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Glioma is a type of tumor that originates in the neuroglial cells of the brain or 
spinal cord, forming a mass that can press on surrounding tissue and cause 

symptoms. To diagnose glioma and to assess the tumor volume, manual 

segmentation of gliomas in MRI images is normally performed. However, it is 

time-consuming and prone to errors due to diagnostic variability among 
experts. This study proposes a deep learning approach using a Transformer 

Network to enhance segmentation accuracy and improve diagnostic 

efficiency. The research utilizes the BraTS 2021 dataset, consisting of 374 

MRI scans with ground truth labels, to train and evaluate the Transformer 
Network model. The model incorporates an EfficientNet-B1 backbone for 

computational efficiency and is trained with optimal parameters: a learning 

rate of 0.0001, batch size of 5, and 200 epochs. Results indicate that the 

Transformer Network achieved a Dice coefficient of 0.921, significantly 
outperforming the baseline deep learning segmentation method, which is U-

Net model (0.827), demonstrating superior segmentation accuracy. In 

conclusion, the Transformer Network proves more effective and accurate than 

traditional methods for brain glioma segmentation. Future research should 

focus on expanding datasets and computational resources to further enhance 

model performance. This study is expected to contribute to an improved 

glioma diagnosis and treatment planning.
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 2 
 3 

Introduction :- 4 
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Introduction :- 13 
 14 
Glioma is a type of brain tumor that originates in the brain or spinal cord and arises from neuroglial cells, which 15 
support neuronal function by regulating impulses and supplying nutrients (Verkhratsky et al., 2023). Representing 16 
approximately 33% of all brain tumors, gliomas are among the most common and serious forms of central nervous 17 
system malignancies (Molnar et al., 2015). The World Health Organization (WHO) classifies brain tumors into four 18 
grades based on cellular characteristics. Low-grade tumors (Grades I and II) are typically benign and slow-growing, 19 
while high-grade tumors (Grades III and IV) are more aggressive and malignant, accounting for roughly 80% of all 20 
brain tumor cases. 21 
 22 
Magnetic Resonance Imaging (MRI) is a widely utilized tool in the diagnosis and treatment planning of neurological 23 
disorders, including brain tumors (Fuzari et al., 2020). MRI provides high-resolution images across multiple 24 
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anatomical planes—axial, sagittal, and coronal—allowing detailed visualization of brain structures, vascular 25 
systems, and pathological regions (Afshar, Mohammadi & Plataniotis, 2018). Although the use MRI is critically 26 
important in clinical settings, the manual interpretation of these images is often labor-intensive, subject to variability 27 
among radiologists, and prone to diagnostic inaccuracies (Despotović et al., 2015). As a result, automated 28 
techniques are increasingly adopted to support and enhance diagnostic precision. 29 
 30 
Deep learning, a domain within artificial intelligence, has gained prominence in medical imaging for to 31 
automatically extract meaningful features from raw data. In the context of brain tumor analysis, deep learning 32 
models assist clinicians in diagnosing and delineating tumors from healthy tissues, ultimately improving treatment 33 
planning and patient outcomes (Ahamed et al., 2023). Automated segmentation of brain tumors in MRI scans 34 
remains a complex challenge due to factors such as tumor heterogeneity, variations in image quality, and limited 35 
availability of annotated data. Reliable segmentation methods are crucial to accurately differentiate tumor 36 
boundaries, particularly for treatment planning and monitoring. Traditional models like U-Net have shown strong 37 
performance in brain tumor segmentation and are often considered benchmarks, outperforming or matching other 38 
architectures such as CNNs and Capsule Networks in various studies. 39 
 40 
At present, Transformer-based architectures are rapidly becoming the new standard in medical image segmentation 41 
that achieve better performance than the previous state-of-the-art models. For instance, Liu et al., (2023) 42 
demonstrated superior performance in cardiac MRI segmentation using a Swin Transformer Network, achieving a 43 
Dice coefficient of 92.28%. Transformers, initially developed for natural language processing, have shown 44 
significant potential in vision tasks due to their ability to model long-range dependencies and global contextual 45 
relationships, which becomes the limitation of conventional CNN-based models. The growing success of 46 
Transformers in visual domains has encouraged their adoption in medical imaging, especially given their 47 
adaptability to varying input dimensions and robustness in handling complex structures. In the case of glioma 48 
segmentation, this adaptability and ability to capture spatial context may result in more precise and reliable 49 
segmentation outcomes. 50 
 51 
This study explores the effectiveness of a Transformer-based deep learning model, specifically the Segtran 52 
architecture, for glioma segmentation using MRI data. By combining the strengths of attention mechanisms and 53 
neural network-based feature extraction, the study aims to enhance segmentation accuracy, reduce diagnostic 54 
variability, and support clinical decision-making. The performance of the Transformer model is benchmarked 55 
against the well-established U-Net architecture to evaluate its potential advantages in brain tumor segmentation 56 
tasks. 57 
 58 
 59 
 60 

 61 

Methodology :- 62 

 63 
The transformer architecture was first introduced by Vaswani et al. in 2017. The architecture is based on self-64 
attention mechanisms, which replaced traditional recurrent neural networks (RNNs) and convolutional neural 65 
networks (CNNs) in sequence-to-sequence tasks. The model can handle long-range dependencies and parallel 66 
processing (Sajun et al., 2023) and has shown good performance especially in natural language processing (NLP) 67 
tasks. Then, these networks are explored in image classification problem which resulted in the use of Vision 68 
Transformer (ViT) in 2020 (Takahashi et al., 2024). 69 
 70 
In terms of medical image segmentation problem that requires precise delineation of anatomical structures, the 71 
Transformer network is integrated with CNN based models to achieve superior performance in various image 72 



ISSN: 2320-5407                                                                                      Int. J. Adv. Res. X(X), XX-XX 

3 
 

medical tasks such as TransUNet and Swin-UNet. The integration has allowed long-range dependencies information 73 
to be captured, while maintaining the local feature extraction capabilities of CNNs (Chen et al., 2024) (Pu et al., 74 
2024). The methodology used in this study is based on Transformer network. 75 
 76 
The Transformer architecture is composed of two main components: the encoder and the decoder. Each part 77 
comprises of similar components such as layer normalization, masked multi-head attention modules, position-wise 78 
feed-forward networks, and multi-head attention modules. The decoder’s masked multi-head attention mechanism 79 
restricts attention to earlier positions, ensuring that predictions depend only on previously generated outputs. This 80 
structure enables the Transformer to perform sequence-to-sequence tasks effectively, such as in machine translation 81 
and speech recognition. 82 
 83 
Shaohua Li et al., (2021) proposed Segtran, a novel framework for medical image segmentation based on Squeeze-84 
and-Expansion Transformers. In contrast to conventional models like U-Net, Segtran overcomes the constraint of 85 
limited effective receptive fields by incorporating a squeezed attention block for regularization and an expansion 86 
block to capture diverse feature representations. Additionally, it introduces a novel positional encoding strategy to 87 
improve spatial continuity in image processing by using a continuity inductive bias where spatial relationships are 88 
important. This paper utilized Segtran as proposed by Shaohua Li et al., (2021) to investigate its effectiveness in 89 
segmenting the brain glioma in MRI images. 90 

In this mode, a pretrained CNN backbone was used to extract rich visual features from input MRI slices. For 2D 91 
inputs, EfficientNet-B4 was selected due to its balance between performance and computational efficiency. To 92 
retain higher spatial resolution, the initial convolutional stride was reduced. The feature maps obtained from 93 
multiple stages of the backbone provided multi-scale representations for downstream processing. To encode spatial 94 
information crucial for image understanding, a learnable sinusoidal positional encoding was added to the CNN-95 
extracted features. This encoding combined sine and cosine functions with learnable parameters, allowing the model 96 
to adaptively represent spatial continuity and locality, which are vital for segmenting coherent anatomical structures. 97 
 98 
The fused visual and positional features were flattened and passed through a stack of Squeeze-and-Expansion 99 
Transformer layers, the core innovation of the Segtran framework. In this layer, there are two main components 100 
namely Squeezed Attention Block (SAB) and Expanded Attention Block (EAB). The SAB block is used to reduce 101 
computational overhead and mitigate overfitting risks associated with standard attention mechanisms, attention 102 
computations were compressed using a set of learned codebook vectors (inducing points). This created a more 103 
compact attention map that still preserved global contextual relationships. On the other hand, in EAB block, multiple 104 
attention modes were introduced using a mixture-of-experts approach. Each mode processed the features 105 
independently, and the outputs were aggregated using dynamic mode attention. This allowed the model to learn 106 
diverse contextual representations and increased its modeling capacity. 107 
 108 
Since high-level features from the CNN backbone were low in spatial resolution, a dual Feature Pyramid Network 109 
(FPN) structure was applied. The input FPN upsampled coarse CNN features before feeding them into the 110 
transformer layers. The output FPN further upsampled the transformer output to enhance spatial granularity before 111 
segmentation. This FPN configuration was bottom-up, preserving semantic richness during upsampling. The final 112 
feature map, now at a higher resolution, was processed by a simple 1×1 convolutional segmentation head, producing 113 
pixel-wise class confidence scores for each segmentation label, including whole tumor (WT) and the background. 114 
 115 
 116 

i. Dataset 117 
 118 
The study uses the BraTS 2021 Glioma brain tumor dataset from the Perelman School of Medicine at the University 119 
of Pennsylvania, updated annually (http://www.braintumorsegmentation.org/). BraTS is part of a segmentation 120 
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challenge aligned with MICCAI (https://miccai.org/) and focuses on advanced methods for brain tumor 121 
segmentation in multimodal MRI. The BraTS 2021 dataset includes 374 clinically obtained multiparametric MRI 122 
scans with confirmed diagnoses, comprising T1, T2, FLAIR, and T1Ce images. Enhanced contrast in T1ce images is 123 
crucial for distinguishing meningiomas from gliomas. T1-weighted images show high-fat content tissues as bright 124 
and CSF as dark, while T2-weighted images show water-filled areas as bright and high-fat content tissues as dark. 125 
FLAIR images highlight extended T2 tissue areas as bright and suppress CSF signals, appearing dark. Figure 1 126 
shows a sample of the dataset of different types of MRI subimages. 127 

 128 

 129 
Figure 1. Four Sub-Files Formed (T1ce, T1, T2, and FLAIR) 130 

 131 

ii. Training and Testing 132 
 133 
During the training phase, the process was conducted over three epochs with a batch size of five, using the standard 134 
AdamW optimization method. AdamW is an optimization algorithm used for training deep learning models, which 135 
helps improve generalization and prevent overfitting by decoupling weight decay (Loshchilov & Hutter, 2019). The 136 
parameter refinement phase is conducted based on the input data model, selecting the best hyperparameters. Early 137 
stopping based on the validation loss was used to prevent overfitting. 138 

 139 

iii. Model Evaluation 140 

 141 

The Dice Similarity Coefficient (DSC) is a commonly used evaluation method in brain tumor segmentation 142 
problems (Kao et al., 2020). The Dice coefficient also serves as a general evaluation method in all BraTS 143 
challenges, with many researchers using it in their work (Isensee et al., 2017; Havaei et al., 2017; Kamnitsas et al., 144 
2017; Myronenko et al., 2018). Therefore, the Dice coefficient will be used as the evaluation method in this study to 145 
measure the similarity between the predicted tumor segmentation and the actual tumor segmentation. 146 
 147 
 148 
The formula for the Dice coefficient is: 149 

𝐷𝑆𝐶 =
2∗ 𝐴∩𝐵 

 𝐴 + 𝐵 
                                                               (1) 150 

 151 
In this formula, A and B are two different sets to be compared. The Dice score ranges from 0 to 1, with a value of 1 152 
indicating a perfect match between the predicted and ground truth labels, and 0 indicating no overlap. If there is no 153 
similarity between the two sets, the Dice coefficient will be 0. When the actual ground truth segmentation closely 154 
matches the predicted one, the Dice coefficient will be equal to 1. The Dice score is calculated for each tumor region 155 
(whole tumor, tumor core, and enhancing core) and averaged to obtain the mean Dice score. 156 
 157 
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According to Zhou et al. (2019), the binary cross-entropy loss function is commonly used in image segmentation. 158 
The binary cross-entropy (BCE) is calculated by comparing the predicted pixel vector to the actual pixel vector, 159 
where the pixel vector yi represents the ground truth segmentation mask and ŷ represents the predicted segmentation 160 
mask. 161 

 162 

𝐿𝑂𝑆𝑆𝐵𝐶𝐸 = − 𝑦𝑖 𝑙𝑜𝑔ŷ
𝑁
𝑖=1                                              (2) 163 

 164 
However, imbalanced datasets in terms of class representation can lead to incorrect behavior of the loss function. To 165 
address class imbalance, the weighted binary cross-entropy (WBCE) loss function is used. This is particularly useful 166 
in cases where the ground truth segmentation mask has many background pixels and very few tumor regions (Long, 167 
Shelhamer & Darrell, 2015). The LOSSWBCE is defined as follows, where wi represents the weights assigned to each 168 
class.  169 

 170 

𝐿𝑂𝑆𝑆𝑊𝐵𝐶𝐸 = − 𝑤𝑖𝑦𝑖𝑙𝑜𝑔ŷ
𝑁
𝑖=1                                        (3) 171 

 172 
Based on Dong et al. (2017), the basic U-Net model for brain tumor segmentation employs the Dice Loss function, 173 
defined as the inverse of the Dice Coefficient. The Dice Loss is shown in Equation 4 where G and P are two 174 
different sets to be compared. 175 

 176 

𝐿𝑂𝑆𝑆𝐷𝑆𝐶 = 1 −
2∗ 𝐺∩𝑃 

 𝐺 + 𝑃 
                                                            (4) 177 

 178 

 

This study utilizes Visual Studio Code with Python for brain glioma segmentation in MRI images. The following 

parameters are used: 

 math for basic mathematical functions. 

 numpy for scientific computing. 

 torch for training neural networks. 

 torch.nn for neural network layers. 

 torch.nn.Parameter for learnable parameters. 

 torch.nn.functional for mathematical operations. 

 networks.segtran_shared for Segtran model configuration. 

 train_util.batch_norm for batch normalization. 

 efficientnet.model for efficient models. 

 argparse.Namespace for command-line arguments. 

 

 

Results and Discussion :- 

 
The study employed the BraTS 2021 dataset, which comprises 374 MRI scans with confirmed brain tumor 

annotations, to evaluate the performance of a Transformer-based neural network for glioma segmentation. The 

dataset was divided into 85% for training and 15% for testing. EfficientNet-B1 was selected as the backbone for its 
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computational efficiency and strong feature extraction capabilities. The model architecture consisted of three 

convolutional layers followed by three Transformer layers, enabling both local and global feature representation. 

 

Training was conducted using the AdamW optimizer to mitigate overfitting, with an initial learning rate of 0.0001, a 

batch size of 5, and a total of 200 epochs. Training performance was monitored using the training loss and the Dice 

Similarity Coefficient (DSC) as the primary evaluation metric. Although the model required substantial memory due 

to its architecture, it achieved excellent segmentation results, outperforming models trained with fewer epochs. The 

configuration demonstrated robust learning and generalization across the dataset. We experimented with different 

parameter settings to determine the optimal hyperparameters based on the dataset size, batch size, number of 

iterations, and learning rate. 

 

i. Dataset size 

 
Table 1 shows the Dice coefficient values for different dataset sizes used to train and test Segtran Transformer 

network and U-Net models. The models were trained with various dataset sizes while keeping parameters like 

epochs, learning rate, and batch size constant (150 epochs, learning rate of 0.0001, batch size of 1). 

 
Table 1 Comparison of Dice coefficient values for different dataset sizes for Transformer and U-Net networks 

 
 
Results indicate that larger datasets yield higher Dice coefficients. The dataset was maximized to 374 samples, split 

into 320 for training and 54 for testing. Larger datasets improve model accuracy by providing more data for 

interpreting variations and patterns, reducing overfitting, and addressing class imbalance. Larger datasets are used to 

enhance model accuracy by (Loshchilov & Hutter, 2019). 

 

ii. Iteration 

 
The training process consists of several iterations, known as epochs, during which the model learns from the training 

data and adjusts parameters to improve its performance (Wang et al. 2019). Table 2  represents the Dice coefficient 

values for different numbers of epochs used to train Transformer network and U-Net models. 

 
Table 2 Comparison of Dice coefficient values for different iterations for Transformer and U-Net networks 
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With the dataset size set to maximum, and both the learning rate of 0.0001 and batch size of 1 are held constant, the 

study found that training for 200 epochs yielded the highest Dice coefficient—0.856 for the Transformer network 

and 0.821 for U-Net. Training for 200 epochs enabled the model to learn complex patterns and extract essential 

features necessary for accurate tumor segmentation. However, exceeding this number of epochs may lead to 

overfitting, where the model performs well on the training data but poorly on unseen data. Therefore, 200 epochs 

were identified as the optimal training duration. 

 

iii. Learning Rate 

 
Table 3 presents the Dice coefficient values obtained for different numbers of training epochs using the Transformer 

network and U-Net models. To ensure a fair comparison, other parameters—namely the dataset size (set to its 

maximum), learning rate (0.0001), and batch size (1)—were kept constant. The training process involves multiple 

epochs during which the model iteratively learns and updates its parameters (Wang et al., 2019). 

 
Table 3 Comparison of Dice coefficient values for different learning rates for Transformer and U-Net networks 

 
 
The study found that 200 epochs yielded optimal performance, achieving a Dice coefficient of 0.856 for the 

Transformer network and 0.821 for U-Net. Training beyond 200 epochs may result in overfitting, where the model 

becomes overly specialized to the training data and performs poorly on unseen data (Li et al., 2021). Thus, 200 

epochs were identified as the optimal training duration. 

 

iv. Batch Size 

 
Batch size refers to the number of data samples processed at once before updating model parameters in an iteration 

(Wang et al. 2019). Table 4 presents the Dice coefficient values for different batch sizes used with the Transformer 

network and U-Net models. To assess model performance across varying batch sizes, other parameters—dataset size 

(maximum), number of epochs (200), and learning rate (0.0001)—were kept constant. Batch size refers to the 

number of data samples processed simultaneously before the model updates its parameters in each iteration (Wang 

et al., 2019). The study found that a batch size of 5 yielded the best performance, with the Transformer network 

achieving a Dice coefficient of 0.921, outperforming U-Net, which achieved a Dice coefficient of 0.827. 

 

 
Table 4. Comparison of Dice coefficient values batch size for Transformer and U-Net networks 
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v. Segmentation Performance using Optimum Parameters 

 
Under identical training conditions, the Transformer model outperformed U-Net in brain tumor segmentation, 

achieving a Dice coefficient of 0.921 compared to 0.827 for U-Net (Table 5). Both models utilized EfficientNet-b1 

as the backbone, were trained for 200 epochs with a batch size of 5, and employed the AdamW optimization 

algorithm with a learning rate of 0.0001. The superior performance of the Transformer model can be attributed to its 

self-attention mechanism, which enables the extraction of global contextual features and long-range dependencies 

across the input MRI scans. This capability is particularly beneficial in medical image segmentation, where tumors 

may show complex shapes. While U-Net relies heavily on local convolutional operations, the Transformer 

architecture enhances feature representation by capturing information of different regions of the image. This leads to 

more accurate segmentation and better delineation of tumor boundaries. These findings suggest that the Transformer 

network is more effective at capturing critical spatial and contextual information, making it a more suitable 

architecture for brain tumor segmentation tasks. 

 

Table 5. Comparison of Transformer and U-Net networks on testing dataset 
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Figure 2 illustrates the training loss curve during the training process of the Transformer model. Training loss 

represents the error between the model's predictions and the actual values in the training dataset. Ideally, the loss 

should decrease progressively with each iteration or epoch, indicating that the model is improving its predictive 

accuracy. A consistent downward trend in the graph shows effective learning and model optimization. As shown in 

the figure, the training process achieves stable convergence, suggesting that the model is learning efficiently and 

avoiding issue of overfitting. 

 

 
Figure 2 Training Loss 

 
Figure 3 shows the cross-entropy loss graph. Cross-entropy loss measures the difference between the predicted 

distribution by the model and the actual distribution in the data. In brain tumor segmentation, it evaluates how well 

the model predicts the correct pixels for each class (e.g., tumor vs. non-tumor). The graph displays a decrease in 

cross-entropy loss with each training iteration. A consistent decrease indicates that the model is improving in 

recognizing patterns and making accurate predictions. 

 
Figure 3 Cross Entropy Loss 
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Finally, Figure 4 shows the Dice loss graph. This graph displays changes in loss based on the Dice coefficient during 

the training process. The Dice coefficient measures similarity between two data sets, in this case, between the 

model's predicted segmentation and the actual segmentation. Dice loss is the inverse of the Dice coefficient, 

meaning lower loss indicates more accurate segmentation. A consistent decrease in Dice loss shows that the model 

is improving in tumor segmentation. 

 

 
Figure 4 Total Dice Loss 

 

 

Conclusion :- 

 
In conclusion, this study evaluated the effectiveness of Segtran, a transformer-based neural network for brain glioma 

segmentation using the BraTS MRI dataset and benchmarked its performance against the widely used U-Net 

architecture. The model demonstrated superior segmentation performance under optimal conditions, including an 

EfficientNet-B1 backbone, three transformer layers, the AdamW optimizer, a batch size of 5, a learning rate of 

0.0001, and 200 training epochs. The Transformer model achieved a Dice coefficient of 0.921, significantly 

outperforming U-Net, which achieved 0.827. These results highlight the Transformer Network’s capability to 

deliver more accurate and efficient tumor segmentation, supporting its potential as a valuable tool in medical image 

analysis. 
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