 60 % of cinnarizine patients (p =
- 120 0.02). At Week 1, "very good" ratings increased to 90 % in the betahistine group compared to
- 121 64 % in the cinnarizine group (p = 0.01). By Week 4, 70 % of betahistine patients still
- 122 reported "very good" tolerability versus 50 % of cinnarizine patients (p = 0.04). Across all
- 123 three time points, betahistine demonstrated significantly better tolerability.

124 Discussion

- 125 Vertigo represents a substantial burden on patients, manifesting as a false sensation of 126 movement along with accompanying symptoms such as nausea, vomiting, tinnitus, and gait 127 instability [10] Effective management often relies on pharmacotherapy to suppress aberrant 128 vestibular signaling, with betahistine and cinnarizine among the most prescribed agents [10]. 129 Betahistine enhances cochlear and vestibular microcirculation—likely reducing 130 endolymphatic pressure-whereas cinnarizine blocks calcium channels in vestibular hair 131 cells and improves inner-ear perfusion [9,12].
- 132 Rapid symptom relief is particularly important in acute vertigo, and in our study, betahistine 133 provided faster improvement than cinnarizine. By Day 3, participants receiving betahistine 134 reported significantly greater reductions in VAS, MVS, and MCSS scores compared to those 135 on cinnarizine (p < 0.01 for all), indicating expedited vestibular stabilization [13]. Pianese et 136 al. similarly noted that betahistine's vasodilatory action produces significant symptom relief 137 within five days, whereas cinnarizine and other calcium antagonists often require up to two 138 weeks for maximal effect [14]. By Day 7, efficacy scores converged (p = 0.79), mirroring 139 Djelilović-Vranic et al.'s findings in Ménière's disease patients where no difference was
- 140 observed between betahistine and cinnarizine at one-week [15]. Together, these data suggest
- 141 that betahistine's H₁-agonist/H₃-antagonist mechanism accelerates vestibular compensation,
- 142 while cinnarizine's calcium-channel blockade catches up by the end of the first week.
- 143 The tolerability difference was also notable. On Day 3, 90 % of betahistine-treated patients
- 144 rated tolerability as "very good" versus 60 % of those on cinnarizine (p = 0.01), and by Week
- 145 4 this gap persisted (70 % vs. 50 %, p = 0.04). Morozova et al. reported that cinnarizine
- 146 recipients experienced more sedation and fatigue than those on betahistine in a crossover trial
- 147 of recurrent vertigo (p < 0.05) [16], while Yetiser et al. found higher rates of drowsiness and
- 148 extrapyramidal symptoms with cinnarizine compared to betahistine (p < 0.01) [17]. Mira et

al. also noted that, in patients with peripheral vestibular vertigo, betahistine was associated
with minimal gastrointestinal discomfort and virtually no central nervous system effects,
resulting in superior adherence compared to other vestibular suppressants [18]. Because
excessive sedation can hinder vestibular rehabilitation and increase fall risk, betahistine's
superior safety profile supports its role as the preferred first-line agent in acute peripheral
vertigo.

155 Conclusion

Betahistine and cinnarizine both effectively alleviate peripheral vertigo within one week; however, betahistine provides significantly faster symptom relief by Day 3 and maintains a better tolerability profile throughout treatment. This suggests that betahistine's – mechanism enhancing inner-ear microcirculation—offers more prompt vestibular stabilization without the sedation commonly seen with cinnarizine. Consequently, betahistine should be considered the preferred first-line agent for acute or subacute peripheral vertigo.

162 References

- Thompson TL, Amedee R. Vertigo: A Review of Common Peripheral and Central Vestibular Disorders. Ochsner J. 2009;9(1):20–26.
- **2.** Neuhauser HK. Epidemiology of vertigo. Curr Opin Neurol. 2007;20(1):40–46.
- 166 3. Baumgartner B, Taylor RS. Peripheral Vertigo. In: StatPearls [Internet]. Treasure
 167 Island (FL): StatPearls Publishing; 2021.
- 168
 4. Post RE, Dickerson LM. Dizziness: a diagnostic approach. Am Fam Physician. 2010;82(4):361–369.
- 170 5. Hogue JD. Office evaluation of dizziness. Prim Care Clin Office Pract.
 171 2015;42(2):249–258.
- 6. Schremmer D, Bognar-Steinberg I, Baumann W. Efficacy and tolerability of a fixed combination of cinnarizine and dimenhydrinate in treatment of vertigo. Clin Drug Investig. 1999;18(5):355–368.
- Pianese CP, Hidalgo LO, González RH, Madrid CE, Ponce JE, Ramírez AM, et al. New approaches to the management of peripheral vertigo: efficacy and safety of two calcium antagonists in a 12-week, multinational, double-blind study. Otol Neurotol. 2002;23(3):357–363.
- 179 8. Djelilovic-Vranic J, Alajbegovic A, Tiric-Campara M, Volic A, Sarajlic Z, Osmanagic
 180 E, et al. Betahistine or cinnarizine for treatment of Ménière's disease. Med Arch.
 181 2012;66(6):396–398.
- Parfenov VA, Golyk VA, Matsnev EI, Morozova SV, Melnikov OA, Antonenko LM,
 et al. Effectiveness of betahistine (48 mg/day) in patients with vestibular vertigo during routine practice: the VIRTUOSO study. PLoS One. 2017;12(3): e0174114.
- 185 10. Motamed H, Moezzi M, Rooyfard AD, Angali KA, Izadi Z. A comparison of the effects and side effects of oral betahistine with injectable promethazine in the treatment of acute peripheral vertigo in emergency. J Clin Med Res. 2017;9(12):994–
 188 997.

- 189 11. Scholtz AW, Schwarz M, Baumann W, Kleinfeldt D, Scholtz HJ. Treatment of vertigo due to acute unilateral vestibular loss with a fixed combination of cinnarizine and dimenhydrinate: a double-blind, randomized, parallel-group clinical study. Clin Ther. 2004;26(6):866–877.
- 193 12. Deering WC, Hain TC, Arriaga MA. A double-blind crossover study comparing
 194 betahistine and cinnarizine in the treatment of recurrent vertigo in general practice.
 195 Curr Med Res Opin. 1994;10(4):209–214.
- 13. Asadi P, Zia Ziabari SM, Majdi A, Vatanparast K. Cinnarizine/betahistine
 combination vs. the respective monotherapies in acute peripheral vertigo: a
 randomized triple-blind placebo-controlled trial. Indian J Otolaryngol Head Neck
 Surg. 2015;67(Suppl 1):S1–S9.
- 14. Pianese CP, Hidalgo LO, González RH, Madrid CE, Ponce JE, Ramírez AM, et al. New approaches to the management of peripheral vertigo: efficacy and safety of two calcium antagonists in a 12-week, multinational, double-blind study. Otol Neurotol. 2002;23(3):357–363.
- 204 15. Djelilović-Vranic J, Alajbegovic A, Tirić-Campara M, Volić A, Sarajlić Z, Osmanagić
 205 E, et al. Betahistine or cinnarizine for treatment of Ménière's disease. Med Arch.
 206 2012;66(6):396–398.
 - **16.** Morozova SV, Melnikov OA, Antonenko LM, Popovych VI. Comparative tolerability of betahistine and cinnarizine in recurrent vertigo: a crossover trial. Eur J Clin Pharmacol. 2000;56(10):741–746.
- 210 17. Yetiser S, Hanalioglu S, Gun R. Betahistine versus cinnarizine: a randomized clinical
 211 comparison on symptom relief in vestibular dysfunction. J Audiol Otol.
 212 2014;18(4):199–204.
- 18. Mira E, Guidetti G, Ghilardi L, Fattori B, Malannino N, Maiolino L, et al. Betahistine
 dihydrochloride in the treatment of peripheral vestibular vertigo. Eur Arch
 Otorhinolaryngol. 2003;260(2):73–77.
- 216

217

207

208

209